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Background
Although the incidence of ovarian cancer (OvCa) is relatively 
rare in the general population, it is often lethal because most 
women (60%) are diagnosed with advanced-stage (III or IV) 
disease, wherein 5-year survival is only 17% to 39%.1 If diag-
nosed early (stage I or II), survival is 70% to 92%.1 These num-
bers underscore the imminent need for improvement in OvCa 
diagnostics.

The field of OvCa screening faces a unique paradoxical 
hurdle. Low disease prevalence means general population 
screening trials have difficulty achieving the required high 
specificity (low false-positive rate), which necessitates the use 
of an enriched population (such as women with adnexal pel-
vic masses).2,3 However, serous adenocarcinoma, which 
accounts for up to 70% of epithelial OvCas, often originates 
in the fallopian tubes and presents as advanced disease with-
out a clear “pelvic mass” as a diagnostic point.4,5 When OvCa 
is suspected, a woman undergoes invasive surgery that often 
results in sterilization. Therefore, a noninvasive OvCa diag-
nostic must be highly accurate if the goal is to prevent unnec-
essary invasive surgeries while not overlooking true invasive 
cancers.

In women with a pelvic mass, transvaginal ultrasound and/
or serum CA-125 is often used to determine the likelihood of 
malignancy. CA-125 is elevated in 85% of advanced epithelial 
OvCa but is normal in up to 50% of early-stage cancers.6 
CA-125 lacks clinical specificity (resulting in a high false-pos-
itive rate), which limits its utility as a diagnostic.7,8 More 
recently, the combination of CA-125 and HE4 using the Risk 
of Ovarian Malignancy Algorithm (ROMA) in women with 
pelvic masses planned for surgery imparted better performance 
characteristics compared with CA-125 alone.9,10 In addition, 

OVA1, a panel of 5 OvCa serum biomarkers was shown to 
improve clinical sensitivity beyond ROMA but clinical speci-
ficity was lower than ROMA.11

Outside of serum proteins, tumor-associated autoantibodies 
(TAAb) have shown promise in detecting OvCa.12,13 However, 
the biggest drawback to using TAAb in a diagnostic setting is 
the low prevalence for any single TAAb; not all subjects with 
cancer will produce an autoantibody response. Even among 
patients with a p53 mutation, most will not produce detectable 
levels of circulating p53 TAAb.14,15 Despite this caveat, TAAb 
may still impart utility as serum biomarkers due to their high 
specificity. Although p53 autoantibodies are rare within a given 
population, it is almost guaranteed that a patient with p53 
TAAb does have cancer (although it may not be OvCa, specifi-
cally).14 Because of redundancy (meaning that an individual 
TAAb can be found in multiple cancer types) and low sensitiv-
ity, TAAb should be combined into future diagnostic panels, 
along with other serum biomarkers, to impart optimal clinical 
performance characteristics.16,17

In the effort to diagnose OvCa at the earliest possible stage, 
additional advances are necessary to create a serum biomarker 
diagnostic with high sensitivity and high specificity. Serum 
protein biomarker (SPB) panels most often result in assays 
with high sensitivity, but low specificity. Conversely, serum 
autoantibody panels most often result in assays with low sensi-
tivity, but high specificity. We have demonstrated previously 
that the combination of SPB and TAAb results in high sensi-
tivity and specificity in the detection of breast cancer.18,19 In 
this study, we sought to determine whether SPB could be com-
bined with TAAb to create a novel algorithm that can accu-
rately detect OvCa.
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Methods
Serum samples

Plasma and serum samples used for assay and biomarker devel-
opment were purchased from multiple biorepositories 
(Indivumed, Asterand, Oregon Health & Science University, 
and The University of Arizona). A total of n = 122 samples 
were used to develop and refine the SPB and TAAb assays 
(Table 1). Sample numbers were skewed, with an abundance of 
OvCa samples, due to the expectation of low TAAb prevalence. 
The data obtained from these analyses were used in feature 
selection during algorithm and model development (see 
“Model development and statistical analysis” section). Samples 
used for biomarker development were independent of those 
used for algorithm development.

