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Groups in Gene Expression Data and
Insights into Differential Expression Results
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Abstract

Background: Hierarchical Sample clustering (HSC) is widely performed to examine associations within expression
data obtained from microarrays and RNA sequencing (RNA-seq). Researchers have investigated the HSC results with
several possible criteria for grouping (e.g., sex, age, and disease types). However, the evaluation of arbitrary defined
groups still counts in subjective visual inspection.

Results: To objectively evaluate the degree of separation between groups of interest in the HSC dendrogram, we
propose to use Silhouette scores. Silhouettes was originally developed as a graphical aid for the validation of data
clusters. It provides a measure of how well a sample is classified when it was assigned to a cluster by according to
both the tightness of the clusters and the separation between them. It ranges from 1.0 to − 1.0, and a larger value
for the average silhouette (AS) over all samples to be analyzed indicates a higher degree of cluster separation. The
basic idea to use an AS is to replace the term cluster by group when calculating the scores. We investigated the
validity of this score using simulated and real data designed for differential expression (DE) analysis. We found that
larger (or smaller) AS values agreed well with both higher (or lower) degrees of separation between different groups
and higher percentages of differentially expressed genes (PDEG). We also found that the AS values were generally
independent on the number of replicates (Nrep). Although the PDEG values depended on Nrep, we confirmed that both
AS and PDEG values were close to zero when samples in the data showed an intermingled nature between the groups
in the HSC dendrogram.

Conclusion: Silhouettes is useful for exploring data with predefined group labels. It would help provide both an
objective evaluation of HSC dendrograms and insights into the DE results with regard to the compared groups.
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Background
High-throughput technologies, including microarrays and
RNA-seq, are widely used to monitor genome-wide expres-
sion levels in samples of interest and to compare expression
patterns in different groups or conditions (e.g., healthy vs.
tumor tissue samples) [1–6]. The latter, comparative ana-
lyses are often termed differential expression (DE) analyses
and the identification of differentially expressed genes or
transcripts (DEGs) is a common approach in studies of the
molecular basis of traits [7, 8]. RNA-seq is now the main
method used to obtain expression data, but microarrays
* Correspondence: kadota@bi.a.u-tokyo.ac.jp
Graduate School of Agricultural and Life Sciences, The University of Tokyo,
1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

© The Author(s). 2018 Open Access This artic
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze
have provided important insights (e.g., [9]). A main dif-
ference between the two technologies is the nature of
the expression data: microarrays yield continuous signal
intensities, while RNA-seq data provides discrete counts
[10, 11]. To appropriately manipulate these expression
data, several specialized models (e.g., the negative bino-
mial (NB) model for RNA-seq count data [12–18]) have
been proposed.
Another common approach for expression analyses is

sample clustering (SC) based on similarity in expression
patterns [19–21]. Utilizing its unsupervised characteristic,
SC has been used to (i) detect previously unrecognized sub-
types of cancer [22, 23], (ii) detect outliers (i.e., outlying
samples) [24], (iii) represent overall similarities in expres-
sion among various organs [25, 26], and (iv) perform sanity
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checks to verify expected clustering patterns [27]. When
using this approach, researchers can investigate SC results
with several possible criteria for grouping (e.g., sex, age, and
disease types). However, the evaluation of arbitrary defined
groups still counts in subjective visual inspection. Numer-
ical scores indicating the degree of separation between pre-
defined groups would help in the objective assessment of
the SC results.
Some researchers empirically know that an SC result

of data designed for DE analysis (say, “DE data”) roughly
corresponds to the DE result when the groups for the
DE analysis are evaluated with respect to the SC result
[8]. If individual groups form distinct sub-clusters, where
each sub-cluster consists only of members (or samples)
in the particular group, DE analysis using such distinct
groups would result in many DEGs. Conversely, if members
(or samples) in each sub-cluster originate from multiple
groups, no or few DEGs would be expected. However,
objective evaluation of the relationship between SC re-
sults on DE data and the percentages of DEGs (PDEG)
remains lacking [8].
Silhouettes is a graphical aid for the interpretation and

validation of cluster analysis [28]. In SC, silhouettes pro-
vide a measure of how well a sample is classified when it
is assigned to a cluster according to both the tightness
of the clusters and the separation between them. There-
fore, the silhouette scores are calculated for individual
samples. By taking the mean over all samples, the average
silhouette (AS) value can be obtained. It ranges from 1.0
to − 1.0: a higher (or lower) AS value indicates higher (or
lower) degree of separation between clusters. Silhouettes
has been successfully used after clustering as a cluster val-
idity measure [20, 29–31].
In this paper, we propose to use Silhouette for the

objective evaluation of gene expression data based on
arbitrary grouping criteria. Although they are independent
of SC, silhouette scores measuring the degrees of separ-
ation between groups of interest would enable a more
objective discussion about the SC result in terms of the
groups. We here focus on single-factor DE data where
only one grouping criterion is primarily of interest in
relation to the DE result. We evaluated the relationship
among SC results, DE results, and AS values, using both
simulated and real expression data (RNA-seq and micro-
arrays). We found silhouettes (i.e., AS values) to provide a
relevant measure for the degrees of separation between
groups of interest in SC results. We also found a positive
correlation between AS values and DE results.

