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Abstract

Signaling pathways belong to a complex system of communication that governs cellular processes. They represent signal
transduction from an extracellular stimulus via a receptor to intracellular mediators, as well as intracellular interactions.
Perturbations in signaling cascade often lead to detrimental changes in cell function and cause many diseases, including
cancer. Identification of deregulated pathways may advance the understanding of complex diseases and lead to
improvement of therapeutic strategies. We propose Analysis of Consistent Signal Transduction (ACST), a novel method for
analysis of signaling pathways. Our method incorporates information regarding pathway topology, as well as data on the
position of every gene in each pathway. To preserve gene-gene interactions we use a subject-sampling permutation model
to assess the significance of pathway perturbations. We applied our approach to nine independent datasets of global gene
expression profiling. The results of ACST, as well as three other methods used to analyze signaling pathways, are presented
in the context of biological significance and repeatability among similar, yet independent, datasets. We demonstrate the
usefulness of using information of pathway structure as well as genes’ functions in the analysis of signaling pathways. We
also show that ACST leads to biologically meaningful results and high repeatability.
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Introduction

Though gene expression microarray-based experiments are

popular in life science research, microarray data analysis and

interpretation of its results are still challenging. Typically, these

analyses lead to lists of genes with the most differential expression

between the compared groups. An important limitation of such

approach is that genes with moderate but meaningful expression

changes may not meet the strict cutoff and alternation of

molecular processes may be missed [1,2]. These are particularly

important when studying a complex disease, for instance cancer,

that is associated with changes of expression of multiple genes.

Moreover, frequently there is little overlap between lists of genes

obtained by different groups exploring the same biological

conditions [3].

These limitations could be overcome by signaling pathway

analysis. Signaling pathways are maps of processes occurring in

cells and may represent signal transduction from an extracellular

stimulus via a receptor to intracellular mediators, as well as

intracellular interactions. Various studies have demonstrated the

potential of using gene expression profiles for the analysis of

oncogenic pathways [4]. Furthermore, better understanding of

pathways deregulations may lead to improvement of cancer

therapeutic strategies [5].

Signaling pathways contain information not only about the

presence of a given element (gene or protein), but also about

interactions between their elements e.g. co-regulation. All elements

in a particular pathway have their specific functions and positions

in a given pathway, and both of them depend on the pathway.

Furthermore, a given interaction may represent protein-protein

relationship (e.g. phosphorylation) or gene-gene relationship (e.g.

indicating relation of transcription factor and target gene product)

[6].

Basically, there are two different types of methods for signaling

pathway analysis. One of them [7–10] attempts to detect co-

expressed genes and reconstruct a pathway structure. The second

group of methods uses externally defined pathway definitions to

detect altered pathways in underlying constituents either in

pathways of a given length [11] or in all of the pathways [6,12].

In this study we focused on the latter approach. An interesting

review of evolution and limitations of such methods was recently

published by Khatri et al [13].

One of the methods for analysis of signaling pathways is

Signaling Pathway Impact Analysis (SPIA) proposed by Tarca et

al. [6]. This method considers overrepresentation of differentially

expressed genes, as well as the function of every gene in a given

pathway and the magnitude of gene expression changes. It is

important to notice that SPIA uses an assumption that the closer a

gene is situated to the beginning of the pathway, the greater
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impact on the signal transduction it has. To score each signaling

pathway SPIA uses two independent factors: a test for overrep-

resentation of differentially expressed genes in a given pathway

and perturbation of a given pathway measured by propagating

expression changes across the pathway. The latter is computed

with the bootstrap procedure with a gene sampling model.

Another method, Bayesian Pathway Analysis (BPA) presented

by Isci et al. [12], employs Bayesian network models. Using

Bayesian network models allows us to capture linear as well as

non-linear interactions between genes and emphasize only strong

relations in the observed data. BPA models each pathway as a

Bayesian network and quantifies the degree to which observed

experimental data fit to a modeled network. The significance of

each pathway is estimated by applying randomization via

bootstrapping.

In this paper we propose Analysis of Consistent Signal

Transduction (ACST), a novel method for the analysis of signaling

pathways. ACST incorporates three types of features: pathway

topology information, the position of every gene within a given

pathway and the magnitude of changes of all analyzed genes.

ACST requires neither arbitrary cut-offs nor arbitrary parameters.