The serum specimens used to design a training algorithm 
were collected from women who presented for pelvic surgery at 
the Catholic Health Initiatives Center for Translational 
Research (CHI-CTR) and whose physician has indicated a 
clinical suspicion of gynecological cancer. A total of 196 serum 
specimens were collected from CHI-CTR for this study. Of 
these, 17 were collected presurgery from subjects diagnosed 
with OvCa and 43 were collected presurgery from subjects 
diagnosed with a benign gynecological condition (eg, ovarian 
cysts, endometriosis) (Supplementary Table 1). Samples cate-
gorized by the site as fallopian tube cancer were recategorized 
as OvCa due to evidence linking fallopian tubes to OvCa  
origins.4,5 The remaining 136 samples were excluded from 
training due to postsurgical collection, prior gynecological can-
cer diagnosis (ie, recurrence monitoring), borderline tumor sta-
tus (as defined by pathology), and/or cancer origin other than 
ovarian or fallopian tube. All specimens were de-identified by 
the collection site, thus personal information was not identifi-
able to the investigator nor any other individual associated with 
this investigation. The study design was granted institutional 
review board (IRB) exemption under 45 CFR 46.101(b)(4).

Measurement of SPB and TAAb

Protein and hormone biomarkers (Supplementary Table 2) were 
chosen for analysis based on published literature.20–23 Serum was 
evaluated for the concentrations of 9 SPB using Abbott Architect 
i1000SR immunoassays, following manufacturer’s specifications. 
The Architect assays use chemiluminescent microparticles to 

determine analyte concentrations. Calibrator and control samples 
were run for each assay as recommended by the manufacturer. 
Samples resulting in an upper limit of quantification error flag 
(analyte concentration above the reportable range) were diluted 
appropriately and rerun to obtain a valid measurement.

Autoantibody biomarkers were chosen for analysis based on 
published literature.12,18,24–26 Samples were processed in dupli-
cate and evaluated for the relative presence/absence of 47 TAAb 
(protein targets listed in Supplementary Table 2), as described 
previously.18 Associated autoantibodies were detected using an 
indirect enzyme-linked immunosorbent assay (ELISA), which 
involves coating standard-bind plates (MSD, Rockville, MD, 
USA) with recombinant protein. Proteins were diluted in 1× 
phosphate-buffered saline and coated onto blank plates at a 
final concentration of 20 ng/well. All recombinant proteins, cer-
tified as >80% pure (sodium dodecyl sulfate polyacrylamide gel 
electrophoresis), were purchased from OriGene (Rockville, 
MD, USA) or Abnova (Taipei City, Taiwan). OriGene proteins 
were myc/DDK peptide tagged and produced in HEK-293 
cells. Abnova proteins were GST tagged and produced in wheat 
germ cells. Appropriate controls (TAAb-negative serum spiked 
with anti-myc/DDK or anti-GST) were included on each plate 
to monitor assay performance. Electrochemiluminescent signal 
was detected using a Meso Sector S600 plate reader and MSD 
Workbench 4.0 software. The TAAb ratio values were deter-
mined using the following calculation:

(Target MFI True Target MFI)
Median Sample Background MFI

−

where Target MFI = mean fluorescence intensity (MFI) of 
sample plus target and True Target MFI = MFI of correspond-
ing target protein without sample (protein background).

Sample run order was randomized and laboratory staff was 
blinded to subject disease status.

ROMA calculation

The ROMA was calculated for samples included in the train-
ing group as described previously,27 with a cutoff of 12.5% used 
for premenopausal subjects and a cutoff of 14.4% used for 
postmenopausal subjects. Menopause data were not collected 
for CHI-CTR samples; therefore, the follicle-stimulating hor-
mone (FSH) value was used to approximate menopause status 

Table 1. Subjects used for biomarker analytical development and algorithm training.

NO EvIDENCE Of 
DISEASE

BENIgN gYNECOLOgICAL 
CONDITION

OvARIAN CANCER

Biomarker development n = 22 (48, 30-72) n = 20 (52, 28-73) n = 80 (60, 35-90)

Algorithm training NA n = 43 (53, 30-86) n = 17 (57, 41-79)

Abbreviation: NA, not applicable.
Median age, along with minimum and maximum age, for each group is shown in parentheses. Subjects with no evidence of gynecological disease were not included in 
algorithm training.
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(with >30 mIU/mL corresponding to postmenopause). When a 
valid FSH measurement was not available (n = 2), ROMA was 
calculated for both pre- and postmenopause. For these samples, 
the outcome (high or low) was the same when using both 
calculations.

Model development and statistical analysis

Feature selection was used to select biomarkers that are either 
biologically relevant to OvCa or statistically significant in the 
biomarker development and/or training sample set. Multiple 
approaches were used, including literature review, logistic mod-
eling (all biomarkers were individually used as a predictor in a 
logistic model with cancer as a response; biomarkers that were 
significant at the .1 level were recorded), and univariate 2-sam-
ple t tests for association (biomarkers that were significant at 
the .1 level were recorded). In addition, 2 different bootstrap 
methods were used for feature selection. Elastic net (ELNET) 
and generalized boosted models (GBMs) were applied to 200 
bootstrap samples; biomarkers that were selected at least 50% of 
samples for ELNET or 60% of samples for GBM were recorded. 
Three models (SPB alone, TAAb alone, and SPB + TAAb) were 
originally built using a logistic boost approach that used a 
Synthetic Minority Over-sampling Technique (SMOTE) to 
increase the number of cancer cases.