Results
In DE analyses, a gene expression matrix is typically gen-
erated, where each row indicates the gene (or derivatives),
each column indicates the sample, and each cell indicates
(i) counts for RNA-seq data or (ii) the signal intensity for
microarray data. Our previous observation of the positive
correlation between SC and DE results [8] was obtained
from an RNA-seq dataset (referred to as Blekhman, for
short) consisting of 20,689 genes × 18 samples (= 3 spe-
cies × 2 sexes × 3 biological replicates (BRs)) [32]. The
analysis was performed using a hierarchical SC (HSC)
algorithm and a DE pipeline, both of which are provided in
the R/Bioconductor package TCC [33–35]. TCC imple-
ments a robust normalization strategy (called DEGES [36])
that uses functions provided in four widely used packages
(baySeq [37], edgeR [38, 39], DESeq [40], and DESeq2)
[15]. For simplicity and/or the algorithmic advantage
[41, 42], we only used TCC for the DE analysis of RNA-
seq data. Specifically, we used the default DE pipeline
(iDEGES/edgeR-edgeR in [33] and EEE-E in [8]). When
performing HSC for all input data, we used the clustering
function clusterSample with default options ("1 –
Spearman’s correlation coefficient (r)" as a distance esti-
mate and average-linkage agglomeration) in TCC.
Throughout this study, we filtered out genes with zero

counts (or signals) in all samples. For HSC analyses, an
additional filtering was performed where genes having
identical expression patterns were collapsed. Expression
data having those unique expression patterns were used
for calculating distance defined as “1 – Spearman’s r.”
This filtering procedure was intended to reduce the nega-
tive impact of genes with low expression levels when cal-
culating the distance between samples. For example, the
Blekhman data yielded 17,886 genes after the zero-count
filtering and DE analyses were performed. After unique
filtering, 16,560 genes were obtained, and HSC was per-
formed using these genes. For simplicity, we focus on two-
group comparisons with three replicates for each group,
i.e., (A1, A2, A3) vs. (B1, B2, B3), in most cases. In this
study, we use the terms samples and replicates inter-
changeably. Our primary interest was to investigate the
applicability of Silhouette for the objective evaluation of
gene expression data based on arbitrary grouping criteria.
By using silhouettes (i.e., AS values) as a relevant measure
for the group differentiation in the HSC results, we re-
evaluated our previous observations (i.e., the positive
correlation between HSC and DE results) [8].

Representative Relationship between HSC and DE Results
with AS
We first demonstrate the relationship between HSC and
DE results using a representative dataset, the Blekhman
data obtained for three species (i.e., the three-group data):
humans (HS), chimpanzees (PT), and rhesus macaques
(RM) [32]. Briefly, Blekhman et al. studied expression levels
in liver samples from three males (M1, M2, and M3) and
three females (F1, F2, and F3) from each species/group.
Figure 1a shows the HSC dendrogram based on a cor-
relation distance (1 - r) metric and average-linkage
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Fig. 1 Relationship between the shape of HSC and DE results. a HSC dendrogram for Blekhman data consisting of 16,560 genes × 18 samples.
The clustering was performed using the “clusterSample” function with default options in TCC. The unique filtering (from 17,886 genes to 16,560
genes with unique expression patterns across 18 samples) was internally performed in the function to reduce the negative effect on associations
in low count regions when calculating Spearman’s r as a distance measure. b DE results from a total of 15 two-group comparisons with three
replicates. The DE pipeline provided in TCC was applied to the Blekhman’s count matrix consisting of 17,886 genes after zero-count filtering. The
PDEG values and AS values for individual comparisons are provided on the right
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agglomeration. There were three major clusters, each
of which represented a particular species (HS, PT, and
RM clusters) and the RM cluster was relatively distant
from the other clusters. Different from the clear inter-
specific discrimination (i.e., high dissimilarity between
species), we observed a very low degree of separation
between sexes (F vs. M) within each of the three major
clusters. That is, samples labelled female (F) and male
(M) were intermingled within each species, except for
the PTF sub-cluster comprising three female samples
(PTF1, PTF2, and PTF3).
Figure 1b shows 15 DE results for two-group compari-

sons. The percentages of DEGs (PDEG) satisfying the 10%
false discovery rate (FDR) threshold were obtained using
TCC with default settings. The four PDEG values for the
HS vs. PT comparison (7.56–9.58%) were much smaller
than those for either the HS vs. RM (16.82–22.92%) or
the PT vs. RM comparison (14.69–20.85%). These results
are consistent with those of the original study [32] and
can primarily be explained by the interspecific distances
shown in Fig. 1a. Different from the interspecific com-
parisons, sex comparisons (F vs. M) showed extremely
low PDEG values (0.07–0.17%). This is consistent with
the lack of separation between female and male samples
within each species in the HSC analysis (Fig. 1a).
Silhouette [28] has been successfully employed to esti-

mate the appropriate number of clusters for gene expres-
sion data [20, 29–31]. Although Silhouette is generally used
for the validation of clustering results, we here employ it
independently from clustering. Technically, the term cluster
is replaced with group in the silhouette calculation pro-
cedure. For each sample i, let ui be the average distance
between i and all other samples within the same group
(e.g., group A). Let vi be the average distance between i
and the other group (e.g., group B), of which i is not a
sample member. The silhouette index si for sample i is
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calculated as (vi - ui)/max(ui, vi). The index si ranges
from − 1 to 1; it is positive if ui < vi, zero if ui = vi, and
negative if ui > vi. A larger si value indicates increased
group separation and vice versa. By taking the mean si
over all samples, the average silhouette (AS) value for
each comparison can be obtained (Additional file 1a;
right hand in Fig. 1b). The potential applicability of the
silhouette unrelated to clustering has been described in
the original study [28]. However, to the best of our know-
ledge, the current study is the first practical application of
the concept to estimate the degree of separation between
groups (not clusters) using gene expression data.
It is noteworthy that, in the eight RM-related inter-group

comparisons, both PDEG and AS values obtained from four
RMF-related comparisons were consistently larger than
those from the four RMM-related comparisons. For ex-
ample, for the HSF vs. RMF comparison, PDEG = 21.74%
and AS = 0.611, while for the HSF vs. RMM compari-
son, PDEG = 16.85% and AS = 0.548. This difference is
primarily explained by the smaller average distance of
samples in RMF (0.0475) than in RMM (0.0722). Small
PDEG values (0.07–0.17%) obtained for the sex (i.e., intra-
group) comparisons can be explained by the similarity
between inter-group distances and intra-group distances. In
other words, two-group comparisons showing AS ≈ 0
would result in few, if any, DEGs. The numbers of DEGs
(or PDEG values) can, of course, vary with FDR thresholds
and generally increase when the threshold is less restrictive.
Nevertheless, we confirmed that the general trends for

