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Abstract: To gain insight into how pathogens adapt to new hosts, Cryptococcus neoformans (HO9W)
was serially passaged in Galleria mellonella. The phenotypic characteristics of the passaged strain
(P15) and H99W were evaluated. P15 grew faster in hemolymph than H99W, in vitro and in vivo,
suggesting that adaptation had occurred. However, P15 was more susceptible to hydrogen peroxide
in vitro, killed fewer mouse macrophages, and had less fungal burden in human ex vivo macrophages
than H99W. Analysis of gene expression changes during Galleria infection showed only a few
different genes involved in the reactive oxygen species response. As P15 sheds more GXM than
H99W, P15 may have adapted by downregulating hemocyte hydrogen peroxide production, possibly
through increased capsular glucuronoxylomannan (GXM) shedding. Hemocytes infected with P15
produced less hydrogen peroxide, and hydrogen peroxide production in response to GXM-shedding
mutants was correlated with shed GXM. Histopathological examination of infected larvae showed
increased numbers and sizes of immune nodules for P15 compared to H99W, suggesting an enhanced,
but functionally defective, response to P15. These results could explain why this infection model
does not always correlate with murine models. Overall, C. neoformans’ serial passage in G. mellonella
resulted in a better understanding of how this yeast evolves under selection.
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1. Introduction

Cryptococcus neoformans is an opportunistic pathogen that is able to infect and survive long term in
many different species. To accomplish extended survival, even in healthy hosts, it resides and replicates
in macrophages and other macrophage-like immune cells. To gain additional insight into the pathways
involved in intracellular replication of C. neoformans, the serotype A strain H99W [1] was serially
passaged in the wax moth larvae Galleria mellonella for 100 C. neoformans generations (15 passages).
Galleria mellonella is an increasingly useful invertebrate host for C. neoformans. The waxworms are
inexpensive, easy to work with, and contain phagocytic hemocytes which, similarly to mammalian
macrophages and neutrophils, phagocytose and kill C. neoformans [2], likely through the production
of high levels of reactive oxygen species (ROS) [3]. Additionally, numerous C. neoformans virulence
factors are important in both G. mellonella, as well as mammalian infections [2], particularly the capsule,
which has been shown to have numerous effects on the host immune response [4]. We hypothesized
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that serial passage of C. neoformans in G. mellonella would result in a strain that would be adapted to
the larval environment with selection pressures provided by the organismal environment and various
aspects of the larval immune response, and thus be more resistant to ROS and/or have a higher level of
intracellular replication.

To test these ideas, several experiments were undertaken including comparisons between the
parent and adapted strain in in vitro growth medium containing Galleria hemolymph, fungal burden
in Galleria larvae, fungal burden and killing in mouse and human macrophages, differential gene
expression during infection in Galleria larvae, in vitro susceptibility to hydrogen peroxide, hydrogen
peroxide production from Galleria hemocytes during infection, and histological features of the larval
immune response.

Overall, these data suggested that strain P15’s adaptation involved reducing the hemocyte ROS
response by increasing capsule shedding without blocking the entire immune response. However,
this adaptation was not generally successful across species, as it was not protective in mouse or human
macrophages. Thus, the use of serial passage experiments has led to an increased understanding
of how C. neoformans interacts with the G. mellonella immune response and illustrates how it evades
and/or disables specific components of the G. mellonella ROS. These data have resulted in a better
understanding of how this yeast evolves under selection and illustrates that, similar to in mice and
humans [4], capsule is a potent immune modulator in G. mellonella.

2. Results

To generate a Galleria-adapted strain of C. neoformans, a primary culture of strain H99W, which is
a less virulent strain compared to another common reference strain H99S [1], was grown from a frozen
stock and used to infect Galleria larvae. After three days, hemolymph was collected, pooled, and used
to inoculate additional Galleria larvae. This process was repeated, going directly from larvae to larvae
a total of fifteen times, which was equivalent to approximately 100 fungal generations, to generate the
putative Galleria-adapted strain, which was termed P15 (passage 15) (Figure 1).

Parent Strain:

HI99W \._/
$

15X

Galleria-Evolved
Strain:
P15

Figure 1. Galleria-adapted strain generation. Cryptococcus neoformans strain HO9W was serially passaged
in Galleria mellonella larvae 15 times to develop the adapted strain P15. One thousand C. neoformans cells
were used to infect 15 larvae for each three-day passage. On the third day, hemolymph was collected
from all remaining larvae, pooled, counted and used to infect the next passage. Remaining hemolymph
was frozen and stored at —80 °C.
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2.1. Evidence for Adaptation

If strain P15 had adapted to the Galleria environment, it would be expected to have acquired
characteristics not found in the parent strain, including enhanced growth and survival in the adaptive
environment. To determine if strain P15 had adapted to the Galleria environment, doubling times were
evaluated in vitro in minimal medium with hemolymph. In vivo growth of each strain (fungal burden,
colony forming units (CFU)) was also assessed during the course of infection in Galleria. P15 grew
faster in hemolymph-containing medium in vitro than the parent strain H99W and the more virulent
reference strain H99S (Table 1) and showed significantly higher CFU at days 3 and 5 post-infection
than the parent strain H99W (Figure 2, p < 0.001 and p < 0.0001, respectively). In addition, P15 had
significantly higher CFU at day 5 compared to the more virulent reference strain H99S (Figure 2,
p < 0.0001).

Table 1. In vitro doubling times. The length of time (h) that it took for the adapted P15 strain, the parent
strain and H99S to double their cell numbers in Galleria hemolymph.

Strain Experiment1 Experiment2 Experiment3

H99S 3.49 7.26 10.53
P15 2.14 2.03 2.50
H99W 3.16 3.30 0.95
108_
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Figure 2. In vivo fungal burden of the Gallerin-adapted strain P15, the parent strain H99W, and the
virulent strain H99S. Fifteen Galleria larvae were infected with 2000 cells of each strain for each time
point. Fungal burden was quantified from hemolymph collected from 5-15 larvae at days 1, 3, and 5
and normalized to the number of larvae collected at each day. Data are numbers from two separate
yeast peptone dextrose plates for each time point. Error is standard error of the mean. The data are
representative of three independent experiments. Numbers along the bottom represent the sample size.
*p =0.019, ** p < 0.0001, analysis of variance with simple contrasts. CFU, colony forming units.

One of the major virulence factors for C. neoformans is its large complex capsule, which is known
to protect the yeast from the host immune response [5,6]. In addition, shed capsule is known to be
immunomodulatory [4]. To determine whether this virulence characteristic had changed during the
process of adaptation, capsule size and amount of capsule shed by P15, H99W, and H99S strains were
measured. As expected, P15 had a significantly larger capsule (Figure 3A) and also shed significantly
more capsule than the parent strain (H99W), but had a smaller capsule and shed less than the more
virulent reference strain (H99S) (Figure 3B).