Receiver operator characteristic (ROC) and area under the 
curve (AUC) metrics were used to determine algorithm perfor-
mance regarding sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV). Model cut points 
were optimized for sensitivity (rule-out malignancy) and speci-
ficity (rule-in malignancy). Confidence intervals (CI) were 
reported as 2-sided binomial 95% CIs. Logit boost models 
were created using R (version 3.0.3, March 6, 2014). All analy-
ses were conducted using SAS (version 9.4) and GraphPad 
Prism (version 6.03).

Results
Biomarker assay development: univariate analysis 
of serum protein biomarkers

Nine OvCa-specific SPB were analyzed using Abbott Architect 
assays, as described in the “Methods” section. Individual patient 
health characteristics (including but not limited to age and 
menopausal status) and clinical outcomes were extracted from 
each de-identified patient record where available. Univariate 
analyses were completed to determine whether individual SPB 
differed between women diagnosed with OvCa and women 
with no evidence of ovarian disease (Table 1, biomarker devel-
opment population). These patient populations were chosen 
for assay development to assess the limits of detection based on 
expected population concentration ranges. Samples that did 
not have adequate volume for SPB analysis were excluded 
(n = 43). A total of 5/9 SPB (CA-125, CA 15.3, CA19-9, HE4, 
and Prolactin) were found to be differentially expressed at 

statistically significant levels (P < .05; Figure 1) between the 2 
groups.

Biomarker assay development: univariate analysis 
of tumor-associated autoantibodies

A total of 47 TAAb were analyzed by MSD-indirect ELISA, 
as described in the “Methods” section. The TAAb ratios indi-
cate the relative presence or absence of target-specific autoan-
tibodies. Based on published literature,12,13 prevalence was 
expected to be low for each individual TAAb, even in OvCa 
samples. Because of the expected low prevalence and because 
prevalence in the healthy/non-disease (ND) population is 
expected to be at or close to zero, OvCa samples were com-
pared with benign gynecological disease samples (Table 1, bio-
marker development population). Samples that did not have 
adequate volume for TAAb analysis were excluded (n = 3). 
Although individual TAAb were not significantly different 
between the 2 groups, differences in overall prevalence were 
noted (Figure 2) and some trends may achieve significance in a 
larger sample set. Full TAAb comparison data are shown in 
Supplementary Figure 1.

A blood-based multimarker panel detects OvCa

A multivariate algorithm using prospectively collected (presur-
gery) samples from CHI-CTR was developed to differentiate 
subjects with benign gynecological conditions from those with 
OvCa (as described in the “Methods” section). A total of 60 
samples were selected for model development; all samples were 
drawn from subjects prior to undergoing surgery. Feature selec-
tion and logistic modeling were conducted as described in the 
“Methods” section; the final model (combinatorial protein bio-
marker assay [CPBA] Ov) includes 2 SPB (CA-125 and HE4) 
and 3 TAAb (ACSBG1, CTAG1B, and DHFR). Clinical per-
formance was evaluated for other biomarker models (CA-125 
alone, HE4 alone, and ROMA) using the same sample data. 
The CPBA Ov ROC is shown in Figure 3, with the CA-125, 
HE4, and ROMA ROC curves shown for comparison. 
Although CA-125 and ROMA each performed well individu-
ally, the AUC was highest for the CPBA Ov algorithm (0.98).

Two model cut points were chosen to represent a surgery 
rule-in model (optimized for specificity) and a surgery rule-out 
model (optimized for sensitivity). The training set clinical per-
formance metrics are shown in Table 2 with CA-125 and 
ROMA metrics shown for comparison. The rule-in model 
resulted in high specificity (97.7%), which is necessary to 
appropriately rule-in subjects for surgery while maintaining a 
low number of false positives. However, as the population eval-
uated in this study consisted of women identified for surgery, a 
rule-out model would more closely match an intended-use 
population wherein surgery may be ruled out.