the 15 two-group comparisons were the same at 1%, 5%,
10%, 20%, 30%, and 40% FDR thresholds (Additional file 1b).
Based on the definition of FDR, an increase in the PDEG
value by loosening the FDR threshold does not necessarily
indicate an increase in the true number of DEGs. For ex-
ample, PDEG = 0.78% at a 40% FDR for the PTF vs. PTM
comparison indicates that 0.78 × 0.4 = 0.31% are non-DEGs,
and the remaining 0.78 × (1.0–0.4) = 0.47% are, at least sta-
tistically, true DEGs. In our experience, the percentage of
true DEGs (say PtrueDEG) generally approaches a constant
value at a non-stringent FDR threshold, such as 30% or
40%. In this case, the maximum PtrueDEG value for any sex
comparison was ~ 0.5% (Additional file 1c). These results
indicate that differences in PDEG values with respect to the
FDR threshold are not important.
Based on our visual evaluation, the AS values effectively

represented the overall relationship between groups of
interest in the HSC analysis (shown in Fig. 1a). We think
the expressive power in cases of few or no DEGs in the
dataset (i.e., AS ≈ 0) is practically promising, but increas-
ing the correlation between PDEG (or PtrueDEG) and AS
is not practical. This is simply because the PDEG value
tends to increase as the number of replicates (Nrep) in-
creases [43], suggesting that the correlation is influ-
enced by Nrep.
Effects of the Number of Replicates (Nrep) on Parameter
Estimates
We next investigated the effects of Nrep on PDEG and AS
values, using both simulated and real RNA-seq data.
The simulated data were constructed as follows: two-
group comparison (A vs. B) with 40 replicates per group
(Nrep = 40), 10,000 total genes, of which 20% were DEGs
(2000 DEGs and 8000 non-DEGs; PsimDEG = 20%), the
levels of DE were four-fold in individual groups, and the
proportions of DEGs up-regulated in individual groups
were the same (i.e., 1000 DEGs are up-regulated in group
A). For a total of 80 samples (A1, A2, …, A40, B1, B2, …,
B40), we obtained PDEG = 21.0% at a 10% FDR threshold,
AS = 0.2409, and area under the ROC curve (AUC) =
0.9986. The AUC is a widely used measure of both the
sensitivity and specificity of the DE pipeline [7, 8, 33, 36].
The value (ranging from 0 to 1) can also be regarded as an
overall indicator of the ability to distinguish true DEGs
from non-DEGs. A larger AUC value indicates better DE
separation and vice versa. The AUC value of 0.9986 indi-
cates nearly perfect separation and the estimated PDEG
value (21.0% at FDR = 0.1) is in good agreement with the
true value (i.e., 20% DEGs or PsimDEG = 20%).
The DE pipeline was used to examine subsets from

the baseline matrix with 40 replicates per group (Nrep =
40). Bootstrap resampling was performed 100 times at
Nrep = 3, 6, …, and 30 (without replacement). Consistent
the previous observations [43], the average PDEG values
increased as a function of Nrep (Fig. 2a). However, such
an increasing trend was not observed for AS (Fig. 2b).
This result indicates that the the silhouette (i.e., AS) is
independent of Nrep. Note that the PDEG value approached
to the true value (PsimDEG = 20%) as Nrep increased (Fig. 2a).
In general, the DE pipeline does not necessarily pro-
duce a well-ranked gene list in which true DEGs are
top-ranked and non-DEGs are bottom ranked. Given
the increase in AUC values in conjunction with in-
creases in PDEG (Fig. 2c), this interpretation can be
trusted in this case.
Next, the effects of Nrep under different PsimDEG condi-

tions (PsimDEG = 10%, 5%, 2%, 1%, 0.5%, 0.1%, and 0.02%)
were investigated. We confirmed that PDEG, but not on
AS, is dependent on Nrep (Additional file 2). Different
from the condition shown in Fig. 2 (PsimDEG = 20%),
however, we observed a transition in the distribution of
PDEG values at around PsimDEG = 1%. Although the PDEG
value monotonously increased as Nrep increases when
PsimDEG was 20% or more, the PDEG value switched to a
monotonously decreasing trend when PsimDEG was 0.1%
or less. Overall, the PDEG values approached the true
values (i.e., the PsimDEG values) as Nrep increased. These
results indicate that more accurate DE results can be ob-
tained as Nrep increases, irrespective of the true percent-
ages of DEGs in the data.
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Fig. 2 Effects of Nrep on parameter estimates (simulated data).
Bootstrapping results (100 iterations) from simulated RNA-seq data
consisting of 10,000 genes × 80 samples with PsimDEG = 20% are
shown. Vertical axes for the boxplots indicate: (a) PDEG, (b) AS, and
(c) AUC values. Horizontal axes indicate the Nrep values (3, 6, …, 30).
It can be seen that PDEG and AUC values increase as a function of
Nrep, but AS values do not
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A similar analysis was performed using another real
RNA-seq dataset consisting of 7126 genes × 96 samples
[43, 44]. Ten outlier samples were rejected, following the
original study [43], and subsequent zero-count filtering
of the original data yielded 6885 genes × 86 samples
(unique filtering did not have any effect for this dataset).
For the data (called Schurch for short) comparing two
groups (42 wild-type samples vs. 44 Δsnf2 mutant sam-
ples), we obtained PDEG = 78.1% and AS = 0.7289. Note
that the AUC value could not be calculated for the data
because, different from simulated data, we do not know
which genes are true DEGs. We investigated the effects
of Nrep on parameter estimates. The results were quite
similar to those obtained using simulated data (shown in
Fig. 2), i.e., PDEG was dependent on Nrep, but AS was not
(Additional file 3). Note that the distribution of PDEG
values obtained using TCC (Additional file 3a) was also
similar to that obtained using edgeR [39] (Fig. 1a in
[43]). This is quite reasonable because the DE pipeline
implemented in TCC can be viewed as an iterative
edgeR pipeline [8].