To investigate host-pathogen differences between the Galleria-adapted strain and its parent strain
in other well-characterized hosts of C. neoformans, the ability of each strain to survive and replicate
within mouse and ex vivo human macrophages was examined. Based on the growth and capsule
data, it was expected that the adapted strain would survive better and replicate to higher levels in
macrophages, as well as kill macrophages more often than the parent strain. However, the pre-passage
H99W strain and the P15 strain showed no difference in intracellular replication within J774.16 and
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RAW?264.7 mouse macrophages (data not shown). Surprisingly, strain P15 showed significantly less
fungal burden after 18 h of incubation with ex vivo human macrophages (Figure 4A, p < 0.001) and
killed fewer J774.16 mouse macrophages after 24 h incubation than H99W (Figure 4B).
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Figure 3. Capsule diameter and shedding of the pre-passage H99W, P15, and the virulent H99S strains.
Graphs showing capsule size (A) and capsule shedding (B) for strains H99W, the Galleria-adapted
strain P15, and the virulent H99S strain for comparison. Cell body diameter and capsule diameter were
measured using the Axiovision software (Carl Zeiss Microscopy, LLC, White Plains, NY, USA). Capsule
diameter was calculated by subtracting the cell body diameter from the diameter of the entire cell +
capsule and dividing by two. For capsule size, the mean and standard deviation of two independent
experiments are depicted. Sample size is 30 cells per strain. * p < 0.05, analysis of variance with Tukey’s
honestly significant difference test. For capsule shedding, the mean and standard deviation of three
independent experiments are depicted. ** p = 0.0017, analysis of variance. Sample sizes are 7, 7 and 3
for H99W, P15 and H99S, respectively.

2.2. Identifying a Putative Adaptation Mechanism

To gain insight into the unexpected and conflicting effects on host cell survival, studies to compare
the gene expression responses of both strains in the Galleria environment were undertaken using
microarray analysis. Microarray analysis showed 172 genes were upregulated and 254 genes were
downregulated in strain P15 compared to the parent H99W strain (Supplementary Table S1). In total,
these genes represented fourteen different molecular functions, processes, or components, including
cell cycle, cell wall, energy, housekeeping, metabolism, pathogenicity, protein degradation, protein
integrity, secretion, signal transduction, stress response, transcription, translation, and unknown,
as determined by National Center for Biotechnology Information (NCBI) Gene Ontology Tools
(Bethesda, MD, USA). While nearly all classifications included both upregulated and downregulated
genes, only downregulated genes were found in the signal transduction classification. To further
investigate the molecular function of these genes and their possible roles in adaptation, the Kyoto
Encyclopedia of Genes and Genomes database pathway tool (Kanehisa Laboratories, Kyoto, Japan)
was used to determine which functional pathways were affected based on these differentially
expressed genes. Genes involving the spliceosome, ribosome, homologous recombination, nucleotide
excision repair and the ubiquitin-mediated proteolytic pathways were upregulated in strain P15
compared to H99W, while genes involved in various metabolic pathways, RNA transport and
degradation, basal transcription, biotin and sulfur metabolism, and peroxisome biogenesis pathways
were down-regulated in strain P15 compared to strain H99W.

To determine if these genes had significant protein interactions, the protein interaction networks
among the 400 differentially expressed genes identified by microarray analysis were investigated
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using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, version 11.0, ELIXIR,
Cambridgeshire, UK) database. A large proportion of proteins encoded by these genes were not
identified to have interactions within the dataset. Based on the dataset size, 198 interactions would
be expected, but more were identified with a protein-protein interaction (PPI)-enrichment p-value of
2.24 x 107°, indicating the data pool was likely to have biological significance (Figure 5). However, no
significant clusters were found.
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Figure 4. Fungal burden and macrophage death of J774.16 macrophages infected with the parent
strain H99W and the Galleria-adapted strain P15. (A). Fungal burden in human ex vivo macrophages.
The mean and standard deviation are depicted showing decreased fungal burden in human ex vivo
macrophages incubated for 18 h with strain P15 compared to the pre-passage parent strain H99W.
The graph depicts data from two independent experiments that used macrophages from two different
donors for each experiment. Sample size is 24 counts for each strain. (B). Strain P15 kills less ]J774.16
macrophages. The mean and standard deviation are depicted showing decreased killing of J774.16
macrophages by strain P15 after incubation for 24 h compared to the pre-passage parent strain HO9W.
The graph depicts data from two independent experiments. Sample size is eight wells for each strain.
Images of J774.16 cells infected with H99W (C) or P15 (D). Red stain is propidium iodide. Images
were captured with a Nikon (Nikon, Tokyo, Japan) Eclipse Ti inverted fluorescent microscope at
15X magnification.

To confirm the microarray results, 36 genes were tested using quantitative reverse
transcription-polymerase chain reaction (QRT-PCR; Supplementary Table S2). The genes were chosen
based on the highest fold change for each functional classification and/or the gene ontology description.
Strikingly, 94% of eighteen genes upregulated in strain P15 compared to strain HO9W were verified
using qRT-PCR, whereas only 33% of eighteen genes downregulated in strain P15 compared to strain
H99W were verified (Supplementary Table S2).

A number of genes are thought to be involved in C. neoformans resistance to oxidative damage,
including genes encoding glutathione peroxidase (Gpx1 and Gpx2), peroxiredoxin (15al), cytosolic
superoxide dismutase (Sod1), mitochondrial superoxide dismutase (Sod2), and the alternative oxidase
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(Aox1) [7]. Two of these genes were identified as differentially expressed in the microarray analysis and
were verified using qRT-PCR. Expression of only a single ROS-related gene, glutathione peroxidase
(Gpx2, CNN00220), was upregulated in strain P15 compared to H99W (5.7 fold; average of two qRT-PCR
experiments). Most ROS-related genes were not differentially expressed, including peroxiredoxin
(T5al1), which is a thiol peroxidase known to provide defense against oxidative and nitrosative damage
and is induced in the presence of hydrogen peroxide in vitro [8]. In addition, neither of the mRNAs
encoding the cytosolic and mitochondrial forms of superoxide dismutase (Sod1 and Sod2) enzymes,
required to convert superoxide to hydrogen peroxide and water [9], were differentially expressed.
Finally, alternative oxidase (encoded by Aox1), an enzyme thought to be involved in resistance to ROS,
which is induced upon exposure to superoxide anion [10], was downregulated 1.2 fold (average of
two qRT-PCR experiments) in strain P15 (Supplementary Table S2), suggesting that strain P15 was not
exposed to ROS during Galleria infection, and that P15 had survived based on a different mechanism
than increased tolerance to ROS.

(2] -
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Figure 5. Protein interaction network of differentially expressed genes. The Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) database was used to identify protein-protein interaction (PPI)
networks among the differentially expressed genes. While no significant differences were found within
the dataset, the number of PPIs within the dataset was significant (p = 2.24 x 10~°), indicating biological
significance. Unconnected nodes are not shown and data is clustered using the Markov Clustering
Algorithm, MCL.

