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Abstract

Image classification is central to the big data revolution in medicine. Improved information 

processing methods for diagnosis and classification of digital medical images have shown to be 

successful via deep learning approaches. As this field is explored, there are limitations to the 

performance of traditional supervised classifiers. This paper outlines an approach that is different 

from the current medical image classification tasks that view the issue as multi-class classification. 

We performed a hierarchical classification using our Hierarchical Medical Image classification 

(HMIC) approach. HMIC uses stacks of deep learning models to give particular comprehension at 

each level of the clinical picture hierarchy. For testing our performance, we use biopsy of the small 

bowel images that contain three categories in the parent level (Celiac Disease, Environmental 
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Enteropathy, and histologically normal controls). For the child level, Celiac Disease Severity is 

classified into 4 classes (I, IIIa, IIIb, and IIIC).

Keywords

deep Learning; hierarchical classification; hierarchical medical image classification; medical 
imaging

1. Introduction and Related Works

Automatic diagnosis of diseases based on medical image categorization has become 

increasingly challenging over the last several years [1–3]. Areas of research involving deep 

learning architectures for image analysis have grown in the past few years with an increasing 

interest in their exploration and understanding of the domain application [3–7]. Deep 

learning models achieved state-of-the-art results in a wide variety of fundamental tasks such 

as image classification in the medical domain [8,9]. This growth has raised questions 

regarding classification of sub-types of disease across a range of disciplines including 

Cancer (e.g., stage of cancer), Celiac Disease (e.g., Marsh Score Severity Class), and 

Chronic Kidney Disease (e.g., Stage 1–5) among others [10]. Therefore, it is important to 

not just label medical images-based specialized areas, but to also organize them within an 

overall field (i.e., name of disease) with the accompanying sub-field (i.e., sub-type of 

disease) which we have done in this paper via Hierarchical Medical Image Classification 

(HMIC). Hierarchical models also combat the problem of unbalanced medical image 

datasets for training the model and have been successful for other domains [11,12].

In the literature, few efforts have been made to leverage the hierarchical structure of 

categories. Nevertheless, hierarchical models have shown better performance compared to 

flat models in image classification across multiple domains [13–15]. These models exploit 

the hierarchical structure of object categories to decompose the classification tasks into 

multiple steps. Yan et al. proposed HD-CNN by embedding deep CNNs into a category 

hierarchy [13]. This model separates easy classes using a coarse category classifier while 

distinguishing difficult classes using fine category classifiers. In a CNN, shallow layers 

capture low-level features while deeper layers capture high level ones. Zhu and Bain 

proposed Branch Convolutional Neural Network (B-CNN) [16] based on this characteristic 

of CNNs. This model instead of employing different classifiers for different levels of class 

hierarchy, exploits the hierarchical structure of layers in a CNN and embeds different levels 

of class hierarchy on a single CNN. B-CNN outputs multiple predictions ordered from 

coarse to fine along concatenated convolutional layers corresponding to hierarchical 

structure of the target classes. Sali et al. employed B-CNN model for the classification of 

gastrointestinal disorders on histopathological images [17].

Our paper uses the HMIC approach for assessment of small bowel enteropathies; 

Environmental Enteropathy (EE) versus Celiac Disease (CD) versus histologically normal 

controls. EE is a common cause of stunting in Low-to-Middle Income Countries (LMICs), 

for which there is no universally accepted, clear diagnostic algorithms or non-invasive 

biomarkers for accurate diagnosis [18], making this a critical priority [19]. Linear growth 
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failure (or stunting) is associated with irreversible physical and cognitive deficits, with 

profound developmental implications [18]. Interestingly, CD, a common cause of stunting in 

the United States, with an estimated 1% prevalence, is an autoimmune disorder caused by a 

gluten sensitivity [20] and has many shared histological features with EE (such as increased 

inflammatory cells and villous blunting) [18]. This resemblance has led to the major 

challenge of differentiating clinical biopsy images for these similar but distinct diseases. CD 

severity is further assessed via Modified Marsh Score Classification. It takes into account the 

architecture of the duodenum as having finger-like projections (called “villi”) which are 

lined by cells called epithelial cells. Between the villi are crevices called crypts that contain 

regenerating epithelial cells. Normal villus to crypt ratio is between 3:1 and 5:1 and a 

healthy duodenum (first part of the small intestine) has no more than 30 lymphocytes 

interspersed per 100 epithelial cells within the villus surface layer (epithelium). Marsh I 

comprises of normal villus architecture with an increase in the number of intraepithelial 

lymphocytes. Marsh II has increased intraepithelial lymphocytes along with crypt 

hypertrophy (crypts appear enlarged). This is usually rare since patients typically rapidly 

progress from Marsh I to IIIa. Marsh III is sub-divided into IIIa (partial villus atrophy), 

Marsh IIIb (subtotal villus atrophy) and Marsh IIIc (total villus atrophy) along with crypt 

hypertrophy and increased intra-epithelial lymphocytes. Finally, in Marsh IV, villi are 

completely atrophied [21].

The HMIC approach is shown in Figure 1. The parent level is a model trained based on the 

parent level of data; EE, CD or Normal. The child level model is trained for sub-classes of 

CD based on Modified Marsh Score based on severity; I, IIIa, IIIb, and IIIc).