Relationships between PDEG and AS Values
Next, we investigated the relationships between PDEG
and AS values under a fixed Nrep of 3. Figure 3 shows
the results for (a) Schurch, (b) simulated, and (c) the
mixture. For simulated data, we examined 19 PsimDEG

conditions from 5% (black in Fig. 3b) to 0.95 (red in
Fig. 3b). Overall, there was a strong positive correlation
between PDEG and AS values in this condition (Fig. 3c).
However, the accurate estimation of PDEG using AS is
not realistic and accordingly is not a goal of the current
study. This is mainly because PDEG increases as a function
of Nrep, while AS does not (Fig. 2; Additional file 3). In
other words, the regression coefficients depend on Nrep.
Most importantly, if one wants to calculate PDEG, there is
no need to estimate the AS value; rather, it is only neces-
sary to directly execute the DE pipeline. Nevertheless, as
PDEG approaches 0, AS also approaches 0. This suggests
that PDEG values near 0 can be interpreted as a mathemat-
ical explanation for AS near 0, i.e., the samples in the two
groups (A vs. B) were completely mixed. In statistical
terms, this situation is essentially the same as the null
hypothesis (H0: A = B). The acceptance of H0 (AS = 0)
indicates there are no or few DEGs in the two-group
data (PDEG = 0). In this sense, AS could be used as
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Fig. 3 Relationship between PDEG and AS values. Scatter plots of
PDEG vs. AS at Nrep = 3 are shown. (a) Schurch data. The scatter plot
shows a detailed relationship between PDEG and AS values for
Schurch data at Nrep = 3 (Additional file 3a and 3b). (b) simulated
data under PsimDEG = 5%, …, 95%. The scatter plot for PsimDEG = 20%
corresponds to the PDEG (ranging from 0.1273 and 0.1397) and AS
values (ranging from 0.2281 and 0.2617) for Nrep = 3 shown in Fig. 2b.
(c) the results for the mixture as well as the Blekhman data including
15 two-group comparisons shown in Fig. 1b (magenta)
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helpful information for the interpretation of DE results,
especially when only a few statistically significant DEGs
are obtained.
It should be noted that the distribution shown in Fig. 3c

(right panel) differs substantially from the distribution for
real data (Blekhman [32] and Schurch [43]) and simulated
data, but the shapes of the distributions were similar. For
example, the PDEG value at AS = 0.6 was approximately
0.6 for the simulated data, while PDEG for real data was
approximately 0.2. Since the AS value for the simulated
data at PDEG = 0.2 was approximately 0.3, the difference
for AS at PDEG = 0.2 was 0.3. Similarly, the difference
for PDEG at AS = 0.6 was 0.4. It should also be noted
that the distribution of values for Blekhman (magenta)
and Schurch (black with AS > 0.5) was different (Fig. 3c).
While low AS values (− 0.019–0.619) and low PDEG values
(0.07–22.92%) were obtained for the Blekhman data, high
AS values (0.5585–0.8998) and high PDEG values (13.03–
56.34%) were obtained for the Schurch data. The difference
can be explained by the intra-group distances. For the
Schurch data, including 42 wild-type samples (group A)
and 44 Δsnf2 mutant samples (group B), the distances for
groups A and B were 0.0144 and 0.0084, respectively. The
values obtained for the Schurch data were clearly smaller
than those obtained for the Blekhman data (> 0.04; Fig. 1a).
According to a previous study [43], the Schurch data repre-
sents a best-case scenario for DE pipelines, since the
within-group biological variation (BV) is low. As the BVs
roughly correspond to the intra-group distances, many
other real RNA-seq data may display low PDEG and AS
values compared to those obtained for the Schurch data.

Analyses of two Additional Real RNA-Seq Datasets
We further investigated two other real RNA-seq datasets
available at the ReCount website [45]. The first dataset
(called Bottomly [46]) consisted of 36,536 genes × 21
samples. Briefly, Bottomly et al. studied the expression
levels of two common inbred mouse strains used in neuro-
science research, i.e., 10 C57BL/6J strains (A1, A2 …, A10)
and 11 DBA/2J strains (B1, B2, …, B11). DE analyses (i.e.,
estimates of PDEG values) were performed using 13,932
genes after zero-count filtering. AS calculations and HSC
were performed using 13,133 genes after unique filtering.
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The results for this dataset comparing 10 vs. 11 samples
were PDEG = 11.0% at a 10% FDR threshold and AS =
0.1872. Regarding the effects of Nrep, we observed similar
trends to those obtained using the Schurch data (Fig. 3a),
i.e., PDEG increased as a function of Nrep, while AS did not
(Additional file 4a–b). Despite similar trends, the values
obtained for the Bottomly data were clearly lower than
those for the Schurch data. For example, the Bottomly
data (and Schurch data) showed on average PDEG =
3.81% (32.4%) and AS = 0.1874 (0.7306) at Nrep = 3
(Additional files 3 and 4). These findings suggested that
the PDEG values were lower for Bottomly than for
Schurch because the AS value for Bottomly was lower
than that of Schurch.
In general, high (or low) AS values indicate clear (or

unclear) separation of groups. The HSC dendrogram
for the Bottomly data showed relatively unclear separ-
ation of two groups (Additional file 4c; AS = 0.1872)
compared to the separation of groups for the Schurch
data (Additional file 3c; AS = 0.7289). Nevertheless, as also
implied by the positive AS value, the degree of inter-group
separation for the Bottomly data was not random. For ex-
ample, by visual inspection, we identified four clusters, each
of which consisted only of samples within the same group
(Additional file 4c). These clusters primarily explained the
estimated PDEG values and positive AS values. The highest
values for PDEG (=24.7%) and AS (= 0.3524) among 100 tri-
als at Nrep = 3 were obtained when comparing (A3, A4, A6)
vs. (B1, B3, B8). This is reasonable because five of the six
samples (except for A3) were members of either the A2 or
B1 cluster. Relatively high values can be obtained by com-
paring two groups in which all members belong to either
the A2 or B1 clusters. Indeed, we observed PDEG = 34.8%
and AS = 0.4623 when comparing (A2, A4, A6) vs. (B1, B2,
B3), though this comparison was not included in the 100
original trials shown in Additional file 4a–b.
Different from the Schurch data where the impact of