2.3. Validating the Putative Adaptation Mechanism

Based on the lack of an oxidative stress response in P15-infected hemocytes at the transcriptome
level and the ability for human and mouse macrophages to kill strain P15 more than its parent strain,
the Galleria-adapted strain would be expected to have a distinctly lower tolerance to oxidative and
nitrosative exposure compared to the non-adapted parent strain. To determine P15’s resistance to ROS
or reactive nitrogen species (RNS), fungal survival after exposure to hydrogen peroxide or sodium
nitrite + succinic acid was measured. Incubation with hydrogen peroxide exposes the yeast to reactive
OH groups via the Fenton reaction [11], while incubation with sodium nitrite + succinic acid exposes
the yeast to reactive NO groups [12]. As expected, strain P15 was significantly more susceptible to
cell death whether it was incubated for three (p = 0.006) or six (p = 0.0187) h with 0.5 mM hydrogen
peroxide (Figure 6A). To determine if capsule could induce protection from ROS, the experiment was
repeated following capsule induction for both H99W and strain P15. Strain P15 was again significantly
more susceptible to damage by 0.5 mM hydrogen peroxide, but only after exposure for six h (p = 0.0022,
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Figure 6B). There was no difference in susceptibility to sodium nitrite + succinic acid between strains
H99W and P15 (data not shown).
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Figure 6. Fungal burden of the parent strain H99W and the adapted strain P15 in the presence
of oxidative stress. (A). The mean and standard deviation are depicted showing that strain P15 is
significantly more susceptible to 0.5 mM hydrogen peroxide than H99W at both three and six h of
incubation. The graph depicts data from two independent experiments. Numbers at the bottom
represent the sample size. (B). The mean and standard deviation are depicted showing increased
susceptibility of strain P15 with induced capsule to 0.5 mM hydrogen peroxide after six h of incubation
compared to strain H99W with induced capsule. The graph depicts data from two independent
experiments. Numbers at the bottom represent the sample size. Significance was tested using analysis
of variance with simple contrasts. CFU: colony forming units.

The results showing that P15 exhibited only a subset of the expected oxidative stress and damage
responses compared to the parent strain, as well as showing reduced resistance to peroxide in vitro
and a reduced ability to kill mouse macrophages, suggested that perhaps P15 had adapted to block or
otherwise negate Galleria’s oxidative response rather than withstand it, as was initially hypothesized.
To address this possibility, hemocyte hydrogen peroxide production from Galleria larvae that had been
infected with each strain was compared. Hemocytes from P15-infected larvae were able to produce
hydrogen peroxide, although to a significantly lesser extent than hemocytes from either H99W-infected
larvae or Candida-infected larvae (Figure 7), which supported a mechanism in which strain P15 reduced
the host response rather than resisting it.
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Figure 7. Hydrogen peroxide production in hemocytes of Galleria infected with the parent strain HO9W,
the adapted strain P15, and C. albicans. Ten larvae were infected with 2000 cells. Hemocytes were
collected, pooled by strain, and assayed for hydrogen peroxide production at 24 h post-infection using
a fluorescent assay. IPS = insect physiological saline. Lines are best fit linear regression lines where the
slopes of the lines are compared using Tukey’s HSD for all pairwise comparisons. Data are the average
of three independent experiments. * p = 0.002, ** p < 0.0001.
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To not only investigate whether Galleria larvae were mounting any immune response to infection,
but also to gain a broader perspective of how the Galleria host’s immune response differed for the
adapted strain, the organismal immune response to infection with each strain was examined using
histological techniques. The number and size of immune nodules are known to be good indicators of
the Galleria immune response [13]. Larvae that had been infected with each strain for two and five days
were fixed, sectioned and stained. The number and size of immune nodules surrounding C. neoformans
cells were then measured. Larvae infected with P15 had significantly more and larger nodules than
those infected with H99W at day 5 (Figure 8C,D). In addition, there was a large amount of P15 that
was not enclosed within nodules (Figure 8B).
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Figure 8. Immune response of Galleria infected with the parent strain H99W, the adapted strain P15,
and the virulent H99S strain. Two larvae were infected with 3000 cells of either H99W, P15, or H99S
and incubated for five days. Larvae were then fixed, bisected, sectioned, and stained with hematoxylin
and eosin. Nodule number and size were counted/measured using the center-most section of each
larva. A representative image for HO9W (A) and P15 (B) are shown. Black arrows indicate nodules.
Small purple dots in (B) within white spaces are P15 not enclosed within nodules. Comparison of the
nodule number and nodule size for each strain is shown in (C) and (D), respectively. The mean and
standard deviation of the number of nodules per larva are depicted (C). Significance was tested using
X2, ** p < 0.0001. The mean and standard deviation of the size of the nodules are depicted for both
larvae (D). Significance was tested using the nonparametric Wilcoxon Rank Sums test, ** p < 0.0001.

2.4. Experimental Evidence for Mechanism

The observations that (1) Galleria larvae exhibited an immune response to strain P15, (2) P15-infected
hemocytes produced less hydrogen peroxide in response to infection, and (3) the P15 strain had a
larger capsule and shed more capsule than H99W, suggested that strain P15’s ability to depress
Galleria’s ROS response, but not the entire immune response, might be due to its increased capsule
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shedding. To test this hypothesis, Galleria larvae were infected with GXM secretion mutants, strains that
exhibit decreased capsule shedding, liv7A (CNAG_06464, [14]) or increased GXM capsule shedding,
imalA (CNAG_00658, [14]). Hemocytes isolated from infected larvae were then tested for hydrogen
peroxide production. Hemocytes from Galleria infected with liv7A showed increased production of
hydrogen peroxide compared to P15 and decreased production of hydrogen peroxide compared to
H99W (Figure 9). In comparison, hemocytes from Galleria infected with imalA produced approximately
the same amount of hydrogen peroxide as those infected with P15, which was significantly less than
hemocytes infected with HO9W (Figure 9).
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Figure 9. Hydrogen peroxide production from hemocytes infected with glucuronoxylomannan (GXM)
secretion mutants (liv7A and imalA) of C. neoformans. Ten larvae were infected with 2000 cells.
Hemocytes were collected, pooled by strain, and assayed for hydrogen peroxide production at 24 h
post-infection using a fluorescent assay. Lines are best fit linear regression lines. The slopes of the lines
are compared using Tukey’s HSD for all pairwise comparisons. Data shown are one representative
experiment. The experiment was repeated three times. ** p < 0.0001.