The rest of this paper is organized as follows: In Section 2, the different data sets used in this 

work, as well as, the required pre-processing steps are described. The architecture of the 

model is explained in Section 5. Empirical results are elaborated in Section 6. Finally, 

Section 7 concludes the paper along with outlining future directions.

2. Data Source

As shown in Table 1, the biopsies were already obtained from 150 children in this study with 

a median (interquartile range) age of 37.5 (19.0 to 121.5) months and a roughly equal sex 

distribution; 77 males (51.3%), and LAZ/ HAZ (Length/ Height-for-Age Z score) of the EE 

participants were −2.8 (inter-quartile range (IQR) : −3.6 to −2.3) and −3.1 (IQR: −4.1 to 

−2.2). LAZ/ HAZ of the Celiac participants were −0.3 (IQR: −0.8 to 0.7). and LAZ/ HAZ 

for Normal were −0.2 (IQR: −1.3 to 0.5). Duodenal biopsy samples were developed into 461 

whole-slide biopsy images and labeled as either Normal, EE, or CD. The biopsy slides for 

EE patients were collected from the Aga Khan University Hospital (AKUH) in Karachi, 

Pakistan (n = 29 slides from 10 patients), and the University of Zambia Medical Center in 

Lusaka, Zambia (n = 16). The slides for Normal patients (n = 63) and CD (n = 34) were 

collected from The University of Virginia (UVa). Normal and CD slides were transformed 

into a whole-slide at 40× amplification using the Leica SCN 400 slide scanner (Meyer 

Instruments, Houston, TX, USA) at UVa, and the digitized EE slides of 20× and shared by 

means of the Environmental Enteric Dysfunction Biopsy Investigators (EEDBI) Consortium 

shared WUPAX server. The patient populace is as per the following:
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The median age of (Q1, Q3) of our whole investigation populace was 37.5 (19.0, 121.5) 

months, and we had a generally equivalent dispersion of females (48%, n = 49) and males 

(52%, n = 53). Most of our examination populace were histologically Normal controls 

(37.7%), followed by CD patients (51.8%), and EE patients (10.05%).

239 Hematoxylin and eosin (H&E) stained duodenal biopsy samples were collected from the 

archived biopsies of 63 CD patients from the University of Virginia (UVa) in Charlottesville, 

VA, USA. The sample were converted into whole-slide images at 40× magnification using 

the Leica SCN 400 slide scanner (Meyer Instruments, Houston, TX, USA) at the 

Biorepository and Tissue Research Facility at UVa. The median age of the UVa patient 

populace is 130 months with interquartile ranges of 85.0 and 176.0 months for Q1 and Q3, 

respectively. UVa images had a generally equivalent circulation of females (54%, n = 54) 

and male (46%, n = 29). The biopsy labels for this research were determined by two clinical 

experts and approved by a pathologist with considerable authority in gastroenterology. Our 

dataset is ranged from Marsh I to IIIc with no biopsy declared as Marsh II.

Based on Table 2, the biopsy images are patched in to 91,899 total images which contain 

32,393 normal patches, 29,308 EE patches, and 30,198 CD patches. In the child level of the 

medical biopsy patches, CD contains 4 severities of disease (Type I, IIIa, IIIb, and IIIc) 

which has 7125 Type I patches, 6842 Type IIIa patches, 8120 Type IIIb patches, and 8111 

Type IIIb patches. The training set for normal and EE contains 22,676 and 20,516 patches, 

respectively, and for testing 9717 and 8792 patches, respectively. For CD, we have two sets 

of training and testing where one belongs to the parent model and the other belongs to child 

level. The parent set contains 21,140 patches for training and 9058 image patches for testing 

with the common label of CD for all. In the CD child dataset, we have four severity types of 

this disease (I, IIIa, IIIb, and IIIc). Type I of CD contains 4988 patches in the training set and 

2137 patches in the test set. Type IIIa of CD contains 4790 patches in the training set and 

2052 patches in the test set. Type IIIb of CD contains 5684 patches in the training set and 

2436 patches in the test set. Finally, IIIc of CD contains 5678 patches in the training set and 

2137 patches in the test set.

3. Pre-Processing

In this section, we explain the entirety of the pre-processing steps which includes medical 

image patching, image clustering to remove useless information, and color balancing to 

solve the staining problem. The biopsy images are unstructured, can vary in size, and are 

often very high resolution to even consider processing with deep neural systems. Therefore, 

it becomes necessary to tile the whole-slide images into smaller image subsets called 

patches. Many of the patches created after tiling the whole-slide image will not contain 

useful biopsy tissue data. For example, some patches only contain the white or light-gray 

background area. In the image clustering section, the process to select useful images is 

described. Lastly, color balancing is used to address staining problems which is a typical 

issue in histological image preparation.
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3.1. Image Patching

Although the effectiveness of CNNs in image classification has been shown in various 

studies in different domains, training on high-resolution Whole Slide Tissue Images (WSI) is 

not commonly preferred due to a high computational cost. Applying CNNs on WSI can also 

lead to losing a large amount of discriminative data because of severe down-sampling [22]. 