sampling effects shrunk asNrep increased (Additional file 3a),
we did not observe shrinkage for the Bottomly data around
Nrep = 3–7 (Additional file 4a). This can also be explained
by the four clusters mentioned above. For example, the
highest values for PDEG (=23.5%) and AS (= 0.2699) among
100 trials at Nrep = 6 were obtained when comparing (A2,
A3, A4, A6, A7, A9) vs. (B1, B2, B3, B4, B8, B10). All eight
samples in the A2 and B1 clusters was included in the
comparison. Additionally, a comparison between the
two clusters, i.e., (A2, A4, A6, A7) vs. (B1, B2, B3, B8),
yielded PDEG = 31.8% and AS = 0.3701. Accordingly, the
decreases in PDEG (=31.8% to 23.5%) and AS (0.3701 to
0.2699) values by the addition of four samples (A3, A9,
B4, and B10) not included in the two clusters are reason-
able. We observed that the impact of sampling effects
tends to shrink as Nrep (> 7) increases. This is probably
because the maximum number of samples in the four
clusters is seven for the B4 cluster; the addition of samples
not included in the cluster can contribute to decreases in
the PDEG and AS values.
The second dataset (called Cheung [47]) consisted of

52,580 genes × 41 samples. Briefly, Cheung et al. studied
the expression levels of human B-cells using 17 females
(A1, A2, …, A17) and 24 males (B1, B2, …, B24). The
DE analyses (i.e., estimates of PDEG values) were per-
formed using 12,410 genes after zero-count filtering. AS
calculation and HSC were performed using 11,738 genes
after unique filtering. The results for this dataset compar-
ing 17 vs. 24 samples were PDEG = 0.169%, SNR = 1.023,
and AS = 0.0118. The values were considerably lower than
those obtained for both the Schurch and Bottomly data
and were similar to those for the three sex comparisons
(Fig. 1b). This result is intuitively reasonable, as gene ex-
pression levels in B-cells are not expected to differ greatly
between females and males.
We did not observe an increasing trend for PDEG

values as Nrep increased (Additional file 5a). The average
PDEG values for 100 trials at Nrep = 3, 5, 7, 9, 11, 13, and
15 were 0.631%, 0.291%, 0.399%, 0.254%, 0.492%, 0.325%,
and 0.219%, respectively. These values as well as the distri-
bution were quite similar to those obtained from simulated
data with PsimDEG = 0.5% (Page 5 in Additional file 2a). This
result suggests that the increase of Nrep does not contribute
to the increase of PDEG when AS is near 0. Since AS is inde-
pendent of Nrep, no or few DEGs (PDEG < 1%) would be ob-
tained when AS < 0.1 for count data (Additional file 5b).
The intermingled nature of the HSC dendrogram for the
Cheung data (Additional file 5c) also supports this infer-
ence; AS can be utilized to interpret the DE results.

Analysis of two Microarray Datasets
We finally investigated two microarray datasets obtained
using the Affymetrix Rat Genome 230 2.0 Array (GPL1355).
The first dataset (called Nakai [4]) consisted of 31,099 pro-
besets (which can be viewed as genes) × 24 samples (= 3 tis-
sues × 2 conditions × 4 BRs). Briefly, Nakai et al. studied the
expression levels of genes in brown adipose tissues (BAT),
white adipose tissues (WAT), and liver tissues (LIV). They
compared two conditions (fed vs. fasted for 24 h) for each
tissue type. We here denoted the fed BAT samples BAT_fed,
the 24 h–fasted LIV samples LIV_fas, and so on. To quantify
expression from the probe-level data (i.e., Affymetrix CEL
files), we applied three algorithms (MAS [48], RMA [49],
and RobLoxBioC [50]). Different from RNA-seq data repre-
sented as integer counts, microarray data are expressed as
continuous signals and in most cases are log-transformed.
We therefore applied a specialized DE pipeline for micro-
array data provided in the package limma [51], instead of
the DE pipeline used for RNA-seq data in TCC.
As expected based on the nature of microarray expres-

sion signals, zero signal values were not obtained for any
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genes in all samples and all genes displayed unique
expression patterns. Accordingly, the subsequent analysis
of microarray data was performed based on total set of
genes (= 31,099). The HSC dendrogram for the Nakai data
displayed three major clusters corresponding to the
three tissue types (LIV, WAT, and BAT clusters) for all
quantification algorithms (MAS, RMA, and RobLoxBioC;
Additional file 6a). Since the experimental design and
the HSC dendrogram were very similar to those of the
Blekhman data (Fig. 1), these microarray data can be
regarded as the counterpart.
We performed 15 two-group comparisons with four

BRs for each group, i.e., (A1, A2, A3, A4) vs. (B1, B2, B3,
B4). Overall, we observed highly similar trends for the
Nakai data and the Blekhman data (Additional file 6b).
For MAS-quantified data, for example, four PDEG values
in the BAT vs. WAT comparison (24.49–34.98%) were
smaller than those in the BAT vs. LIV comparison (41.79–
44.63%) or WAT vs. LIV comparison (39.74–44.05%). Dif-
ferent from the clear inter-tissue differentiation (i.e., high
dissimilarity between tissues), we detected a relatively low
degree of separation between conditions (fed vs. fasted)
within each of the three major clusters. The PDEG values
for the fed vs. fasted comparison were 4.5–8.79%. Of
these three comparisons, the intra-BAT comparison (i.e.,
BAT_fed vs. BAT_fas) showed the highest PDEG (8.79%)
and AS (0.207) values.
We observed similar results for RobLoxBioC-quantified

data and relatively dissimilar results for RMA-quantified
data. In particular, for the RMA-quantified data, we de-
tected higher PDEG and AS values compared to those of
the other data. There are several potential explanations.
RMA treats a batch of arrays simultaneously, while MAS
and RobLoxBioC treat each array independently. RMA
tends to overestimate sample similarity [52]. Combina-
tions of DE pipelines with different quantification algo-
rithms might also explain the higher PDEG values observed
in RMA-quantified data: limma is more compatible with
MAS than RMA [53, 54]. Nevertheless, we observed a
clear positive relationship between PDEG and AS values,
suggesting that AS is also applicable to microarray data.
The second dataset (called Kamei [55]) consisted of