3. Discussion

A number of invertebrate and non-mammalian vertebrate host models, such as zebrafish [15,
16], worms [17,18], flies [19,20], amoebae [21,22] and moths [2,23], have been used to understand
host-microbial interactions. These models have numerous benefits, such as reduced cost, ease of
handling, less limitations on use, a more straightforward system, and often better genetic tools. Thus,
these kinds of host models contribute greatly to understanding microbial pathogenesis. Serial passage
of the pathogen, C. neoformans, through a distinct host environment, Galleria mellonella larvae, should
result in adaptation of the pathogen to that environment. Since the passaged strain P15 showed
increased growth in vitro in hemolymph-containing medium and had increased fungal burden in vivo
at days 3 and 5, strain P15 successfully adapted to the Galleria environment compared to the parent
strain, H99W. Our original hypothesis was that the adapted strain would increase in virulence after
passage because it is known that serial passage within a host increases virulence [24]. We hypothesized
that the increased virulence would be via an increased resistance to Galleria ROS, resulting in a higher
level of intracellular replication. To begin to understand the process and mechanism of adaptation,
virulence-related phenotypes were initially examined in P15 compared to the parent strain and the
more virulent H99S strain, including capsule size and capsule shedding. As expected, the adapted
strain had a larger capsule and also shed more capsule than the parent strain, consistent with its more
virulent phenotype in Galleria larvae. However, while strain P15 showed indications of adaptation to
the Galleria hemolymph environment, it did not show more or even equivalently virulent phenotypes
in subsequent experiments. For example, P15 did not show the hypothesized increase in in vitro
intracellular replication in mouse macrophages compared to the parent strain. Furthermore, strain
P15 actually showed decreased survival in ex vivo human macrophages and a reduced ability to kill
mouse macrophages in vitro.

To identify the molecular pathways responsible for these incongruent results, differential gene
expression analyses of RNA from each strain grown in Galleria was undertaken by microarray analysis.
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Of the ~6500 genes in the C. neoformans genome, only 426 were changed between strains P15 and
H99W. Of the 254 genes that were downregulated in strain P15 compared to strain H99W, the most
downregulated genes were involved in metabolic processes and synthesis of secondary metabolites.
The most upregulated genes were involved in basic cellular processes that can be regulated, particularly
in a general stress response, such as the ribosome, spliceosome, and proteolysis [25]. However, in the
general stress response, these genes are usually downregulated, not upregulated. The lack of evidence
for either a general or specific stress response, particularly since both hemocytes and macrophages are
known to produce hydrogen peroxide to combat and destroy fungi, was surprising [26,27]. Since both
mammalian macrophages and hemocytes are known to kill fungal pathogens using similar mechanisms
that involve ROS [26,28], genes involved in preventing oxidative damage would be expected to be
upregulated in P15 compared to the parent strain. In a closer examination of the differentially expressed
genes, only one gene involved in the host’s response via ROS was upregulated. All other genes related
to ROS generation were either not significantly different or down-regulated. To identify any significant
protein-protein interactions, as well as a network of interacting genes, the search tool for the retrieval
of interacting genes/proteins (STRING) database was used. While the initial group of proteins had
significantly more interactions and were biologically connected, deeper investigation did not reveal
any significant protein clusters.

Taken together, these results suggested that strain P15’s adaptation to Galleria did not involve
development of resistance to the host’s ROS response, but rather involved development of the ability to
specifically subvert initiation of the ROS response in Galleria, but not in mouse or human macrophages.
To confirm the suspected, continued sensitivity of P15 to ROS and RNS, in vitro sensitivity to hydrogen
peroxide and reactive nitrogen was measured. Incubation with hydrogen peroxide exposes the yeast to
reactive OH groups via the Fenton reaction [11], while incubation with sodium nitrite + succinic acid
exposes the yeast to reactive NO groups [12]. Strain P15 was more susceptible to hydrogen peroxide
than strain H99W at both 3 and 6 h of incubation. Since this result could be due to lack of a capsule,
capsule was induced and the experiment was repeated. Again, strain P15 was more susceptible to
hydrogen peroxide, but this time only after 6 h, suggesting that, as shown previously, the capsule
protects the yeast against damage by ROS [29].

Along with continued sensitivity to hydrogen peroxide in vitro, this model of adaptation predicted
that Galleria infected with strain P15 would produce less hydrogen peroxide than those infected with the
parent strain. Indeed, hemocytes isolated from Galleria larvae infected with P15 produced significantly
less hydrogen peroxide than those infected with either the parent strain H99W or the positive control,
Candida albicans. However, P15 does not, in fact, have the ability to depress the entire immune response,
as histological studies of larvae infected for two and five days indicate P15-infected larvae have
significantly more and larger immune nodules at day 5, indicating that Galleria actually have an
enhanced immune response to P15 compared to H99W, but are unable to effectively produce ROS [13],
compared to larvae infected with the parent strain.

Finally, to gain a clearer understanding of how strain P15, which has a larger capsule and higher
levels of capsule shedding than its parent strain, might reduce the Galleria ROS response, we examined
the ability of C. neoformans mutant strains with different capsule shedding phenotypes to induce
hydrogen peroxide production from hemocytes. Hemocytes from larvae infected with the [iv7A mutant,
which sheds two-fold less capsule than H99S, induced more hydrogen peroxide than those infected with
P15, while hemocytes from larvae infected with the imalA mutant, which sheds five- to ten-fold more
capsule than H99S, induced less hydrogen peroxide than the parent strain, but equivalent amounts
to P15. Both the liv7A and imalA mutants have wildtype levels of surface-associated capsule [14],
suggesting that the amount of shed GXM was affecting hemocyte production of ROS.

In summary, these studies began with the hypothesis that a serially passaged strain, P15,
would show increased resistance to ROS compared to its parent strain. However, strain P15 showed
increased susceptibility to hydrogen peroxide in vitro, which was unexpected, as 100 generations of
exposure to ROS may have increased the strain’s resistance or defense against Galleria ROS. However,
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these data suggest that the fungus utilized another mechanism to adapt, by depressing the host’s
ability to produce ROS, but not the host’s entire immune response. Furthermore, experiments using
C. neoformans mutants with variation in capsule shedding phenotypes provided further support that
the mechanism P15 utilized in adapting to Galleria was to increase capsule shedding, which allowed
increased survival due to a reduction in hemocyte ROS production. However, this adaptation did not
have the same effect on mouse or human macrophage ROS production, which is surprising given
that the amount of shed GXM has been correlated with differences in virulence in mice [30] and
humans [31]. This research highlights the use of serial passages to study host-pathogen relationships
and has increased the understanding of how C. neoformans may interact differently with Galleria
hemocytes compared to human and mouse macrophages.

4. Materials and Methods

4.1. Ethical Statement

The J774.16 cell line was obtained from Dr. Arturo Casadevall. The RAW264.7 cell line was
provided by the American Type Culture Collection, Manassas, VA, USA.

4.2. Passages

C. neoformans serotype A strain H99W was grown in yeast peptone dextrose (YPD) broth from
frozen stock at 37 °C for two—three days and then washed three times with phosphate-buffered
saline (PBS) and counted. H99W cells (1 x 103 in 5 uL) were injected into the last left proleg of 15
larvae of the wax worm, Galleria mellonella and then larvae were incubated at 37 °C for three days.
After three days, larvae were rinsed in 100% ethanol and the last left proleg was cut with scissors.
Hemolymph was collected from each larva, diluted and serial dilutions were plated for CFU on YPD
agar. Non-diluted hemolymph from each larva was pooled and counted. Penicillin/Streptomycin
(10,000 U/mL, Invitrogen, catalog #15140122, Carlsbad, CA, USA) was added to the pooled hemolymph
and 1 x 103 cells in 5 uL. were injected into 15 larvae for the next passage.