Due to cellular level contrasts between Celiac Disease, Environmental Enteropathy, and 

Normal cases, an image classification model performed on patches can perform at least 

similarly to a WSI-level classifier [22]. For this study, patches are labeled with the same 

class as the associated WSI. The CNN models are trained to predict the presence of disease 

or disease severity at the patch-level.

3.2. Clustering

As shown in Figure 2, after each biopsy the whole image is divided into patches; many of 

these patches are not useful input for a deep image classification model. These patches tend 

to contain only connective tissue, are located on the border region of the tissue, or consist 

entirely of image background [2]. A two-stage clustering process was applied to recognize 

the immaterial patches. For the initial step, a convolutional autoencoder was used to learn a 

vectorized representation of features of each patch and in the second step, we used k-means 

clustering to assign patches into two groups: helpful and not useful patches. In Figure 3, the 

pipeline of our clustering strategy is depicted which contains both the autoencoder and k-

means clustering.

3.2.1. Autoencoder—An autoencoder is a form of a neural network that is intended to 

output a reconstruction of the model’s input [23]. The autoencoder has achieved incredible 

success as a dimensionality reduction technique [24]. The primary version of the 

autoencoder was presented by DE. Rumelhart et al. [25] in 1985. The fundamental concept 

is that one hidden layer acts as a bottle-neck and has far fewer nodes than other layers in the 

model [26]. This condensed hidden layer can be used to represent the important features of 

the image with a smaller amount of data. With image inputs, autoencoders can convert the 

unstructured data into feature vectors that can be processed through other machine learning 

methods such the k-means clustering algorithm.

Encode: A CNN-based autoencoder can be isolated into two principle steps [27]: encoding 

and interpreting. This condition is:

Om(i, j) = a ∑
d = 1

D
∑

u = − 2k − 1

2k + 1
∑

v = − 2k − 1

2k + 1
Fmd

1 (u, v)Id(i − u, j − v)

m = 1, ⋯, n
(1)

where F ∈ F1
1 , F2

1 , …, Fn
1 ,  is a convolutional filter, with convolution among an input 

volume defined by I = {I1, … , ID} which it learns to represent the input by combining non-

linear functions:

zm = Om = a I * Fm
1 + bm

1    m = 1, …, m (2)
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where bm
1  is the bias, and the number of zeros we want to pad the input with is such that: 

dim(I) = dim(decode(encode(I))). Finally, the encoding convolution is equal to:

Ow = Oℎ = Iw + 2(2k + 1) − 2 − (2k + 1) + 1
= Iw + (2k + 1) − 1 (3)

Decode: The decoding convolution step produces n feature maps zm=1,…,n. The 

reconstructed results I  is the result of the convolution between the volume of feature maps Z 
= {zi = 1}n and this convolutional filters volume F(2) [28,29].

I = a Z * Fm
2 + b 2

(4)

Ow = Oℎ = Iw + (2k + 1) − 1 − (2k + 1) + 1 = Iw = Iℎ (5)

where Equation (5) shows the decoding convolution with I dimensions. The input’s 

dimensions are equal to the output’s dimensions.

3.2.2. K-Means—K-means clustering is one of the most popular clustering algorithms 

[30–34] for data in the form D ∈ {x1, x2, … , xn}in d dimensional vectors for x ∈ fd. K-

means had been applied to perform image and data clustering for information retrieval 

[30,35,36]. The aim is to identify groups of similar data points and assign each point to one 

of the groups. There are many other clustering algorithms, but the k-means approach works 

well for this problem, because there are only two clusters and it is computationally 

inexpensive compared to other methods.

As an unsupervised approach, one measure of effective clustering is to sum the distances of 

each data point from the centroids of the assigned clusters. The goal of K-means is to 

minimize ξ, the sum of these distances, by determining optimal centroid locations and 

cluster assignments. This algorithm can be difficult to optimize due to the volatility of 

cluster assignments as the centroid locations change. Therefore, the K-means algorithm is a 

greedy-like approach that iteratively adjusts these locations to solve the minimization.

Minimize ξ with respect to A and μ by:

ξ = ∑
j = 1

k
∑
xi

‖xi − μj‖2 = ∑
j = 1

k
∑
i = 1

n
Aij‖xi − μj‖ (6)

where xi are values from the autoencoder feature representation, μj is the centroid of each 

cluster, and Aij is the cluster assignment of each data point i with cluster j. Aij can only take 

on binary values and each data point can only be assigned to a single cluster.

The centroid μ of each cluster is calculated as follows:

Kowsari et al. Page 6

Information (Basel). Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



μ(w) = 1
w ∑

x ∈ w
x (7)

Finally, as shown in Figure 4, all patches are assigned into two clusters which one of them 

contains useful information and the other one is empty or does not have medical 

information. The Algorithm 1 indicates kmeans algorithm for two clusters medical images.

3.3. Medical Image Staining

Hematoxylin and eosin (H&E) stains have been used for at least a century and are still 

essential for recognizing various tissue types and the morphologic changes that form the 

basis of contemporary CD, EE, and cancer diagnosis [37]. H&E is used routinely in 

histopathology laboratories as it provides the pathologist/researcher a very detailed view of 

the tissue [38]. Color variation has been a very important problem in histopathology based 

on light microscopy. A range of factors makes this problem even more complex such as the 

use of different scanners, variable chemical coloring/reactivity from different manufacturers/

batches of stains, coloring being dependent on staining procedure (timing, concentrations, 

etc.), and light transmission being a function of section thickness [39]. Different H&E 

staining appearances within machine learning inputs can cause the model to focus only on 

the broad color variations during training. For example, if images with a certain label all 

have a unique stain color appearance, because they all originated from the same location, the 

machine learning model will likely leverage the stain appearance to classify the images 

rather than the important medical cellular features.