31,099 genes × 10 samples (five BRs per group). Briefly,
Kamei et al. compared gene expression in livers for rats
fed a low-iron diet (approximately 3 ppm iron) for 3 days
and a normal diet (48 ppm iron) as a control. The PDEG
and AS values obtained (Iron_def vs. Control) were close
to zero and the HSC dendrogram showed an intermingled
structure (Additional file 7). These results indicate that
the Kamei data can be regarded as a counterpart of the
Cheung data (Additional file 5). AS can be utilized as sup-
porting information to interpret DE results for both RNA-
seq and microarray data, especially when no or few DEGs
were obtained.
We should note that one sample (Iron_def1) was a clear
outlier in the HSC dendrogram for the RMA-quantified
data, but not in the other dendrograms (Additional file 7).
Iron_def3 was the most distant from the other samples in
MAS- and RobLoxBioC-quantified data. This difference
can also be explained by tendency of RMA to overestimate
sample similarity [52]. Indeed, the average distance (0.007)
among samples in RMA-quantified data was considerably
lower than those for the other datasets (0.043 for MAS and
0.037 for RobLoxBioC). The expression levels for the two
microarray datasets (Nakai and Kamei) were obtained
using the same device (i.e., the Affymetrix Rat Genome
230 2.0 Array), indicating that the datasets can be directly
compared. The average distances among ten liver samples
in the Kamei data were clearly lower than those among
eight liver samples (LIV) in the Nakai data (0.078 for MAS,
0.022 for RMA, and 0.070 for RobLoxBioC). These results
suggest that the differences in the most distant samples in
the Kamei data (Iron_def1 in RMA data and Iron_def3 in
the other data) are within the error range.
HSC dendrograms of the merged data provided several

insights (Additional file 8). First, the ten liver samples in
Kamei data formed a tight cluster, even after adding the
Nakai data, and formed a larger cluster when the eight
liver samples from the Nakai data were included, confirm-
ing the overall similarities among various tissues (i.e., a san-
ity check) [25–27]. Second, compared to 24-h fasting, the
short-term iron-deficient diet might not result in significant
differences in gene expression. This conclusion is supported
by adding other publicly available dataset(s) for identical (or
highly similar) tissues. It may be more important to add in-
dependent, publicly available datasets than to perform more
detailed analyses using a single dataset. Third, an ap-
propriate distance measure is important. The distance
was defined here as (1 - Spearman’s r); this definition is
widely used [21, 27]. Since the distance ranges from 0
to 2, the interpretation is relatively easy compared to
the interpretation of Euclidean distances, which range
from 0 to ∞. We indeed understood the extremely high
similarity among the ten liver samples in the Kamei data
in the context of the very small distance values. In general,
distance information is not interpreted so broadly in HSC
analyses, but examinations of both the distance (1 - r) and
AS may be useful.

Discussion
In this study, we proposed to use silhouettes (i.e., AS
values) as an objective measure for the degrees of separ-
ation between groups of interest based on expression data.
To our knowledge, the use of AS independent from HSC
is the first practical application in the field of expression
analysis. Our main findings are (i) AS is an effective indi-
cator of the overall relationship in the HSC dendrogram
based on arbitrary grouping criteria; (ii) AS values are
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independent of Nrep, while PDEG values obtained from DE
analysis are fundamentally dependent on Nrep; and (iii)
there is a positive correlation between AS and PDEG values
under a fixed Nrep. It is not necessary to estimate PDEG
from AS values because DE results (including PDEG) can
directly be obtained via the DE pipeline. The AS provides
helpful information for interpreting DE results as well as
HSC results.
Based on the current results, we conclude that our

calculation procedure for AS is appropriate. The proced-
ure consists of 1) filtering genes with low expression, 2)
calculating distances among samples, and 3) calculating
the AS values based on distance estimates. The high simi-
larity among samples in the Kamei data could be detected
by investigating the distances defined as (1 - Spearman’s
r). Considering this finding in addition to other data,
some samples could be misidentified as outliers (e.g.,
Iron_def1 in Additional files 7 and 8). In addition to
the AS value obtained for the groups of interest, (i)
the investigations of distances among samples and/or
groups in the dataset and (ii) comparison with other
datasets obtained from the same or similar samples
are practically important.
Of course, there are true outliers, e.g., ten outlying

samples in the original Schurch data [43, 44]. We
manually eliminated the ten outliers as determined in
the original study [44] and analyzed 86 clean samples
in this dataset (Fig. 3a; Additional file 3). The values
obtained without outliers (PDEG = 78.1% and AS = 0.7289)
were clearly higher than those with outliers (PDEG = 74.7%
and AS = 0.6530), indicating the importance of devel-
oping methods for the automatic detection of outliers
[55, 56]. Our preliminary analysis for the original data
using an existing method [57] successfully detected
nine of the ten true outliers as well as three false positives.
We obtained a promising result (PDEG = 77.6% and AS =
0.7301) using the remaining 84 samples. Rational re-
moval of outlying samples would yield better DE results.
We expect that AS would help objective evaluation of
the changes in the DE results accompanying outlier
removal.
In practice, Silhouettes can be utilized as supporting

information to interpret DE results, especially when
no or few DEGs are obtained. As demonstrated by
several examples (e.g., Additional file 7), we actually
encounter such expression data. Silhouettes enables us
to discuss the DE results as well as SC dendrograms
more objectively.

Conclusion
Silhouettes is useful for exploring data with predefined
group labels. It would help provide both an objective
evaluation of SC dendrograms and insights into the DE
results with regard to the compared groups. The use of
this measure would enable a more objective discussion
about the SC result in terms of the groups.