Although ROMA (combined results for pre- and postmen-
opausal subjects) missed only 1/17 cancer subjects, all were 
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correctly identified with the CPBA Ov algorithm (rule-out 
model) (Table 2). High clinical sensitivity is essential for a phy-
sician to recommend against invasive surgery when OvCa is 
suspected by standard clinical follow-up. For the subjects 
within this study, 60 underwent surgery, 43 of which were 
benign conditions (a 71.7% false-positive rate). In contrast, 
inclusion of the CPBA Ov would have resulted in a false-pos-
itive rate of only 11.7%. ROMA and CA-125 are not intended 
to rule-out surgery and further studies are necessary to deter-
mine whether ROMA can be integrated successfully into 
CPBA Ov to create a screening test that can be optimized for 
both rule-in and rule-out applications.

To compare CPBA Ov algorithm performance with sam-
ples that were collected postsurgery, 36 postsurgical OvCa 
serum samples were evaluated for clinical performance. This 
cohort comprised 4 CHI-CTR samples and 32 biomarker 
development samples. Subjects whose blood was collected 
postsurgery did not perform as well as subjects whose blood 
was collected presurgery, with the CPBA Ov algorithm cor-
rectly predicting 31/36 postsurgery OvCa subjects (sensitivity, 

86.1%; NPV, 87.5%) (Supplementary Table 3). This is not 
unexpected because OvCa surgery frequently involves tumor 
removal/debulking, which might result in changes in circulat-
ing tumor biomarkers.28,29 These results underscore the funda-
mental requirement for presurgical samples when evaluating 
OvCa diagnostic biomarkers. Clinical performance was also 
poor for subjects with recurrent OvCa (Supplementary Table 3). 
As such, additional studies would be necessary to develop an 
algorithm that can adequately detect OvCa recurrence.

Discussion
The CPBA Ov algorithm was developed using 60 prospective 
samples from women scheduled to undergo surgery due to 
the suspicion of gynecological cancer. Although sample size is 
limited, the final algorithm is highly accurate, with 100% sen-
sitivity and 83.7% specificity (Table 2). The negative predic-
tive value of the CPBA Ov algorithm (100%) was greater 
than either CA-125 alone (91.7% NPV) or ROMA (97.2% 
NPV). This implies improved clinical utility, as high NPV is 
necessary to ensure subjects are correctly being ruled out for 

Figure 1. Scatter plot distributions of SPB and LH/fSH in subjects with ovarian cancer (OvCa, n = 37) and no evidence of ovarian disease (ND, n = 22). 

Analyte mean and standard deviations are shown for each population. Log-10 scales are used where appropriate to better illustrate distributions. 

Statistically significant P values (as determined by unpaired t test with Welch correction, P < .05) are noted. fSH indicates follicle-stimulating hormone; 

LH, luteinizing hormone; OvCa, ovarian cancer; SPB, serum protein biomarkers.
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surgery. False negatives are most worrisome in a rule-out test. 
ROMA performance (which is intended to determine risk of 
malignancy, not surgery rule out) was high, with only 1/17 
subjects being a false negative. The CPBA Ov algorithm, 
however, detected all OvCa cases (0/17 false negatives) while 
also improving specificity above the comprehensive ROMA 
(83.7% vs 81.4%, respectively).

Although ROMA has generally shown good performance, 
clinical utility is somewhat limited and at least one study 
reported no improvement over CA-125 alone.30 Moore et al9 
had reported higher ROMA specificity in premenopausal as 
opposed to postmenopausal women, which we found to be true 
of our sample cohort as well (premenopausal specificity, 91.3% 
vs postmenopausal specificity, 72.2%). In contrast, the CPBA 
Ov algorithm resulted in higher specificity in postmenopausal 
as opposed to premenopausal subjects (94.4% vs 73.9%, respec-
tively). Because most OvCa subjects are postmenopausal, per-
formance metrics are particularly important in this population. 
These data suggest that the inclusion of additional biomarkers 
into ROMA (or combination with an independent rule-out 
model) might result in higher overall specificity and, thus, 
improved clinical utility. The CPBA Ov algorithm already 
includes CA-125 and HE4 (the 2 biomarkers included in 
ROMA) so integrating the 2 models without overfitting is 

Figure 2. Representative distributions of select ovarian cancer-specific TAAb in subjects with ovarian cancer (OvCa, n = 77) and benign gynecological 

disease (BgD, n = 20). Analyte mean and standard deviations are shown for each population. Log-2 or Log-10 scales are used where appropriate to better 

illustrate TAAb ratio distributions. BgD indicates benign gynecological disease; OvCa, ovarian cancer; TAAb, tumor-associated autoantibodies.

Figure 3. Receiver operator characteristic (ROC) curve of ovarian 

cancer algorithm, developed on n = 60 serum samples. Curves are also 

shown for the same cohort using (A) CA-125 alone and HE4 alone as well 

as (B) ROMA premenopausal and ROMA postmenopausal. Area under 

the curve (AUC) is shown for each test in parentheses. ROMA indicates 

Risk of Ovarian Malignancy Algorithm.
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difficult. Sample size is a limiting factor in these analyses, 
assessment of additional subjects will be necessary to confirm 
these conclusions.