Passages were continued until 100 generations of C. neoformans had occurred within G. mellonella.
The doubling time was calculated based on the CFU of the initial inoculum and the average CFU from
the 15 larvae from each passage using the following equation: Time infected*(1/Ln(Final CFU/Initial
CFU)). The number of generations was calculated by dividing the time infected by the calculated
doubling time for each passage.

4.3. In Vitro Growth Curves

Cultures of H99S, H99W and PI5 were started from frozen stock and grown in YPD for 24 h.
Cells were washed with PBS three times, counted using a hemocytometer, and diluted to 5000 cells/mL
for each strain. These cells were then added to hemolymph extracted from healthy Galleria, YPD,
minimal media, or a solution of 1:1 ratio of minimal media:hemolymph. To prevent melanization,
all media containing hemolymph also contained 3 mg of 1-phenly-2-thiourea (PTU) crystals. Since PTU
crystals may affect growth, cells were grown in all medias containing hemolymph with and without
crystals. Cultures were then placed in multi-well plates and growth was measured for 24 h using
the BioScreen C growth curve machine (Growth Curves USA, Piscataway, NJ, USA) and absorbance
at 600 nm. The growth curves were repeated three times. Due to the non-orbital rotation of the
machine and to avoid settling of the cells, cells were manually re-suspended after the first 8 h and then
every 10 h for the duration of the study. Doubling times were calculated using the following formula:
Time x (0.693/(Ln X (final OD/initial OD))). This experiment was repeated three times.

4.4. In Vivo Galleria Fungal Burden

Cultures of H99S, H99W and P15 were started from frozen stock and grown in YPD until log-phase.
Cells were washed with PBS three times and counted. Five uL of each cell suspension (2000 cells) was
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injected into the last pro-leg of fifteen Galleria larvae for each strain for each time point. Hemolymph
was collected from remaining larvae at days 1, 3 and 5. Serial dilutions of hemolymph were plated on
YPD plates for 24 h and then the most appropriate dilution was plated on an additional YPD plate.
Plates were incubated for two days at 37 °C and colonies counted to determine fungal burden. Fungal
burden was normalized to the number of larvae collected at each day. This experiment was repeated
three times.

4.5. Capsule Size

Capsule size in vitro was measured as described in [32,33]. This experiment was repeated
three times.

4.6. GXM Release

To determine if there was a difference in the release of capsular GXM into the medium, the capsules
of all strains were induced in Dulbecco’s modified Eagle medium (DMEM) (as for measuring capsule
size). The next day, a capture enzyme-linked immunosorbent assay was used to determine the
concentration of GXM in the supernatant, as described previously [34]. This experiment was repeated
three times.

4.7. Mouse Macrophage Death and C. neoformans Intracellular Replication

To determine the susceptibility of macrophage-like J774.16 or RAW264.7 cells to killing by
C. neoformans and to measure how well strains H99W and P15 replicated in macrophages, strains
were incubated in a 2:1 multiplicity of infection with macrophage-like J774.16 or RAW264.7 cells in
DMEM for 1 h at 37 °C + 5% CO; (four wells per strain), washed with PBS, resuspended with DMEM
and incubated for a further 18 h at 37 °C + 5% CO,, as described in [35]. The next day, cells were
resuspended in 200 pL warm PBS containing 10 pg/mL propidium iodide and imaged as described
in [35].

To measure C. neoformans intracellular replication, the saved media from the killing experiment
(above) was combined with washes containing intracellular C. neoformans, diluted, and plated on YPD,
as described in [35].

4.8. Isolation and Culture of Human Monocytes

Venous blood of healthy male and female volunteers was collected in accordance with the
guidelines and approval of the Wright Center for Graduate Medical Education Institutional Review
Board, Scranton, PA, USA. All blood donors were informed of the goals of the study and agreed by
written consent prior to blood donation. Monocytes were isolated and cultured, as described in [35].

4.9. Human Macrophage Death and C. neoformans Intracellular Replication

To determine the susceptibility of human ex vivo macrophages to killing by C. neoformans and
to measure how well strains H99W and P15 survived in human macrophages, macrophages were
seeded into a 96-well plate (four wells per C. neoformans isolate) in Roswell Park Memorial Institute
(RPMI)-1640 media containing 10% human serum, and 100 ng/mL lipopolysaccharide at a density
of 2 x 10* macrophages and incubated overnight at 37 °C with 5% CO,. Macrophage death and
C. neoformans intracellular replication were determined as described in Section 4.7 above and [35].

4.10. Resistance to Hydrogen Peroxide

H99W and P15 were grown from frozen stocks in YPD at 37 °C for 2-3 days, washed three
times with water and counted. To determine resistance to hydrogen peroxide and oxidative stress,
strains were tested as described [29]. Briefly, 2 X 102 cells were incubated with 0 or 0.5 mM hydrogen
peroxide (Fisher, catalog #H325-100) for 3 or 6 h at 37 °C. At each time point, 100 uL of each sample
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was plated on YPD and grown at 37 °C for 2 days to determine CFU. Each condition was done in
triplicate and the experiment was repeated twice. To determine how the induction of capsule affected
resistance to hydrogen peroxide, capsule was induced as described above. After 18 h at 37 °C + 5%
CO,, cells were collected, washed three times with water and resistance to hydrogen peroxide was
tested. This experiment was repeated twice.

4.11. Resistance to Nitrosative Stress

H99W and P15 were grown from frozen stocks in YPD at 37 °C for two-three days, washed three
times with minimal media and counted. To determine resistance to nitrosative stress, strains were
tested as described in [36]. Briefly, 2 x 103 cells were incubated in minimal media alone or with 0.5 mM
sodium nitrate (Sigma, catalog #55506) and 25 mM succinic acid (Sigma, catalog #59512) for 3 or 6 h
at 37 °C. At each time point, 100 (3 h) or 50 (6 h) uL of each sample was plated on YPD and grown
at 37 °C for 2 days to determine CFU. Each condition was done in triplicate and the experiment was
repeated three times.

4.12. Microarray Analysis

The experimental design and the data for the microarray have been deposited in NCBI's
Gene Expression Omnibus [37] and are accessible through GEO Series accession number GSE59582.
C. neoformans strains H99W and P15 were grown in YPD from frozen stock at 37 °C for two-three days
and then washed three times with PBS and counted. H99W or P15 (1 x103 cells in 5 pL) were injected
into the last left proleg of 15 larvae of G. mellonella for each strain. After three days of incubation
at 37 °C, larvae were rinsed in 100% ethanol (Sigma, catalog #E7023) and the last left proleg was
cut with scissors. Hemolymph was collected from each larva and pooled by strain. The pooled
hemolymph was centrifuged to pellet the cryptococcal cells, the hemolymph was removed and >1 x 107
cells were used to extract RNA using the RNeasy Kit (catalog # 75142, Qiagen, Hilden, Germany)
with removal of genomic DNA (Message Clean Kit, catalog # M601, GenHunter, Nashville, TN,
USA). Two different pools of RNA were analyzed at Washington University, using the C. neoformans
JEC21 genomic microarray, which was developed by the Cryptococcus Community Microarray
Consortium with financial support from individual researchers and the Burroughs Wellcome Fund
(http://genome.wustl.edu/services/microarray/cryptococcus_neoformans), as described in [38].