Methods
Most of the analyses were performed using R (ver. 3.3.2)
[34] and Bioconductor [35]. The versions of major R
packages used in the study were TCC ver. 1.14.0, edgeR
ver. 3.16.5, ROC ver. 1.50.0, cluster ver. 2.0.5, affy ver.
1.44.0, and RobLoxBioC ver. 0.9. R-codes are provided
in Additional file 10.

Simulated Data
The two-group simulated data were produced using the
“simulateReadCounts” function in TCC [33]. The variance
(V) of the NB distribution can generally be modeled as
V = μ + φμ2. The empirical distribution of read counts
to obtain the mean (μ) and dispersion (φ) parameters of
the NB model was obtained from Arabidopsis data
(three BRs for both treated and non-treated samples) in
[58]. The output of the simulateReadCounts function is
stored in the TCC class object with information about
the simulated conditions and is therefore ready-to-analyze
for both the DE analysis and HSC. These data were used
to obtain Fig. 2, Fig. 3, and Additional file 2.

Four RNA-Seq Data
Blekhman’s mammalian data were obtained from the
supplementary website (http://genome.cshlp.org/content/
suppl/2009/12/16/gr.099226.109.DC1/suppTable1.xls) [32].
The raw count matrix consisting of 20,689 genes × 36 sam-
ples (= 3 species × 2 sexes × 3 BRs × 2 technical replicates)
was collapsed by summing the data for technical replicates,
giving a reduced number of columns in the matrix (i.e., 18
samples; 3 species × 2 sexes × 3 BRs). These data were used
to obtain Fig. 1, Fig. 3, Table 1, and Additional file 1.
Schurch’s yeast data were obtained from the GitHub

website (https://github.com/bartongroup/profDGE48/tree/
master/Preprocessed_data) [43]. After merging the count
vectors for a total of 96 samples, data from 10 outlying
samples (WT_rep21, WT_rep22, WT_rep25, WT_rep28,
WT_rep34, WT_rep36, Snf2_rep06, Snf2_rep13, Snf2_rep25,
and Snf2_rep35) were eliminated. Subsequent data elimina-
tions (named no_feature, ambiguous, too_low_aQual, not_a-
ligned, and alignment_not_unique) yielded a count matrix
consisting of 7126 genes × 86 samples. These data were used
to obtain Fig. 3 and Additional file 3.
Bottomly’s mouse data were [46] obtained from the Re-

Count website (http://bowtie-bio.sourceforge.net/recount/
countTables/bottomly_count_table.txt) [45] and consisted
of 36,536 genes × 21 samples. These data were used to ob-
tain Additional file 4.
Cheung’s human data [47] were obtained from the Re-

Count website (http://bowtie-bio.sourceforge.net/recount/
countTables/cheung_count_table.txt) [45] and consisted of

http://genome.cshlp.org/content/suppl/2009/12/16/gr.099226.109.DC1/suppTable1.xls
http://genome.cshlp.org/content/suppl/2009/12/16/gr.099226.109.DC1/suppTable1.xls
https://github.com/bartongroup/profDGE48/tree/master/Preprocessed_data
https://github.com/bartongroup/profDGE48/tree/master/Preprocessed_data
http://bowtie-bio.sourceforge.net/recount/countTables/bottomly_count_table.txt
http://bowtie-bio.sourceforge.net/recount/countTables/bottomly_count_table.txt
http://bowtie-bio.sourceforge.net/recount/countTables/cheung_count_table.txt
http://bowtie-bio.sourceforge.net/recount/countTables/cheung_count_table.txt
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52,580 genes × 41 samples. These data were used to
obtain Additional file 5.
Two Rat Microarray Data
Nakai’s probe-level data (.CEL files) were obtained from
the ArrayExpress website [59] through an R package
ArrayExpress [60] by applying “GSE7623.” The MAS-
quantified data were obtained using the mas5 function
in the R/Bioconductor package affy [61]. Expression sig-
nals less than 1 were set to 1 and were subsequently log2-
transformed. The RMA-quantified data were obtained
using the rma function in the same package, i.e., affy. The
output of the function was already log2-transformed.
The RobLoxBioC-quantified data were obtained using
the robloxbioc function in the R package RobLoxBioC
[50]. The expression signals less than 1 were set to 1 and
were subsequently log2-transformed. These data were
used to obtain Additional files 6 and 8.
Kamei’s probe-level data (.CEL files) were obtained

from the ArrayExpress website [59] using the R package
ArrayExpress [60] by applying “GSE30533.” The subse-
quent procedures were the same as those described for
the Nakai data. These data were used to obtain Additional
files 7 and 8.
Note that the quantification procedure was performed

using R ver. 3.1.3 (affy ver. 1.44.0) because we encoun-
tered an error when executing the functions mas5 and
robloxbioc in R ver. 3.3.2 (affy ver. 1.52.0).
HSC and DE Analyses
The HSC was performed using the clusterSample function
with default options (“1 – Spearman’s r” as the distance and
unique expression patterns as an objective low-count filter-
ing method) in TCC [33]. The DE analysis was performed
using three functions (calcNormFactors, estimateDE,
and getResult) with default options which use functions
in the package edgeR [39]. The genes were ranked in
ascending order according to p-values. The ranks were
used to calculate AUC values when analyzing simulated
data (Fig. 2 and Additional file 2). The AUC values
were calculated using the AUC function in the package
ROC. The p-values were adjusted for multiple-testing
with the Benjamini–Hochberg procedure. The adjusted
p-values (i.e., q-values) were used to obtain the num-
bers of DEGs satisfying an arbitrarily defined FDR
threshold (mainly 10%).
Calculation of Average Silhouette (AS) Values
The AS values were calculated using the silhouette func-
tion in the package cluster. Examples of the procedure
to estimate AS values are given in Additional file 9.
Additional files

Additional file 1: Detailed results for Blekhman’s RNA-seq count data. (a)
Silhouette indices (si) for each sample i and the average (AS). The sample
names (A1, A2, A3, B1, B2, or B3) for i correspond to those shown in Fig. 1b.
(b) PDEG values at various FDR thresholds (1%, 5%, 10%, 20%, 30%, and 40%
FDR). The values at 10% FDR were the same as those shown in Fig. 1b. (c)
Percentages of true DEGs (PtrueDEG), defined as PDEG × (1− FDR threshold), at
corresponding FDR thresholds shown in (b). (XLSX 19 kb)