3.3.1. Color Balancing—The idea of color balancing for this study is to convert images 

in to a similar color space to represent variations in H&E staining. The images can be 

represented with the illuminant spectral power distribution as shown by I(λ), the surface 

spectral reflectance S(λ), and the C(λ) is sensor spectral sensitivities [40,41]. Using these 

notations [41], the sensor reactions at the pixel with coordinates of (x, y) which can be 

presented as:

p(x, y) = ∫
w

I(x, y, λ)S(x, y, λ)C(λ)dλ (8)
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where w is the wavelength range of the visible light spectrum, p and C(λ) are three-

component vectors.

R
G
B out

= α
a11 a12 a13
a21 a22 a23
a31 a32 a33

×
ri 0 0
0 gi 0
0 0 bi

R
G
B in

γ

(9)

where RGBin stand for the raw images from medical images, and the diagonal matrix 

diag(ri, gi, bi) is the channel-independent gain compensation of the illuminant [41]. In 

addition, RGBout is output results that be send to input feature space of CNN models. γ is 

the gamma correction defined for the RGB color space and RGBout are the output RGB 

values. In the following, a more compact version of Equation (9) is used:

RGBout = αAIw . RGBin
γ (10)

where a stand for exposure compensation gain, and the diagonal matrix for the illuminant 

compensation shows by Iw and the color matrix transformation is shown by matrix A which 

is a diagonal matrix for the illuminant compensation and the color matrix transformation 

[41].

Figure 5 indicates the output results of three classes (CD, EE, and Normal) for color 

balancing (CB) with various color balancing percentage in range between 0.01 and 50.

3.3.2. Stain Normalization—Histological images can have significant variations in 

stain appearance that will cause biases during model training [1]. The variations occur due to 

many factors such as contrasts in crude materials and assembling procedures of stain 

vendors, staining conventions of labs, and color reactions to digital scanners [1,42]. To solve 

this problem, the stains of all images are normalized to a single stain appearance. Different 

staining normalization approaches have been proposed in research projects. In this paper, we 

used the methodology proposed by Vahadane et al. [42] for the CD severity child-level since 

all images are collected from one center. This methodology is designed to preserve the 

structure of cellular features of images after stain normalization and accomplishes stain 

separation with non-negative matrix factorization. Figure 6 shows an example outputs before 

and after applying this method on biopsy patches.

4. Baseline

4.1. Deep Convolutional Neural Networks

A Convolutional Neural Network (CNN) performs hierarchical medical image classification 

for each individual image. The original version of the CNN was built for image processing 

with an architecture similar to the visual cortex. In this basic CNN baseline for image 

processing, an image tensor is convolved with a set of d × d kernels size. These convolution 

layers are called feature maps and these provide multiple filters which could be stacked on 

the input. We used a flat CNN (non-hierarchical CNN) as one of our baselines.

Kowsari et al. Page 8

Information (Basel). Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.2. Deep Neural Networks

A Deep Neural Network (DNN) or multilayer perceptron is designed to be trained by 

multiple layers of connections. Each individual hidden layer can receive connection from the 

previous hidden layers’ nodes and only can provide connections to the next layer. The input 

is a connection of flattened feature space (RGB). The output layer is number of classes for 

multi-class classification (six nodes). Our baseline implementation of DNN (multilayer 

perceptron) is a discriminative trained model that uses a standard back-propagation 

algorithm with sigmoid (Equation (12)) and Rectified Linear Units (ReLU) [43] (Equation 

(13)) activation functions. The output layer for classification task uses the Softmax function 

due to having multi-class output as shown in Equation (14).

5. Method

In this section, we explain our concept of Deep Convolutional Neural Networks (CNN) 

containing the convolutional layers, activation functions, pooling-layers, and finally, the 

optimizer. Then, we describe our Deep Convolutional Neural Networks architecture to 

diagnose Celiac disease and environmental enteropathy. As shown in Figure 7, the input 

layer consists of image patches with size of (1000 × 1000 pixels) and it follows the 

connection to the convolutional layer (Conv 1). Conv 1 connects to the its following pooling 

layer (MaxPooling). The pooling layer is connected to second convolutional layer Conv 2. 

The last convolutional layer (Conv 3) has been flattened and connected to a fully connected 

multi-layer perceptron. The final layer includes three nodes where each individual node 

represents one class.

5.1. Convolutional Neural Networks

5.1.1. Convolutional Layer—Convolutional Neural Networks are deep learning models 

that can be used for the hierarchical classification tasks, especially, image classification [44]. 