4.13. STRING Analysis

Protein interaction networks among the 400 differentially expressed genes identified by microarray
analysis were investigated using STRING (ELIXIR, Cambridgeshire, UK, version 11.0). Four hundred
genes were used as input and 325 genes were identified within the database. To visualize the interactions
from the dataset as a whole, single nodes were hidden and the remaining nodes clustered using MCL,
a Markov clustering algorithm embedded within STRING with the inflation parameter set to 3.

4.14. gRT-PCR

cDNA was made from both strains H99W and P15 from the two pools of RNA isolated from
G. mellonella and used for the microarray (Quantitech Reverse Transcription kit, catalog #205311,
Qiagen). qRT-PCR was performed using SYBR Green (Applied Biosystems Foster City, CA, USA,
catalog #4309155), cDNA, and primer in an ABI PRISM® 7900HT Sequence Detection System (Applied
Biosystems, Foster City, CA, USA). Each cDNA was amplified in quadruplicate, normalized with actin
or glycerol-3-phosphate dehydrogenase and the fold change was determined [39]. Fold change for P15
was relative to H99W. Real-time qRT-PCR was repeated twice.
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4.15. Hemocyte Hydrogen Peroxide Production

H99W, P15 and C. albicans (ATCC 90028) cultures were started from frozen stock and grown in
YPD at 37 °C for 24 h (log-phase) prior to infection. Cells were washed with insect physiological
saline (IPS), counted on a hemocytometer and diluted. Ten larvae per strain were infected with
2000 cells of H99W and P15 and 10,000 cells of C. albicans by injecting 5 uL of each cell suspension
into the last pro-leg of each larvae. For the experiments using the GXM shedding mutants’ /iv7A and
imalA, 10 larvae each were infected with 2000 cells of each strain. After 24 h of incubation, hemocytes
were isolated from hemolymph by clipping a terminal leg and the hemolymph was removed by
squeezing. Approximately 3 mg of PTU crystals were added to 1 mL of IPS to create a 1:200 dilution of
PTU solution. One hundred microliters of the PTU solution was added to the extracted hemolymph
from each strain infection to prevent melanization. Hemocytes were collected by centrifugation for
5 min at 400x g, counted with Trypan Blue to differentiate between dead and living hemocytes and
resuspended in IPS. Cells were used immediately in the ThermoFisher Scientific Hydrogen Peroxide
Assay Kit (ThermoFisher Scientific, Waltham, MA, USA) to determine the relative levels of H,O; in
hemocytes [40]. The assay was conducted by creating a 50 uM Amplex Red, 1 U/mL of Horse Radish
Peroxidase (HRP) solution. Assays were performed in triplicate in a 96-well black plate. Each assay
used 1000 cells per well in a total volume of 120 pL for each well. A SpectroMax M5 plate reader
(Molecular Devices, San Jose, CA, USA) was used to monitor florescence every 2 min for 12-20 min
with excitation at 560 nm and detection at 590 nm. All assays were normalized to cell counts for each
strain. This experiment was repeated three times.

4.16. Histology

Two larvae were infected with 3000 cells of either H99W, P15, or H99S and incubated for two
and five days at 37 °C. Larvae were then fixed in 4% paraformaldehyde at 4 °C for at least two days,
bisected, sectioned, and stained with hematoxylin and eosin at the Translational Pathology Shared
Resource of Vanderbilt University Medical Center. Images of each larva were captured using an
Olympus BX60 microscope (Olympus Corporation, Tokyo, Japan) and the 10X objective. Nodule
number and size were counted/measured using the center-most section of each larva.

4.17. Statistics

The in vivo Galleria fungal burden data was analyzed using analysis of variance (ANOVA) with
simple contrasts. Capsule size and amount of GXM shed was analyzed using ANOVA. Intracellular
replication of C. neoformans and macrophage killing were analyzed using the nonparametric Wilcoxon
Rank Sums test, while resistance to hydrogen peroxide was analyzed using ANOVA with simple
contrasts. The production of hydrogen peroxide by hemocytes was analyzed by linear regression and
Tukey’s HSD for all pairwise comparisons. The number of nodules was analyzed using a chi-square
test and differences in nodule size were analyzed using the nonparametric Wilcoxon Rank Sums test.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/9/732/s1,
Table S1: All genes showing gene expression changes greater than 2-fold in either direction between P15 and
H99W. Highlighted genes were tested using qRT-PCR; Table S2. List of genes tested using qRT-PCR.

Author Contributions: Conceptualization, E.EE.M. and R.L.S.-T.; methodology, M.FA., SM.T,, JRS., EEM,;
formal analysis, M.FA., SM.T., E.E.M,; resources, E.EM. and R.L.S.-T.; data curation, M.EA., SM.T. and EEEM.;
writing—original draft preparation, E.EM. and M.FA.; writing—review and editing, E.EM. and R.L.S.-T,;
visualization, M.F.A., EEM. and R.L.S.-T; supervision, EEEM. and R.L.S.-T.; project administration, E.E.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding, but could not have been completed without start-up funding
from both The Commonwealth Medical College and Middle Tennessee State University to E.E.M. M.EA. received
funding from the Undergraduate Research and Creative Activity Awards (URECA) committee at MTSU for
this research.


http://www.mdpi.com/2076-0817/9/9/732/s1

Pathogens 2020, 9, 732 15 of 16

Acknowledgments: We thank Jessica Brown for the liv7A and imalA GXM secretion mutants. Some of the data in
this paper are from an honor’s thesis submitted by M.E.A. in partial fulfillment of the requirements for a Bachelor
of Science degree from Middle Tennessee State University.

Conflicts of Interest: E.E.M. was employed by M&P Associates, Inc. after leaving MTSU. M&P Associates, Inc.
did not have any role in the design of the study; in the collection, analyses, or interpretation of data; in the writing
of the manuscript, or in the decision to publish the results. All other authors declare no conflict of interest.