Additional file 2: Effects of Nrep on parameter estimates (simulated
count data). Bootstrapping results for simulated data under different
PsimDEG values are shown: PsimDEG = 10% (Page 1), 5% (Page 2), 2% (Page
3), 1% (Page 4), 0.5% (Page 5), 0.1% (Page 6), and 0.02% (Page 7). Other
legends are the same as those in Fig. 2. (PPTX 110 kb)

Additional file 3: Results for Schurch’s RNA-seq count data. For (a–
b), Bootstrapping results for Schurch data comparing 42 wild-type
samples and 44 Δsnf2 mutant samples are shown. Legends are the
same as those in Fig. 2. (c) HSC dendrogram. Two distinct clusters,
a wild-type cluster (right side) and Δsnf2 mutant cluster (left side),
can be seen. The intra-group distances within 42 wild-type samples
and 44 Δsnf2 mutant samples were 0.0144 and 0.0084, respectively.
(d) Scatter plots of PDEG vs. AS at Nrep = 3 (black), 6 (blue), and 9 (sky
blue). (PPTX 65 kb)

Additional file 4: Results for Bottomly’s RNA-seq count data. For (a–b),
Bootstrapping results for Bottomly data comparing 10 C57BL/6J strains
(A1, A2 …, A10) vs. 11 DBA/2 J strains (B1, B2, …, B11) are shown. (c)
HSC dendrogram. For explanation, four clusters are defined in (d) the
HSC dendrogram: the B1 cluster (consisting of B1, B2, B3, and B8), A8 cluster
(A8, A9, and A10), A2 cluster (A2, A4, and A6), and B4 cluster (B4, B5, B6, B7,
B9, B10, and B11). (d) Scatter plots of PDEG vs. AS at Nrep = 3 (black), 6 (blue),
and 9 (sky blue). (PPTX 55 kb)

Additional file 5: Results for Cheung’s RNA-seq count data. For (a–b),
Bootstrapping results for Cheung data comparing 17 females (A1, A2, …,
A17) vs. 24 males (B1, B2,…, B24) are shown. (c) HSC dendrogram. (d) Scatter
plots of PDEG vs. AS at Nrep = 3 (black), 6 (blue), and 9 (sky blue). (PPTX 58 kb)

Additional file 6: Results for Nakai’s microarray data. (a) HSC dendrogram
for Nakai data consisting of 31,099 genes × 24 samples and (b) PDEG and AS
values from a total of 15 two-group comparisons with Nrep = 4 are shown:
MAS-quantified data (Page 1), RMA-quantified data (Page 2), and RobLoxBioC-
quantified data (Page 3). (PPTX 76 kb)

Additional file 7: Results for Kamei’s microarray data. HSC dendrograms
for (a) MAS-, (b) RMA-, and (c) RobLoxBioC-quantified data are shown. These
data consist of 31,099 genes × 10 samples and compares two conditions
(five Iron_def samples vs. five Control samples). The PDEG and AS values are
also shown on the right side of the dendrogram. (PPTX 49 kb)

Additional file 8: HSC dendrograms for merged microarray data (Nakai +
Kamei). HSC dendrograms for (a) MAS-, (b) RMA-, and (c) RobLoxBioC-
quantified data are shown. These data consist of 31,099 genes × 34 samples
(24 from Nakai and 10 from Kamei data). (PPTX 62 kb)

Additional file 9: Examples of AS estimates for two- and three-group
data. The procedures for analyzing Nakai’s MAS-quantified data consisting
of 31,099 probesets × 24 samples are provided. Example 1 compares
three-group data with four BRs, 4 BAT_fed samples vs. 4 WAT_fed samples
vs. 4 LIV_fed samples, with AS = 0.460. Example 2 compares three-group
data with two BRs, “BAT_fed1 and 2” vs. “WAT_fed1 and 2” vs. “LIV_fed1
and 2,” with AS = 0.438. Example 3 compares three-group data with two
BRs, “BAT_fed1 and BAT_fas1” vs. “BAT_fed2 and BAT_fas2” vs. “BAT_fed3
and BAT_fas3,” with AS = − 0.185. Example 4 compares two-group data
with four BRs, 4 BAT_fed samples vs. 4 WAT_fed samples, with AS = 0.374.
Example 5 compares two-group data with four BRs, 4 BAT_fed samples vs.
4 LIV_fed samples, with AS = 0.657. (R 3 kb)

Additional file 10: R-codes for analyses. This zipped file includes a total of
23 R-code files. Results can be obtained by executing scripts in the order of
the serial numbers XX in the filename “rcode_XX_...” Note that two files
(“rcode_08_Add6_pre.R” and “rcode_10_Add7_pre.R”) must be executed
using R ver. 3.1.3 (affy ver. 1.44.0) instead of R ver. 3.3.2 (affy ver. 1.52.0). (ZIP 33 kb)
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Abbreviations
AS: Average silhouette; AUC: the area under the ROC curve; BAT: Brown
adipose tissue; BR: Biological replicate; BV: Biological variation; DE: Differential
expression; DEG: Differentially expressed gene; F: Female; FDR: False discovery
rate; H0: null hypothesis; HS: Homo sapiens; HSC: Hierarchical sample clustering;
LIV: Liver tissue; M: Male; NB: Negative binomial (distribution or model);
Nrep: Number of (biological) replicates; PDEG: Percentage of estimated DEGs
(satisfying basically 10% FDR) by TCC; PsimDEG: Percentage of DEGs when
generating simulated data; PtrueDEG: Percentage of true DEGs defined as PDEG ×
(1.0 – FDR threshold); PT: Pan troglodytes; RM: Rhesus macaques; ROC: Receiver
operating characteristic; SC: Sample clustering; TCC: Tag Count Comparison;
V: Variance; WAT: White adipose tissue
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