Initially, CNNs were designed for image and computer vision with a similar design as the 

visual cortex. CNNs have been used successfully for clinical image classification. In CNNs, 

an image tensor is convolved with set of d × d kernels. These convolutions (“Feature Maps”) 

can be stacked to represent many different features detected by the filters in that layer. The 

feature dimensions of output and input networks can be different [45]. The procedure for 

processing a solitary output of a matrix is characterized as follows:

Aj = f ∑
i = 1

N
Ii * Ki, j + Bj (11)

Each individual matrix Ii is convolved with its corresponding kernel matrix Ki,j, and bias of 

Bj. Finally, a activation function (non-linear activation function is explained in Section 5.1.3) 

is applied to each individual element [45].

The biases and weights are adjusted to constitute competent feature detection filters after the 

back-propagation step during CNN training. The feature map filters are applied across all 

three channels [46].
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5.1.2. Pooling Layer—To diminish the computational multifaceted nature, CNNs use 

pooling layers which decrease the size of the output layer from its input with one layer then 

onto the next in the networks. Distinctive pooling procedures are used to decrease output 

while safeguarding significant features [47]. The most widely recognized pooling technique 

is a max-pooling technique where the largest activation is chosen in the pooling window.

5.1.3. Neuron Activation—The CNN is implemented as a discriminative method that 

uses a back-propagation algorithm derived from sigmoid (Equation (12)), or (Rectified 

Linear Units (ReLU) [43] (Equation (13)) activation functions. The final layer contains one 

node with sigmoid activation function for binary classification multiple nodes for each class 

and a Softmax activation function for multi-class problems (as demonstrated in Equation 

(14)).

f(x) = 1
1 + e−x ∈ (0, 1) (12)

f(x) = max(0, x) (13)

σ(z)j = ezj

∑k = 1
K ezk

∀j ∈ 1, …, K
(14)

5.1.4. Optimizer—For our CNN architecture, we use the Adam optimizer [48]. This is a 

stochastic gradient descent that uses the norm of the initial two moments of gradient (v and 

m, appeared in Equations (15)–(18)). It can deal with non-stationarity of the target in a 

similar fashion to RMSProp, while defeating the sparse gradient problem constraint of 

RMSProp [48].

θ θ − α
v + ϵm (15)

gi, t = ∇θJ θi, xi, yi (16)

mt = β1mt − 1 + 1 − β1 gi, t (17)

mt = β2vt − 1 + 1 − β2 gi, t2 (18)

where mt is the first moment and vt indicates second moment that both are estimated. 

mt =
mt

1 − β1
t  and vt =

vt
1 − β2

t .
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5.1.5. Network Architecture—As demonstrated in Figure 7, our implementation 

contains three convolutional layers with each followed by a pooling layer (Max-Pooling). 

This method with three channel input image patches with size a of (1000 × 1000 pixels). The 

first convolutional layer has 32 filters with kernel size of (3, 3). Then, a pooling layer is 

connected with size of (5, 5) to reduce feature maps from (1000 × 1000) to (200 × 200). The 

next convolutional layer includes 32 filters with (3, 3) kernel. Then, a 2D MaxPooling layer 

is connected to scales down the feature space from (200 × 200) to (40 × 40). The final 

convolutional layers contain 64 filters that kernel size is (3, 3). This convolutional layer is 

connected to a 2D MaxPooling to scale down by (8 × 8). The feature map is flattened, and a 

fully connected layers is connected to our CNN with 128 nodes. The output layer has 3 

nodes that represent our parent classes: (Environmental Enteropathy, Celiac Disease, and 

Normal). The child level of this model as shown on the bottom of Figure 7, is similar to 

parent level with significant difference which is that the output layer has 4 nodes that 

represent our child classes: (I, IIIa, IIIb, and IIIc).

The Adam (See Section 5.1.4) optimizer is used with a learning rate of 0.001, β1 = 0.9, and 

β2 = 0.999. The loss function is sparse categorical crossentropy [49]. Also, for all layers, we 

use a Rectified linear unit (ReLU) as the activation function except for the output layer 

which used a Softmax (See Section 5.1.3). In this technique, we use dropout in each 

individual layer to address over-fitting problem [50]

5.2. Whole Slide Classification

The objective of this study was to group WSIs dependent on the diagnosis of CD and EE, 

and CD severity on child-level by means of the adjusted Marsh score. The model was used 

by training it on the patch-level and is extended to WSI. To accomplish this objective, a 

heuristic strategy was created which aggregated crop classifications and translated them to 

whole-slide inferences. Each WSI in the test set was at firstly patched, those patches which 

did not contain any useful information were filtered out, and then stain methods were 

performed on the patches (color balancing applied on parent level and stain normalization 

applied for CD severity). After these pre-processing steps, our prepared model was applied 

with the objective of image classification. We meant the likelihood dissemination over 

potential marks, given the patches images x and training set D by p(y|x, D). Finally, this 

classification produces a vector of length C, where C is the number of classes. In our 

documentation, the likelihood is contingent on the test patch x, just as, the training set D. 

The trained model predicts a vector of probabilities (three for parent-level and four for child-

level) that represents the likelihood an image belongs in each class. Given a probabilistic 

result, the patch j in slide i is assigned to the most likely class label yij as shown in Equation 

(19).

yij = arg max
c ∈ 1, 2, 3, …, C

p yij = c ∣ xij, D (19)

where y stands for maximum a posteriori (MAP). The summation over these vectors (output 

vector of all patches for a single WSI) and normalizing the resultant vector made a vector 

that had parts demonstrating the likelihood of a vector with three elements (CD, EE, and N) 

seriousness for the related WSI. Equation (20), shows how the class of WSI was anticipated.
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yi = arg max
c ∈ 1, 2, 3, …, C

∑
j = 1

Ni
p yij = c ∣ xij, D (20)

where the number of patches in slide i is shown by Ni.