In contrast to previously published methods, we propose a method

without an oversimplifying assumption that gene expression

changes unambiguously reflect protein action (e.g. phosphoryla-

tion). In our method each pathway is examined for a consistent

relationship between transcription factor and its target genes-genes

that are directly regulated by this transcription factor. Expression

changes of the latter components of the examined pathway reflect

changes in physiological events. Our results are evaluated in forms

of nominal p-values and false discovery rate correcting for multiple

hypothesis.

While testing ACST not only did we use a number of

independent experimental datasets, but we also tested repeatability

of results examining biologically similar, yet independent, datasets.

We compared ACST with results achieved with the methods

mentioned above (SPIA and BPA) and with a popular method

designed to gene set analysis: Gene Set Enrichment Analysis [1].

Comparison with the last method allowed us to test the utility of

incorporating information of pathways structure.

Materials and Methods

In order to apply the Analysis of Consistent Signal Transduction

we need (i) gene expression measurements and (ii) definitions of

signaling pathways. (i) can be obtained with gene expression

microarrays. (ii) may be defined using KEGG [14], Biocarta [15]

or any other pathway database which contains information about

relation of transcription factor and target gene product (for details

see subsection Pathways structure and its implications). In our

study we used definitions from KEGG.

Definitions and Notations
In this study a particular signaling pathway is represented as a

directed graph G~fVG,EGg, where the nodes VG~fv1, . . . ,vnG
g

represent genes while directed edges (vi,vj)[EG(VG|VG repre-

sent relations between respective genes. (vi,vj) is a direct edge

which starts in vi and ends in. vj A path pvp1
,vpl

in a directed graph

G is a sequence vp1
, . . . ,vpi

,vpiz1
, . . . ,vpl

, such that for each

i[f1, . . . ,l{1g (vpi
,vpiz1

)[EG and for every i,j[f1, . . . ,lg vi=vj , if

i=j. The length of a path pvp1
,vpl

is identified with the number of

elements in pvp1
,vpl

and is denoted as Dpvp1
,vpl

D. The node vi is a leaf

in graph G if and only if Aj (vj ,vi)[EG but . 6Ak (vi,vk)[EG The

LeavesG stands for a set of leaves of graph G. By a subgraph of

graph G we understand a graph SubG~fVSubG
,ESubG

g such that

VSubG
(VG and ESubG

((VSubG
|VSubG

)\EG . Let A and B be

subgraphs of graph G. A directed distance in graph G from A to B
is given by distG(A,B)~ min

a[A,b[B
Dpa,bD if any pa,b exists, and z?

otherwise. In other words, a directed distance from A to B is equal

to the number of nodes in the shortest path which starts in node

from A and ends in node from B. If A and B overlap,

distG(A,B)~1.

For the purposes of this study we need to define a consistent

relation and a consistent graph. Assuming that two experimental

conditions (e.g. disease vs. control) are compared, ti~t(vi) stands

for sign statistic (e.g. t-test, logFoldChange). The sign of this

statistic must determine the direction of expression changes

between the analyzed conditions of gene vi. We say that vi is in

consistent relations with vj if and only if aij t(vi)t(vj)w0, where aij

reflects the type of interaction (vi,vj). aij~z1 if (vi,vj) stands for

activation, aij~{1 if (vi,vj) stands for repression and aij~0

otherwise. Note that aij reflects the real biological interactions

between genes vi and vj and is given by the chosen signaling

pathway database. Figure 1 presents four possible consistent

relations.

A consistent graph is a graph in which all edges represent

consistent relations. Moreover, a consistent subgraph ConsG of

graph G is maximal if and only if

1.

V vi[VG
vi=[VConsG

Vvj[VConsG

aij titjƒ0

ajitj tiƒ0

2.

Vvi ,vj[VConsG
aij titj§0[(vi,vj)[EConsG

where aij reflects the real biological interactions and is given by a

particular pathway database.

Description of ACST
In general, ACST shares the scheme presented by [16], in

which two statistics are computed. The first, a local statistic, is

computed for each gene. The second statistic, a global statistic,

is computed for each analyzed pathway and is based on local

statistics of genes which belong to a particular pathway. The

score of global statistics is assessed with a permutation model

(subject sampling model) followed by an estimator of false

discovery rate (FDR) studied in [17] and indicated in [16].

Although class label permutations allow us to maintain gene-

gene relations in each sample, Efron and Tibschirani [18]

showed that the permutation model leads to smaller scores than

scores computed with original labels. In order to enable

comparison of pathway scores from original data and permu-

tation model we used standardization.