In considering further development of a blood test to detect 
OvCa, we must acknowledge the difficulty faced in developing 
such a test and the best population of women on which to evalu-
ate its safety and efficacy. Many women with serous OvCa pre-
sent with advanced disease with peritoneal carcinomatosis and 
without a dominant pelvic mass.4,5 In addition, prior large 
screening trials (PLCO and UKCTOCS) using serial CA-125 
in a general population of women have yet to find efficacy in 
improving survival in OvCa.31,32 However, some promise has 
been shown recently in women at high risk for developing OvCa 
because of genetic factors and or family history, using ROMA in 
a subset evaluation of the UKCTOCS trial.33,34

In our study, CPBA Ov performance was not as strong 
when applied to samples collected postsurgery (Supplementary 
Table 3). Tumor debulking often results in a sizable change in 
circulating biomarkers28,29 so these results are not unexpected. 
However, they do underscore the necessity for analyzing pre-
surgery samples when developing a liquid biopsy test for OvCa 
detection. This is inherently difficult due to low prevalence—
the middle ground in addressing this issue has been to use 
enriched samples (such as high-risk subjects or women with 
pelvic masses on imaging). Some research studies choose to use 
postsurgical samples but the resulting models will likely suffer 
in terms of clinical performance and may end up being trained 
more on noise than on signal. Regardless, such models will 
have to demonstrate diagnostic utility in a presurgery popula-
tion and such samples are rare in collection banks. Given the 
low disease prevalence and high barrier-to-entry for OvCa liq-
uid biopsy tests, sample banks may be better served to collect 
samples with these considerations in mind.

For these reasons, the greatest limitation in developing new 
OvCa diagnostics is sample size and availability. Although 
many were not statistically significant, the trends noted in bio-
marker distributions may achieve statistical significance in a 
larger sample set. Also, it will be necessary to test the CPBA 
Ov algorithm in an independent cohort to assess whether clin-
ical validation performance is consistent with the results 
obtained from the training cohort.

Conclusions
The CPBA Ov algorithm is a novel liquid biopsy test that 
accurately detects OvCa in a presurgical population. With 
100% sensitivity and 83.7% specificity, the test would provide 
assurance that a subject may avoid invasive surgery without 
the concern that invasive OvCa would be missed (false nega-
tive). Although these results are impressive, the study size is 
small (n = 60). It will be necessary to analyze additional sam-
ples obtained from an independent, presurgery population 
before true clinical performance can be reported. Additional 
studies are being conducted to establish the clinical validity of 
CPBA Ov in an independent sample cohort.
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Supplementary Table 1. Clinical and demographic information for training samples.

SAMPLE 
NO.