References

1.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

Janbon, G.; Ormerod, K.L.; Paulet, D.; Byrnes, E.J., 3rd; Yadav, V.; Chatterjee, G.; Mullapudi, N.; Hon, C.C,;
Billmyre, R.B.; Brunel, F; et al. Analysis of the genome and transcriptome of Cryptococcus neoformans var.
grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet.
2014, 10, €1004261. [CrossRef]

Mylonakis, E.; Moreno, R.; El Khoury, ].B.; Idnurm, A.; Heitman, J.; Calderwood, S.B.; Ausubel, EM.;
Diener, A. Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect. Immun.
2005, 73, 3842-3850. [CrossRef] [PubMed]

Slepneva, I.A.; Glupov, V.V,; Sergeeva, S.V.; Khramtsov, V.V. EPR detection of reactive oxygen species in
hemolymph of Galleria mellonella and Dendrolimus superans sibiricus (Lepidoptera) larvae. Biochem. Biophys.
Res. Commun. 1999, 264, 212-215. [CrossRef] [PubMed]

McClelland, E.E.; Casadevall, A.; Eisenman, H.C. Pathogenesis of Cryptococcus neoformans. In New Insights in
Medical Mycology; Kavanagh, K., Ed.; Springer: Dordrecht, The Netherlands, 2007; Volume 1, pp. 131-157.
Grijpstra, J.; Tefsen, B.; van Die, L; de Cock, H. The Cryptococcus neoformans cap10 and cap59 mutant strains,
affected in glucuronoxylomannan synthesis, differentially activate human dendritic cells. FEMS Immunol.
Med. Microbiol. 2009, 57, 142-150. [CrossRef] [PubMed]

Chang, Y.C.; Kwon-Chung, K.J. Complementation of a capsule-deficient mutation of Cryptococcus neoformans
restores its virulence. Mol. Cell. Biol. 1994, 14, 4912-4919. [CrossRef]

Upadhya, R.; Campbell, L.T.; Donlin, M.]J.; Aurora, R.; Lodge, J.K. Global transcriptome profile of
Cryptococcus neoformans during exposure to hydrogen peroxide induced oxidative stress. PLoS ONE
2013, 8, €55110. [CrossRef]

Missall, T.A.; Pusateri, M.E.; Lodge, ] K. Thiol peroxidase is critical for virulence and resistance to nitric oxide
and peroxide in the fungal pathogen, Cryptococcus neoformans. Mol. Microbiol. 2004, 51, 1447-1458. [CrossRef]
Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995, 64, 97-112. [CrossRef]
Minagawa, N.; Koga, S.; Nakano, M.; Sakajo, S.; Yoshimoto, A. Possible involvement of superoxide anion in
the induction of cyanide-resistant respiration in Hansenula anomala. FEBS Lett. 1992, 302, 217-219. [CrossRef]
Fenton, H.J.H. Oxidation of tartaric acid in presence of iron. |. Chem. Soc. Trans. 1894, 65, 899-910. [CrossRef]
Jolly, W.L. The inorganic chemistry of nitrogen. In The Inorganic Chemistry of Nitrogen; W.A. Benjamin, Inc.:
New York, NY, USA, 1964; pp. 68-79. [CrossRef]

Gillespie, J.P.; Kanost, M.R.; Trenczek, T. Biological mediators of insect immunity. Annu. Rev. Entomol. 1997,
42, 611-643. [CrossRef] [PubMed]

Denham, S.T.; Verma, S.; Reynolds, R.C.; Worne, C.L.; Daugherty, ].M.; Lane, T.E.; Brown, J.C.S. Regulated
release of cryptococcal polysaccharide drives virulence and suppresses immune cell infiltration into the
central nervous system. Infect. Immun. 2018, 86, e00662-17. [CrossRef] [PubMed]

Neely, M.N; Pfeifer, ].D.; Caparon, M. Streptococcus-zebrafish model of bacterial pathogenesis. Infect. Immun.
2002, 70, 3904-3914. [CrossRef] [PubMed]

Romero, A.; Saraceni, P.R.; Merino, S.; Figueras, A.; Tomas, ].M.; Novoa, B. The animal model determines the
results of Aeromonas virulence factors. Front. Microbiol. 2016, 7, 1574. [CrossRef] [PubMed]

Mylonakis, E.; Aballay, A. Worms and flies as genetically tractable animal models to study host-pathogen
interactions. Infect. Immun. 2005, 73, 3833-3841. [CrossRef] [PubMed]

Tan, M.W,; Rahme, L.G.; Sternberg, ].A.; Tompkins, R.G.; Ausubel, EM. Pseudomonas aeruginosa killing of
Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA 1999, 96,
2408-2413. [CrossRef]

Sebald, J.; Morettini, S.; Podhraski, V.; Lass-Florl, C.; Lusser, A. CHD1 contributes to intestinal resistance
against infection by P. aeruginosa in Drosophila melanogaster. PLoS ONE 2012, 7, e43144. [CrossRef]


http://dx.doi.org/10.1371/journal.pgen.1004261
http://dx.doi.org/10.1128/IAI.73.7.3842-3850.2005
http://www.ncbi.nlm.nih.gov/pubmed/15972469
http://dx.doi.org/10.1006/bbrc.1999.1504
http://www.ncbi.nlm.nih.gov/pubmed/10527867
http://dx.doi.org/10.1111/j.1574-695X.2009.00587.x
http://www.ncbi.nlm.nih.gov/pubmed/19694810
http://dx.doi.org/10.1128/MCB.14.7.4912
http://dx.doi.org/10.1371/journal.pone.0055110
http://dx.doi.org/10.1111/j.1365-2958.2004.03921.x
http://dx.doi.org/10.1146/annurev.bi.64.070195.000525
http://dx.doi.org/10.1016/0014-5793(92)80444-L
http://dx.doi.org/10.1039/CT8946500899
http://dx.doi.org/10.1002/ange.19650770735
http://dx.doi.org/10.1146/annurev.ento.42.1.611
http://www.ncbi.nlm.nih.gov/pubmed/9017902
http://dx.doi.org/10.1128/IAI.00662-17
http://www.ncbi.nlm.nih.gov/pubmed/29203547
http://dx.doi.org/10.1128/IAI.70.7.3904-3914.2002
http://www.ncbi.nlm.nih.gov/pubmed/12065534
http://dx.doi.org/10.3389/fmicb.2016.01574
http://www.ncbi.nlm.nih.gov/pubmed/27757107
http://dx.doi.org/10.1128/IAI.73.7.3833-3841.2005
http://www.ncbi.nlm.nih.gov/pubmed/15972468
http://dx.doi.org/10.1073/pnas.96.5.2408
http://dx.doi.org/10.1371/journal.pone.0043144

Pathogens 2020, 9, 732 16 of 16

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Lionakis, M.S.; Kontoyiannis, D.P. The growing promise of Toll-deficient Drosophila melanogaster as a model
for studying Aspergillus pathogenesis and treatment. Virulence 2010, 1, 488-499. [CrossRef]

Swanson, M.S.; Hammer, B.K. Legionella pneumophila pathogesesis: A fateful journey from amoebae to
macrophages. Annu. Rev. Microbiol. 2000, 54, 567-613. [CrossRef]

Steenbergen, ].N.; Shuman, H.A.; Casadevall, A. Cryptococcus neoformans interactions with amoebae suggest
an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc. Natl. Acad.
Sci. USA 2001, 98, 15245-15250. [CrossRef]

