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Abstract: The standard view of modern human infec-
tious diseases is that many of them arose during the
Neolithic when animals were first domesticated, or
afterwards. Here we review recent genetic and molecular
clock estimates that point to a much older Paleolithic
origin (2.5 million years ago to 10,000 years ago) of some
of these diseases. During part of this ancient period our
early human ancestors were still isolated in Africa. We also
discuss the need for investigations of the origin of these
diseases in African primates and other animals that have
been the original source of many neglected tropical
diseases.

Introduction

A prevailing view of the origins of modern human–specific

infectious diseases is that many of them arose and spread during

the advent of animal domestication and urbanization in the

Neolithic or afterwards [1–3]. There is indeed evidence for

Neolithic origins in such diseases as measles [4]. One consequence

of this view is that the search for the origins of diseases, such as

tuberculosis, malaria, pertussis, etc., has focused on domesticated

animals and environments outside of Africa.

With new genetics and molecular clock data we are now

beginning to understand that some neglected tropical diseases

arose much earlier in the Paleolithic, such as tapeworm [5] or

mycobacterial infections [6]. During this time, our hominid

ancestors were still isolated in Africa [7]. Given these alternative,

and much older, origin hypotheses, we propose that extensive

research is needed in tropical environments in Africa. In this

manuscript we will focus mainly on the origins of some neglected

tropical diseases.

Newer Molecular Methods and Older Potential
African Origins

While quite uncommon now, leprosy was first recorded in

humans around 600 BC in India [8]. Based on historic documents,

it is has been thought that this disease was later brought to Europe

during Greek military campaigns [8]. In support of this recent

origin theory is an absence of leprosy in pre-Columbian

Americans [8], and little genetic variation among isolates of

Mycobacteria leprae [9,10], the causative agent of this infectious

disease. By contrast, phylogeographic and single nucleotide

polymorphism (SNP) analyses point to M. leprae originating in

Africa during the Paleolithic [10,11]. This ancient date suggests

that the current presence of little genomic variation may be due to

a recent bottleneck [10,11], possibly due to M. leprae’s low rate of

infection [12]. This low infection rate could also explain the

absence of leprosy in pre-Columbian Americans, even though

their ancestors may have themselves been infected. In support of

the SNP analyses, a molecular clock analysis suggests that the

ancestor of M. leprae diverged from tubercle bacilli around 66

million years ago (MYA) [9,11], prior to the origins of the genus

Homo 2.5 MYA [7]. Analysis of non-synonymous nucleotide

substitutions suggests that M. leprae underwent genomic decay

between 10 and 20 MYA [9,11].

Other diseases whose origins have been subjected to major

debates are treponematoses, which include syphilis (Treponema

pallidum subsp. pallidum), bejel (T. pallidum subsp. endemicum), yaws

(T. pallidum subsp. pertenue), and pinta (T. pallidum subsp. carateum)

[13]. While most of the debate focuses on the origins and spread of

Treponema pallidum subsp. pallidum, recent phylogenetic and SNP

analyses of treponemal genes suggest that the Old World T.

pallidum subsp. pertenue is the oldest lineage [14]. Typical yaws-like

lesions have been found in prehistoric human bones and hominids,

indicating a Paelolithic origin of treponematosis [15]. The change

from casual to venereal route of transmission in Treponema pallidum

subsp. pallidum remains a puzzle. Neisseria gonorroheae, another

venereal pathogen, may have evolved from a linage of Neisseria

meningitides (upper respiratory tract inhabitant) during the Neolithic

[16], and it may be related to the emergence of large villages.

Bordetella pertussis, the etiologic agent of whooping cough, was

thought to have originated recently from Bordetella bronchiseptica that

was infecting domestic animals such as pigs and dogs [1–3].

Although analysis of DNA sequences of multiple loci (MLST)

indicated that B. pertussis evolved from B. bronchiseptica [17], recent

molecular clock estimations suggest that the divergence time

between B. pertussis and B. bronchiseptica associated with domestic

animals is 1.1 and 5.6 MYA [17] before the origin of the Homo

sapiens 0.2 MYA [7]. Genomic decay in B. pertussis may have been

the result of evolution among ancestral hominids and adaptation

to these hosts [17,18]. Additionally, human strains of B.

parapertussis (a bacteria causing less severe whooping cough in

humans) diverged from animal B. bronchiseptica 0.7 to 3.5 MYA

and have evolved from a different clade than B. parapertussis

isolated from domestic animals [17]. Therefore, molecular data

Citation: Trueba G, Dunthorn M (2012) Many Neglected Tropical Diseases May
Have Originated in the Paleolithic or Before: New Insights from Genetics. PLoS
Negl Trop Dis 6(3): e1393. doi:10.1371/journal.pntd.0001393

Editor: Simon Brooker, London School of Hygiene & Tropical Medicine, United
Kingdom

Published March 27, 2012

Copyright: � 2012 Trueba, Dunthorn. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Funding: The funding for the present work was provided by Universidad San
Francisco de Quito. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests
exist.