5.3. Hierarchical Medical Image Classification

The main contribution of this paper is a hierarchical medical image classification of 

biopsies. A common multi-class algorithm is functional and efficient for a limited number of 

categories. However, performance drops when we have an unequal number of data-points in 

our classes. In our deep learning models with various levels, this issue has been solved by 

creating a hierarchical structure that makes deep learning approaches for their levels of the 

clinical hierarchy (e.g., see Figure 7).

6. Results

In this section, we have two main results: empirical results and visualizations for patches. 

The empirical results are mostly used for comparing our accuracy with our baseline.

6.1. Evaluation Setup

In the computer science community, shareable and commensurate performance measures to 

assess an algorithm are desirable. However, in real projects, such measures may only exist 

for a few methods. The extensive problem when assessing the medical image categorization 

model is the absence of standard data collection agreement. Even if a commonplace method 

existed, simply choosing disparate training and test sets can introduce divergencies in model 

achievement [51]. Performance measures widely evaluate specific aspects of image 

classification. In this section, we explain different performance measures and metrics that 

are used in this research paper. These metrics have been calculated from a “confusion 

matrix” that comprises false negatives (FN) true negatives (TN), true positives (TP), and 

false positives (FP) [52]. The importance of these four measures may shift depending on the 

application. The fraction of all correctly predicted over all number of test set samples is the 

overall accuracy (Equation (21)). The fraction of correctly predicted over all positives is 

called precision, i.e., positive predictive value (Equation (22)).

accuracy = TP + TN
TP + FP + FN + TN (21)

Precision =
∑l = 1

L TPl

∑l = 1
L TPl + FPl

(22)

Recall =
∑l = 1

L TPl

∑l = 1
L TPl + FNl

(23)
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F1Score =
∑l = 1

L 2TPl

∑l = 1
L 2TPl + FPl + FNl

(24)

6.2. Experimental Setup

The following results were obtained using a combination of central processing units (CPUs) 

and graphical processing units (GPUs). The processing was done on a Core i7 – 9700F with 

8 cores and 128GB memory, and the GPU cards were two Nvidia GeForce RTX 2080Ti. We 

implemented our approaches in Python using the Compute Unified Device Architecture 

(CUDA), which is a parallel computing platform and Application Programming Interface 

(API) model created by Nvidia. We also used Keras and TensorFlow libraries for creating 

the neural networks [49,53].

6.3. Empirical Results

In this sub-section, as we discussed in Section 6.1, we report precision, recall, and F1-score.

Table 3 shows the results of the parent level model trained for classifying between Normal, 

Environmental Enteropathy (EE) and Celiac Disease (CD). The precision of normal patches 

is 89.97 ± 0.5973 and recall is 89.35 ± 0.6133. The F1-score of normal is 89.66 ± 0.6054. 

For EE, precision is 94.02 ± 0.4955, recall is 97.30 ± 0.3385, F1-score is 95.63 ± 0.4270. 

The CD evaluation measure for the parent level is as follows: precision is equal to 91.12 ± 

0.3208, recall is equal to 88.71 ± 0.3569, and F1-score is equal to 89.90 ± 1.2778.

Table 4 shows the comparison of our techniques with three different baselines. The baseline 

results from Convolutional Neural Network (CNN), Deep Neural Network (Multilayer 

perceptron), and Deep Convolutional Neural Network (DCNN) are using in this results 

section. Much research has been done in this domain such as ResNet, but these novel 

techniques can only handle small images such as 250 × 250. In this dataset, we create 1000 

patches, so we could not compare our work with ResNet, AlexNet, etc. Regarding precision, 

the highest is HMIC whole-slide with a mean of 88.01 percent and a confidence interval of 

0.3841 followed by HMIC none whole-slide 84.13 percent and confidence interval of 

0.3751. The precision of CNN is 76.76 ± 0.4985, multilayer perceptron is 76.19 ± 0.5030, 

and DCNN is 82.95 ± 0.4439. Regarding recall, the highest is HMIC whole-slide with a 

mean of 93.98 percent and a confidence interval of 0.2811 followed by HMIC non whole-

slide at 93.56 percent and confidence interval of 0.291. The recall of CNN is 80.18 ± 0.4706, 

multilayer perceptron is 79.4 ± 0.471, and DCNN is 87.28 ± 0.3933. The highest F1-score is 

HMIC whole-slide with a mean of 90.89 percent and a confidence interval of 0.3804 

followed by HMIC non whole-slide with 88.61 percent and confidence interval of 0.3751. 

The recall of CNN is 78.43 ± 0.4855, multilayer perceptron is 77.76 ± 0.4911, and DCNN is 

85.06 ± 0.4207.