Bergin, D.; Brennan, M.; Kavanagh, K. Fluctuations in haemocyte density and microbial load may be used
as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microbes Infect. 2003, 5, 1389-1395.
[CrossRef] [PubMed]

Ebert, D. Experimental evolution of parasites. Science 1998, 282, 1432-1435. [CrossRef] [PubMed]
Petersohn, A.; Brigulla, M.; Haas, S.; Hoheisel, ].D.; Volker, U.; Hecker, M. Global analysis of the general
stress response of Bacillus subtilis. ]. Bacteriol. 2001, 183, 5617-5631. [CrossRef] [PubMed]

Bergin, D.; Reeves, E.P,; Renwick, J.; Wientjes, F.B.; Kavanagh, K. Superoxide production in Galleria mellonella
hemocytes: Identification of proteins homologous to the NADPH oxidase complex of human neutrophils.
Infect. Immun. 2005, 73, 4161-4170. [CrossRef] [PubMed]

Ikeda, T.; Little, J.R. Deactivation of macrophage oxidative burst invitro by different strains of
Histoplasma capsulatum. Mycopathologia 1995, 132, 133-141. [CrossRef] [PubMed]

Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 2004, 11, 275-288. [CrossRef]

Zaragoza, O.; Chrisman, C.J.; Castelli, M.V.; Frases, S.; Cuenca-Estrella, M.; Rodriguez-Tudela, J.L.;
Casadevall, A. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress
suggesting a mechanism for intracellular survival. Cell. Microbiol. 2008, 10, 2043-2057. [CrossRef]

Fries, B.C.; Taborda, C.P.; Serfass, E.; Casadevall, A. Phenotypic switching of Cryptococcus neoformans occurs
in vivo and influences the outcome of infection. . Clin. Investig. 2001, 108, 1639-1648. [CrossRef]
Fernandes, K.E.; Brockway, A.; Haverkamp, M.; Cuomo, C.A.; van Ogtrop, F.; Perfect, ].R.; Carter, D.A.
Phenotypic variability correlates with clinical outcome in Cryptococcus isolates obtained from Botswanan
HIV/AIDS patients. mBio 2018, 9, €02016-18. [CrossRef]

Charlier, C.; Chretien, F.; Baudrimont, M.; Mordelet, E.; Lortholary, O.; Dromer, F. Capsule structure changes
associated with Cryptococcus neoformans crossing of the blood-brain barrier. Am. J. Pathol. 2005, 166, 421-432.
[CrossRef]

Jones, T.H.; McClelland, E.E.; McFeeters, H.; McFeeters, R.L. Novel antifungal activity for the lectin scytovirin:
Inhibition of Cryptococcus neoformans and Cryptococcus gattii. Front. Microbiol. 2017, 8, 755. [CrossRef]
[PubMed]

Casadevall, A.; Mukherjee, J.; Scharff, M.D. Monoclonal antibody based ELISAs for cryptococcal
polysaccharide. J. Immunol. Methods 1992, 154, 27-35. [CrossRef]

McClelland, E.E.; Hobbs, L.M.; Rivera, J.; Casadevall, A.; Potts, W.K,; Smith, ].M.; Ory, J.J. The role of host
gender in the pathogenesis of Cryptococcus neoformans infections. PLoS ONE 2013, 8, e63632. [CrossRef]
Alspaugh, J.A.; Granger, D.L. Inhibition of Cryptococcus neoformans replication by nitrogen oxides supports
the role of these molecules as effectors of macrophage-mediated cytostasis. Infect. Immun. 1991, 59, 2291-2296.
[CrossRef] [PubMed]

Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization
array data repository. Nucleic Acids Res. 2002, 30, 207-210. [CrossRef]

McClelland, E.E.; Casadevall, A. Strain-related differences in antibody-mediated changes in gene expression are
associated with differences in capsule and location of binding. Fungal Genet. Biol. 2012, 49, 227-234. [CrossRef]
Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res.
2001, 29, e45. [CrossRef]

Vasicek, O.; Papezikova, I.; Hyrsl, P. Fluorimetric determination of hydrogen peroxide production by the
haemocytes of the wax moth Galleria mellonella (Lepidoptera: Pyralidae). Eur. ]. Entomol. 2011, 108, 481-485.
[CrossRef]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.4161/viru.1.6.13311
http://dx.doi.org/10.1146/annurev.micro.54.1.567
http://dx.doi.org/10.1073/pnas.261418798
http://dx.doi.org/10.1016/j.micinf.2003.09.019
http://www.ncbi.nlm.nih.gov/pubmed/14670452
http://dx.doi.org/10.1126/science.282.5393.1432
http://www.ncbi.nlm.nih.gov/pubmed/9822369
http://dx.doi.org/10.1128/JB.183.19.5617-5631.2001
http://www.ncbi.nlm.nih.gov/pubmed/11544224
http://dx.doi.org/10.1128/IAI.73.7.4161-4170.2005
http://www.ncbi.nlm.nih.gov/pubmed/15972506
http://dx.doi.org/10.1007/BF01103978
http://www.ncbi.nlm.nih.gov/pubmed/8684427
http://dx.doi.org/10.1038/nri2939
http://dx.doi.org/10.1111/j.1462-5822.2008.01186.x
http://dx.doi.org/10.1172/JCI13407
http://dx.doi.org/10.1128/mBio.02016-18
http://dx.doi.org/10.1016/S0002-9440(10)62265-1
http://dx.doi.org/10.3389/fmicb.2017.00755
http://www.ncbi.nlm.nih.gov/pubmed/28536555
http://dx.doi.org/10.1016/0022-1759(92)90209-C
http://dx.doi.org/10.1371/journal.pone.0063632
http://dx.doi.org/10.1128/IAI.59.7.2291-2296.1991
http://www.ncbi.nlm.nih.gov/pubmed/2050398
http://dx.doi.org/10.1093/nar/30.1.207
http://dx.doi.org/10.1016/j.fgb.2012.01.006
http://dx.doi.org/10.1093/nar/29.9.e45
http://dx.doi.org/10.14411/eje.2011.061
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Evidence for Adaptation 
	Identifying a Putative Adaptation Mechanism 
	Validating the Putative Adaptation Mechanism 
	Experimental Evidence for Mechanism 

	Discussion 
	Materials and Methods 
	Ethical Statement 
	Passages 
	In Vitro Growth Curves 
	In Vivo Galleria Fungal Burden 
	Capsule Size 
	GXM Release 
	Mouse Macrophage Death and C. neoformans Intracellular Replication 
	Isolation and Culture of Human Monocytes 
	Human Macrophage Death and C. neoformans Intracellular Replication 
	Resistance to Hydrogen Peroxide 
	Resistance to Nitrosative Stress 
	Microarray Analysis 
	STRING Analysis 
	qRT-PCR 
	Hemocyte Hydrogen Peroxide Production 
	Histology 
	Statistics 

	References