* E-mail: gtrueba@usfq.edu.ec

www.plosntds.org 1 March 2012 | Volume 6 | Issue 3 | e1393



suggest that B. pertussis and B. parapertussis originated far earlier

than the Neolithic period and did not originate in domestic

animals [17].

Abundant problems exist in inferring phylogenetic relationships

[19]; these problems are further exacerbated in molecular clock

analyses that attempt to date these relationships [20–22]. While

keeping these potential methodological problems in mind, recent

molecular clock analyses, as well as other genetic investigations

using single nucleotide polymorphisms and phylogeography, do

tentatively suggest that some of our modern human infectious

diseases did not arise with the advent of animal domestication in

the Neolithic as previously thought. Rather, these diseases—such

as tuberculosis, leprosy, and treponematosis—have a much older

origin in the Paleolithic. During this ancient time our hominid

ancestors still may have been living in Africa. A deeper

understanding of the origins of these diseases and possibly others,

then, will require us to investigate them in African primates and

other animals.

A Need for Research in African Primates and
Other Animals

Most research on the African origins of human infectious

diseases focuses on HIV and malaria. Nevertheless, there are some

initial studies in other diseases, such as M. leprae being found in

primates showing signs of leprosy [23,24]. The significance of non-

human primate leprosy is unknown because of a lack of genetic

information on the etiologic agents. At this point it is not possible

to decipher if these primates, like armadillos [24], contracted their

infections from humans, or if they were the original source of this

modern human infectious disease. While it is unknown whether

this leprosy from non-human primates could be passed to humans,

there is some evidence that leprosy from armadillos is zoonotic

[25].

Similarly, T. pallidum subsp. pertenue’s infection rates are high in

both humans and primates in yaws-endemic areas of West Africa

[14]. A simian yaws-like skin disease caused by a variant closely

related to the human T. pallidum subsp. pertenue [14,26] that does

not appear to be the result of recent cross infection from humans

has been described [14]. It has been shown that inoculation with

the simian strain can cause a yaws-like infection in humans,

suggesting that cross species transference is also possible [14].

Additionally, T. pallidum subsp.pertenue is reported to cause genital

ulcerations in African primates [27]. These data suggest that skin

treponematosis may have evolved within African primates and our

own ancestral human species.

Pathogen crossing of host species barriers is a common

occurrence in natural environments (zoonosis and anthroponosis).

However, acquiring traits that enable efficient transmission within

a given host species is a more unusual event. Adaptations to new

hosts seem to occur more frequently in pathogens infecting

phylogenetically related hosts [28]. The recent evolution of

human-specific pathogens such as hepatitis B virus [29–31],

HIV [32], human T cell lymphotropic virus (HTLV) [33], and

malaria [34] from African primates follows this pattern. Other

pathogens, such as M. leprae, M. tuberculosis [6], B. pertussis, B.

parapertussis, Treponema pallidum, herpesviruses [35], papillomavirus-

es [36], Helicobacter pylori [37], Taenia solium, T. saginata [5], and

even human intestinal microbiota [38], may have coevolved in

ancestral hominids in Africa. Close contact with Homo neanthertha-

lensis [39], or other archaic humans, may have also played a role in

the introduction of some of these infectious diseases to modern

humans (Figure 1). This evolutionary adaptation to a specific host

transmission may be accompanied by a trade-off that reduces the

competence to cross host species barriers and may involve genome

decay [18].

Despite the recent evidence that many human infectious

diseases have originated in primates, the study of infectious

diseases of primates (especially apes) and other African animals is

still a neglected field of research. African primates, including

human’s closest relatives the chimpanzee and the bonobo, are not

only genetically similar to humans, but they also share the same

Figure 1. Origins of human-specific infectious diseases. Arrows indicate suggested direction of the transmission.
doi:10.1371/journal.pntd.0001393.g001
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habitats and food as humans in many regions of central Africa.

Additionally, many people in this region consume ape meat and

are exposed to blood and fluids from these animals [33].

Therefore, African primates remain an untapped source of

information required to complete the puzzle of the mechanisms

of origin and evolution of many human pathogens. As the genomic

data from a wider population of pathogens and microbiota of

humans and other animals become available, we will have a better

understanding of the distribution of microbial pathogens and

commensals and the mechanisms that govern transmission among

different animal species. The discovery of the factors involved in

crossing the host species barrier and the evolution of human-

specific pathogens may help the identification of human activities

that can potentially promote the emergence of new infectious

diseases. Finally, many of these tropical ancient infections may

have caused high mortality and contributed to human evolution,

especially the shaping of the human immune system for longer

periods of time than previously thought.
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