RACE AgE AT 
COLLECTION

Dx CANCER SUBTYPE AJCC/UICC 
STAgE 
gROUP

TUMOR 
gRADE

TNM BRCA 
STATUS

701.175 White 51 Benign Ovary 0 n/a n/a n/a n/a Unk

701.201 Asian 65 Benign Uterus 0 n/a n/a n/a n/a Pos

701.207 White 37 Benign Cervix 0 n/a n/a n/a n/a Unk

701.208 White 35 Benign fallopian 0 n/a n/a n/a n/a Unk

701.212 White 53 Benign Ovary 0 n/a n/a n/a n/a Unk

701.213 White 57 Benign Uterus 0 n/a n/a n/a n/a Unk

701.215 White 42 Benign Ovary 0 n/a n/a n/a n/a Unk

701.255 White 53 Benign Ovary 0 n/a n/a n/a n/a Unk

701.393 White 75 Benign Ovary 0 n/a n/a n/a n/a Unk

701.398 White 53 Benign Uterus 0 n/a n/a n/a n/a Unk

701.400 White 30 Benign Cervix 0 n/a n/a n/a n/a Unk

701.401 White 55 Benign Cervix 0 n/a n/a n/a n/a Unk

702.512 White 58 Benign Ovary 0 n/a n/a n/a n/a Pos

702.518 White 44 Benign Ovary 0 n/a n/a n/a n/a Pos

702.522 White 66 Benign Ovary 0 n/a n/a n/a n/a Pos

702.528 White 54 Benign Ovary 0 n/a n/a n/a n/a Pos

702.529 White 53 Benign Ovary 0 n/a n/a n/a n/a Pos

702.531 White 42 Benign Ovary 0 n/a n/a n/a n/a Unk

702.580 White 42 Benign Ovary 0 n/a n/a n/a n/a Unk

702.582 White 58 Benign Uterus 0 n/a n/a n/a n/a Unk

702.586 White 42 Benign Uterus 0 n/a n/a n/a n/a Unk

702.587 White 61 Benign Uterus 0 n/a n/a n/a n/a Unk

702.589 White 50 Benign Ovary 0 n/a n/a n/a n/a Unk

702.600 White 53 Benign Uterus 0 n/a n/a n/a n/a Unk

702.601 White 48 Benign Ovary 0 n/a n/a n/a n/a Unk
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SAMPLE 
NO.

RACE AgE AT 
COLLECTION

Dx CANCER SUBTYPE AJCC/UICC 
STAgE 
gROUP

TUMOR 
gRADE

TNM BRCA 
STATUS

702.602 White 49 Benign Ovary 0 n/a n/a n/a n/a Unk

702.619 White 57 Benign Ovary 0 n/a n/a n/a n/a Unk

702.620 White 40 Benign Cervix 0 n/a n/a n/a n/a Unk

702.621 White 45 Benign Ovary 0 n/a n/a n/a n/a Unk

702.631 Black 42 Benign Ovary 0 n/a n/a n/a n/a Unk

702.666 White 35 Benign Ovary 0 n/a n/a n/a n/a Unk

702.667 White 65 Benign Ovary 0 n/a n/a n/a n/a Unk

702.675 White 64 Benign Uterus 0 n/a n/a n/a n/a Unk

702.698 White 86 Benign Ovary 0 n/a n/a n/a n/a Unk

702.710 White 48 Benign Ovary 0 n/a n/a n/a n/a Unk

702.717 White 68 Benign Uterus 0 n/a n/a n/a n/a Unk

702.730 White 67 Benign Ovary 0 n/a n/a n/a n/a Unk

702.750 White 71 Benign Ovary 0 n/a n/a n/a n/a Unk

702.751 White 53 Benign Ovary 0 n/a n/a n/a n/a Unk

703.526 White 31 Benign Ovary 0 n/a n/a n/a n/a Unk

703.543 White 71 Benign Ovary 0 n/a n/a n/a n/a Unk

703.571 White 45 Benign Ovary 0 n/a n/a n/a n/a Unk

703.608 White 49 Benign Ovary 0 n/a n/a n/a n/a Unk

701.211 White 44 Ovarian Cancer 1 Serous III 1 T2c, Nx Unk

701.386 White 50 Ovarian Cancer 1 Stromal 
(granulosa)

1A INA pT1a, 
pN0

Unk

701.387 White 68 Ovarian Cancer 1 Serous IIIB 3 pT3b, 
pNx

Unk

701.391 White 62 Ovarian Cancer 1 Mixed IIIB 3 pT3b, 
pNx

Unk

701.407 White 67 Ovarian Cancer 1 Mixed 
Epithelial

IIIC 3 pT3c, 
pN0

Unk

702.507 White 54 Ovarian Cancer 1 Serous II 3 pT2c, 
pN0

Unk

702.536 White 52 Ovarian Cancer 1 Serous IIIC 3 T3c, N1 Unk

702.584 White 79 Ovarian Cancer 1 Serous II 3 pT2, 
pN0

Unk

702.625 White 72 Ovarian Cancer 1 Serous INA 3 INA Unk

702.672 Caucasian 63 fallopian Tube 
Cancer

1 Serous IIIC 3 pT3c, 
pN1

Unk

702.699 Caucasian 65 fallopian Tube 
Cancer

1 Serous IIIC 3 pT3c, 
pN0

Unk

702.702 Black 41 Ovarian Cancer 1 germ Cell 
(Strumal)

1A 1 pT1a, 
pNx

Unk

702.716 Other 58 Ovarian Cancer 1 Endometrioid IIB 2 pT2b, 
pN0

Unk

Supplementary Table 1. (Continued)
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Supplementary Table 1. (Continued)

SAMPLE 
NO.

RACE AgE AT 
COLLECTION

Dx CANCER SUBTYPE AJCC/UICC 
STAgE 
gROUP

TUMOR 
gRADE

TNM BRCA 
STATUS

702.725 White 51 Ovarian Cancer 1 Serous IIIC 3 pT3c, 
pN0, 
pM1

Unk

702.728 White 55 Ovarian Cancer 1 Clear Cell IB 3 pT1b, 
pN0

Unk

703.534 Other 53 Ovarian Cancer 1 Serous 
Papillary

3C 3 pT3b, 
pN1, 
Mx

Unk

703.570 White 57 Ovarian Cancer 1 Serous IIIC 2 pT3c, 
pN1, 
pM1

Unk

Description: CHI-CTR training subjects clinical and demographic information, including race, age, diagnosis, tumor stage/grade, TNM, and BRCA status. INA, information 
not available.