Table 5 shows the results by each class. For Normal images, the best classifier is DCNN 

with 95.14 ± 0.42 recall of 94.91 ± 0.43 F1-score of 95.14 ± 0.42. For EE, HMIC is the best 

classifier. The whole-slide images classifier for parent level is more robust in comparison 
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with non -whole slide with precision of 94.08 ± 0.49 Recall of 97.33 ± 0.42 F1-score of 

98.68 ± 0.42. Although the results of Normal and EE Images are very similar to flat models 

such as DCNN, but the results of sub-class of CD contains 4 different stages and the margin 

is very high. The best flat model (non-hierarchical) is DCNN with mean of F1-score of 

73.99 for I, 71.63 for IIIa, 77.74 for IIIb, and 75.71 IIIc.

The Table 5 indicates the margin for child level is very high even for the non whole-slide 

level of this dataset. The best results belong to the whole-slide classifier for parent level with 

precision with 88.73 ± 1.34 for I, 81.19 ± 1.65 for IIIa, 90.51 ± 1.24 for IIIb, 89.26 ± 1.31 

for IIIc. The whole-slide classifier for parent level with recall with 85.07 ± 1.51 for I, 81.19 

± 1.65 for IIIa, 90.48 ± 1.27 for IIIb, 90.18 ± 1.26 for IIIc. The results of whole-slide 

classifier for parent level for recall is 85.07 ± 1.51 for I, 83.72 ± 0.78 for IIIa, 90.48 ± 0.61 

for IIIb, 90.18 ± 1.26 for IIIc. Finally, The F1-score for whole-slide classifier for parent level 

is equal to 86.86 ± 1.43 for I, 82.44 ± 1.51 for IIIa, 90.49 ± 1.16 for IIIb, 89.72 ± 1.28.

6.4. Visualization

Grad-CAMs were generated for 41 patches (18 EE, 14 Celiac Disease, and 9 histologically 

normal duodenal controls) which mainly focused on distinct, yet medically relevant cellular 

features outlined below. Although, most heatmaps focused on medically relevant features, 

there were some patches that focused on too many features (n = 8) or focused on connective 

tissue debris (n = 10) that we were unable to categorize.

As shown in Figure 8, three categories are describe as follows:

• EE: surface epithelium with IELs and goblet cells was highlighted. Within the 

lamina propria, the heatmaps also focused on mononuclear cells.

• CD: heatmaps highlighted the edge of crypt cross sections, surface epithelium 

with IELs and goblet cells, and areas with mononuclear cells within the lamina 

propria.

• Histologically Normal: surface epithelium with epithelial cells containing 

abundant cytoplasm was highlighted.

7. Conclusions

Medical image classification is a significant problem to address, given the growing number 

of medical instruments to collect digital images. When medical images are organized 

hierarchically, multi-class approaches are difficult to apply using traditional supervised 

learning methods. This paper introduces a novel approach to hierarchical medical image 

classification, HMIC, that could use multiple deep convolutional neural networks 

approaches to produce hierarchical classifications, and in our experimental results, we use 

two level of CNNs hierarchy. Testing on a medical image data set shows that this technique 

produced robust results at the higher and lower level, and the accuracy is consistently higher 

than those obtainable by conventional approaches using CNN, Multi-layer perceptron, and 

DCNN. These results show that hierarchical deep learning method could provide 

improvements for classification and that they provide flexibility to classify these data within 
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a hierarchy. Hence, they provide extensions over current and traditional methods that only 

consider the multi-class problem.

This modeling approach can be extended in a couple of ways. Additional training and testing 

with other hierarchically structured clinical data will help to identify other architectures that 

work better for these problems. Also, deeper levels of hierarchy is another possible 

extension of this approach. For instance, if the stage of the disease is treated as ordered then 

the hierarchy continues down multiple levels. Scoring here could be performed on small sets 

using human judges.
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Figure 1. 
HMIC: Hierarchical Medical Image Classification.
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Figure 2. 
Pipeline of patching and applying an autoencoder to find useful patches for the training 

model. The biopsy images are very large, so we need to divide into smaller patches to be 

used in the machine learning model. As you can see in the image, many of these patches are 

empty. After using an autoencoder, we can apply a clustering algorithm to discard useless 

patches (green patches contain useful information, while red patches do not).
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Figure 3. 
Example autoencoder architecture with K-means applied on the bottle-neck layer feature 

vector to cluster useful and not useful patches.
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Figure 4. 
Some samples of clustering results—cluster 1 includes patches with useful information and 

cluster 2 includes patches without useful information (mostly created from background parts 

of WSIs).
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Figure 5. 
Color Balancing samples for the three classes.

Kowsari et al. Page 23

Information (Basel). Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Stain normalization results when using the method proposed by Vahadane et al. [42]. Images 

in the first row represent the source images. The source images are normalized images to the 

stain appearance of the target image in second row [1].

Kowsari et al. Page 24

Information (Basel). Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Structure of Convolutional Neural Net using multiple 2D feature detectors and 2D max-

pooling.
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Figure 8. 
Grad-CAM results for showing feature importance.
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Table 1.

Population results of biopsies dataset.