Supplementary Table 2. Serum protein biomarkers (SPB) and tumor-associated autoantibodies (TAAb) evaluated during this study.

PROTEIN CLASS PROTEIN UNIPROT ID fULL NAME fROM UNIPROT UNIPROT LINK

SPB CA-125 Q8WxI7 Mucin-16 http://www.uniprot.org/uniprot/
Q8WxI7

SPB CA19-9 Q969x2 Alpha-N-acetylgalactosaminide alpha-2,6-
sialyltransferase 6

http://www.uniprot.org/uniprot/
Q969x2

SPB CEA P06731 Carcinoembryonic antigen-related cell adhesion 
molecule 5

http://www.uniprot.org/uniprot/
P06731

SPB (hormone) fSH N/A follicle stimulating hormone N/A

SPB (hormone) LH N/A Luteinizing hormone N/A

TAAb ACSBg1 Q96gR2 Long-chain-fatty-acid–CoA ligase ACSBg1 http://www.uniprot.org/uniprot/
Q96gR2

TAAb ATf3 P18847 Cyclic AMP-dependent transcription factor ATf-3 http://www.uniprot.org/uniprot/
P18847

TAAb ATP6AP1 Q15904 v-type proton ATPase subunit S1 http://www.uniprot.org/uniprot/
Q15904

TAAb BAT4 
(gPANK1)

O95872 g patch domain and ankyrin repeat-containing 
protein 1

http://www.uniprot.org/uniprot/
O95872

TAAb BDNf P23560 Brain-derived neurotrophic factor http://www.uniprot.org/uniprot/
P23560

TAAb BMx P51813 Cytoplasmic tyrosine-protein kinase BMx http://www.uniprot.org/uniprot/
P51813

TAAb CSNK1A1L Q8N752 Casein kinase I isoform alpha-like http://www.uniprot.org/uniprot/
Q8N752

TAAb CSNK1E P49674 Casein kinase I isoform epsilon http://www.uniprot.org/uniprot/
P49674

TAAb CTAg1A P78358 Cancer/testis antigen 1 http://www.uniprot.org/uniprot/
P78358

TAAb CTAg1B P78358 Cancer/testis antigen 1 http://www.uniprot.org/uniprot/
P78358

TAAb CTBP1 Q13363 C-terminal-binding protein 1 http://www.uniprot.org/uniprot/
Q13363
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PROTEIN CLASS PROTEIN UNIPROT ID fULL NAME fROM UNIPROT UNIPROT LINK

TAAb DBT P11182 Lipoamide acyltransferase component of 
branched-chain alpha-keto acid dehydrogenase 
complex, mitochondrial

http://www.uniprot.org/uniprot/
P11182

TAAb DHfR P00374 Dihydrofolate reductase http://www.uniprot.org/uniprot/
P00374

TAAb EIf3E P60228 Eukaryotic translation initiation factor 3 subunit E http://www.uniprot.org/uniprot/
P60228

TAAb ErbB2 P04626 Receptor tyrosine-protein kinase erbB-2 http://www.uniprot.org/uniprot/
P04626

TAAb fRS3 O43559 fibroblast growth factor receptor substrate 3 http://www.uniprot.org/uniprot/
O43559

TAAb gPR157 Q5UAW9 Probable g-protein coupled receptor 157 http://www.uniprot.org/uniprot/
Q5UAW9

TAAb HOxD1 Q9gZZ0 Homeobox protein Hox-D1 http://www.uniprot.org/uniprot/
Q9gZZ0

TAAb IgfBP2 P18065 Insulin-like growth factor binding protein 2 http://www.uniprot.org/uniprot/
P18065

TAAb MYOZ2 Q9NPC6 Myozenin-2 http://www.uniprot.org/uniprot/
Q9NPC6

TAAb p53 P04637 Cellular tumor antigen p53 http://www.uniprot.org/uniprot/
P04637

TAAb PDCD6IP Q8WUM4 Programmed cell death 6-interacting protein http://www.uniprot.org/uniprot/
Q8WUM4

TAAb PSMC1 P62191 26S protease regulatory subunit 4 http://www.uniprot.org/uniprot/
P62191

TAAb PTgfR P43088 Prostaglandin f2-alpha receptor http://www.uniprot.org/uniprot/
P43088