Total Population Pakistan Zambia US

Data 150 EE (n = 10) EE (n = 16) Celiac (n = 63) Normal (n = 61)

Biopsy Images 461 29 19 239 174

Age, median (IQR), months 37.5 (19.0 to 121.5) 22.2 (20.8 to 23.4) 16.5 (9.5 to 21.0) 130.0 (85.0 to 176.0) 25.0 (16.5 to 41.0)

Gender, n (%) M = 77 (%51.3)
F = 73 (%48.7)

M = 5 (%50)
F = 5 (%50)

M = 10 (%62.5)
F = 6 (%37.5)

M = 29 (%46)
F = 34 (%54)

M = 33 (%54)
F = 28 (%46)

LAZ/ HAZ, median (IQR) −0.6 (−1.9 to 0.4) −2.8 (−3.6 to −2.3) −3.1 (−4.1 to −2.2) −0.3 (−0.8 to 0.7) −0.2 (−1.3 to 0.5)
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Table 2.

Dataset used for Hierarchical Medical Image Classification (HMIC).

Data Train Test Total

Normal 22,676 9717 32,393

Environmental Enteropathy 20,516 8792 29,308

Parent Child Parent Child Parent Child

Celiac Disease

I

21,140

4988

9058

2137

30,198

7125

IIIa 4790 2052 6842

IIIb 5684 2436 8120

IIIc 5678 2433 8111
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Table 3.

Result of parent level classifications for normal, environmental enteropathy, and Celiac disease.

Precision Recall F1-Score

Normal 89.97 ± 0.59 89.35 ± 0.61 89.66 ± 0.60

Environmental Enteropathy 94.02 ± 0.49 97.30 ± 0.33 95.63 ± 0.42

Celiac Disease 91.12 ± 0.32 88.71 ± 0.35 89.90 ± 1.27
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Table 4.

Results of HMIC with comparison with our baseline.

Model Precision Recall F1-Score

Baseline

CNN 76.76 ± 0.49 80.18 ± 0.47 78.43 ± 0.48

Multilayer perceptron 76.19 ± 0.50 79.40 ± 0.47 77.76 ± 0.49

Deep CNN 82.95 ± 0.44 87.28 ± 0.39 85.06 ± 0.42

HMIC
Non Whole slide 84.13 ± 0.37 93.56 ± 0.29 88.61 ± 0.37

Whole slide 88.01 ± 0.38 93.98 ± 0.28 90.89 ± 0.38
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Table 5.

Results per-classed of HMIC with comparison with our baseline.

Model Precision Recall F1-Score

Baseline

CNN

Normal 87.83 ± 0.57 90.77 ± 0.65 89.28 ± 0.61

Environmental Enteropathy 90.93 ± 0.61 82.48 ± 0.79 86.50 ± 0.71

Celiac Disease

I 68.37 ± 1.98 68.62 ± 1.96 68.50 ± 1.96

IIIa 56.26 ± 1.01 56.26 ± 2.21 59.29 ± 1.95

IIIb 65.28 ± 0.97 98.28 ± 2.01 66.64 ± 1.87

IIIc 62.66 ± 1.99 66.83 ± 1.99 64.68 ± 2.02

Multilayer perceptron

Normal 87.97 ± 0.76 81.87 ± 0.76 84.81 ± 0.71

Environmental Enteropathy 87.25 ± 0.69 90.18 ± 0.62 88.69 ± 0.66

Celiac Disease

I 57.92 ± 2.07 60.74 ± 2.07 59.30 ± 2.09

IIIa 62.58 ± 2.09 62.18 ± 2.09 60.89 ± 2.11

IIIb 65.00 ± 1.89 66.09 ± 1.87 65.56 ± 1.88

IIIc 67.97 ± 1.85 74.85 ± 1.72 71.24 ± 1.78

DCNN

Normal 95.14 ± 0.42 94.91 ± 0.43 95.14 ± 0.42

Environmental Enteropathy 92.22 ± 0.55 90.62 ± 0.60 91.52 ± 0.58

Celiac Disease

I 75.41 ± 1.82 72.63 ± 1.89 73.99 ± 1.85

IIIa 70.81 ± 1.92 72.47 ± 1.93 71.63 ± 1.79

IIIb 81.08 ± 0.81 74.67 ± 1.84 77.74 ± 1.65

IIIc 75.07 ± 1.83 76.37 ± 1.81 75.71 ± 1.81

HMIC

Non Whole Slide

Normal 89.97 ± 0.59 89.35 ± 0.61 89.66 ± 0.61

Environmental Enteropathy 94.02 ± 0.49 97.30 ± 0.33 95.63 ± 0.33

Celiac Disease

I 83.25 ± 1.58 80.91 ± 1.66 82.06 ± 1.62

IIIa 80.34 ± 1.62 80.46 ± 1.71 80.40 ± 1.57

IIIb 85.35 ± 1.49 81.77 ± 1.67 83.52 ± 1.47

IIIc 85.54 ± 1.49 82.71 ± 1.60 84.10 ± 1.55

Whole Slide

Normal 90.64 ± 0.57 90.06 ± 0.57 90.35 ± 0.58

Environmental Enteropathy 94.08 ± 0.49 97.33 ± 0.42 98.68 ± 0.42

Celiac Disease

I 88.73 ± 1.34 85.07 ± 1.51 86.86 ± 1.43

IIIa 81.19 ± 1.65 81.19 ± 1.65 82.44 ± 1.51

IIIb 90.51 ± 1.24 90.48 ± 1.27 90.49 ± 1.16

IIIc 89.26 ± 1.31 90.18 ± 1.26 89.72 ± 1.28
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