TAAb PTPRA P18433 Receptor-type tyrosine-protein phosphatase alpha http://www.uniprot.org/uniprot/
P18433

TAAb RAB5A P20339 Ras-related protein Rab-5A http://www.uniprot.org/uniprot/
P20339

TAAb RAB7L1 O14966 Ras-related protein Rab-7L1 http://www.uniprot.org/uniprot/
O14966

TAAb RAC3 P60763 Ras-related C3 botulinum toxin substrate 3 http://www.uniprot.org/uniprot/
P60763

TAAb SCYL3 Q8IZE3 Protein-associating with the carboxyl-terminal 
domain of ezrin

http://www.uniprot.org/uniprot/
Q8IZE3

TAAb SELL P14151 L-selectin http://www.uniprot.org/uniprot/
P14151

TAAb SERPINH1 P50454 Serpin H1 http://www.uniprot.org/uniprot/
P50454

TAAb Sf3A1 Q15459 Splicing factor 3A subunit 1 http://www.uniprot.org/uniprot/
Q15459

TAAb SLC33A1 O00400 Acetyl-coenzyme A transporter 1 http://www.uniprot.org/uniprot/
O00400

TAAb SOx2 P48431 Transcription factor SOx-2 http://www.uniprot.org/uniprot/
P48431

TAAb TfCP2 Q12800 Alpha-globin transcription factor CP2 http://www.uniprot.org/uniprot/
Q12800

Supplementary Table 2. (Continued)
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Supplementary Table 2. (Continued)

PROTEIN CLASS PROTEIN UNIPROT ID fULL NAME fROM UNIPROT UNIPROT LINK

TAAb TRIM32 Q13049 E3 ubiquitin-protein ligase TRIM32 http://www.uniprot.org/uniprot/
Q13049

TAAb UBAP1 Q9NZ09 Ubiquitin-associated protein 1 http://www.uniprot.org/uniprot/
Q9NZ09

TAAb ZMYM6 O95789 Zinc finger MYM-type protein 6 http://www.uniprot.org/uniprot/
O95789

TAAb ZNf510 Q9Y2H8 Zinc finger protein 510 http://www.uniprot.org/uniprot/
Q9Y2H8

TAAb MBNL1 Q9NR56 Muscleblind-like protein 1 http://www.uniprot.org/uniprot/
Q9NR56

TAAb, SPB CA15.3/MUC1 P15941 Mucin-1 http://www.uniprot.org/uniprot/
P15941

TAAb, SPB HE4 Q14508 WAP four-disulfide core domain protein 2 http://www.uniprot.org/uniprot/
Q14508

TAAb, SPB PRL P01236 Prolactin http://www.uniprot.org/uniprot/
P01236

TAAb,SPB AfP P02771 Alpha-fetoprotein http://www.uniprot.org/uniprot/
P02771

Description: Hormone biomarkers are noted as SPB, with no corresponding Uniprot information. four biomarkers were assessed as both SPB and TAAb. All SPB were 
evaluated using Abbott Architect assays and all TAAb were evaluated using indirect ELISA.
Note. Some targets (e.g. MUC1) were assessed for multiple TAAb variants.

Supplementary Table 3. CPBA Ov clinical performance metrics for subjects where sample was collected postsurgery or from subjects with 
recurrent OvCa.

OvCA- POST SURgERY OvCA- RECURRENCE

 RULE-IN RULE-OUT RULE-IN RULE-OUT

Tn 41 35 41 35

FP 1 7 1 7

TP 27 31 7 10

Fn 9 5 6 3

Sensitivity 75.0%
(57.4 – 87.2%)

86.1%
(69.7 – 94.8%)

53.8%
(26.1 – 79.6%)

76.9%
(46.0 – 93.8%)

Specificity 97.6%
(85.9 – 99.9%)

83.3%
(68.0 – 92.5%)

97.6%
(85.9 – 99.9%)

83.3%
(68.0 – 92.5%)

nPV 82.0%
(68.1 – 91.0%)

87.5%
(72.4 – 95.3%)

87.2%
(73.6 – 94.7%)

92.1%
(77.5 – 97.9%)

PPV 96.4%
(79.8 – 99.8%)

81.6%
(65.1 – 91.7%)

87.5%
(46.7 – 99.3%)

58.8%
(33.5 – 80.6%)

Description: A total of 36 OvCa subjects had samples drawn postsurgery and a total of 13 subjects were diagnosed with recurrent OvCa. Benign training samples (n=42) 
included due to a lack of post-biopsy benign samples. for sensitivity, specificity, negative predictive value (NPv), and positive predictive values (PPv), 95% confidence 
intervals (CIs) are shown in parentheses.
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