Local statistic. To compute local statistic we use two-sided t

statistic, t:, with the Welch modification. Let T2
G stand for a set of

squared t statistics computed for all genes from the chosen

pathway database. A local statistic for a given gene vi is

t�i ~
t2
i {mean(T2

G)

sd(T2
G)

,

where mean(T2
G) and sd(T2

G) stand for mean and standard
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deviation of values in T2
G. Similarly to [18], we noticed that the

permutation model leads to smaller t-statistics than t-statistics

computed with original labels. In order to enable comparison

between original data and permutation model we used standard-

ization (for details see [18]).

Global statistic. To compute global statistic each graph G is

searched for maximal consistent subgraphs. Please note that in this

step we use non-standardized t statistics, i.e. ti, because their signs

reflect the real direction of changes. If any maximal consistent

subgraph ConsG is found, its score SConsG
is calculated as follows:

SConsG
~

1

distG(ConsG,LeavesG)

X

i[ConsG

t�i ,

where distG(ConsG,LeavesG) is a distance from ConsG to

LeavesG . Using 1
distG(ConsG,LeavesG)

we weigh the sums of

standardized t statistics with respect to the distance between the

found subgraphs and leaves of the searched graph. Figure 2

presents this dependency. The global statistic for graph G, ScoreG,

is a sum of scores of all maximal consistent subgraphs found in G.

If no consistent subgraph is found in G the ScoreG~0.

The occurrence of a consistent subgraph stands for relative (with

reference to control) change of gene-gene co-regulations in tested

biological conditions. With regard to biological knowledge we

scored only maximal consistent subgraphs. Using only maximal

consistent subgraph does not necessarily lead to the highest score,

but the greater range of transduction is found, the more likely it is

that a functional change is observed. Additionally, since we do not

expect that the majority of all analyzed genes are differentially

expressed, negative t�i means that the direction of expression

change of gene vi might be random as well as its presence in a

given consistent subgraph.

The 1
distG(ConsG,LeavesG)

scores for the place where given co-

regulations are found in the considered pathway. Using such factor

we give a higher score to the co-regulations found at the end of the

pathways. We do so because co-regulations at the beginning of a

pathway not necessarily induce a specific cellular response,

because perturbation of downstream genes may impact the

process of signal conversion. Since the response (cellular processes

such as proliferation or migration) is accompanied with down-

stream activation we put more emphasis on the genes that are at

the end of the pathway.

To assess the global statistic we used class label permutations.

Class label permutations allowed us to maintain gene-gene

relations in each sample and draw conclusions about biological

replications. Let P~fp2, � � � ,pMg be a random sample of

permissible permutations of class labels and p1 be the permutation

corresponding to the observed class labels. Then, the empirical p-

value for the graph G is computed as:

pG~
1

M

XM

i~1

I(ScoreG,pi
§ScoreG,p1

),

where I(:) is an indicator function. For the purposes of this study

we used 1000 permutations for each dataset. To estimate false

discovery rate associated with the selected threshold for signifi-

cance we used a ‘resampling-based point estimator’ of FDR [17].

This estimate of FDR was developed for controlling FDR when

conducting multiple dependent tests. An R code of ACST is

available at http://jmieczkowski.nencki.gov.pljmieczkowski.

nencki.gov.pl and in Additional file S1.

Considering the methodological challenges raised in [13] we

believe that ACST can be easily transformed to analyze dynamic

response in tested conditions. The main goal of our method is to

identify subgraphs in which genes expression changes are consistent

with a particular pathway definition. Thus, if proper data are

obtained, it would be easy to look at the dynamic changes in the found

subgraphs (i.e. number of nodes, score of consistency etc.).

Pathways Structure and its Implications
Pathway definitions contain information not only about gene

expression interactions, but also on protein-protein interactions (e.g.

phosphorylation). However, gene expression data only provide

information regarding mRNA levels in analyzed samples. There-

fore, in our work we used only information regarding gene

expression interactions (marked GErel in KEGG). This type of

interaction describes the relationship between particular transcrip-

tion factor and the protein whose expression is directly regulated by

this transcription factor. The proposed algorithm does not include

other type of protein action, especially enzymatic reaction like

phosphorylation as they are not reflected by microarray data. Due to

limitation to genegene relations in this study we analyzed only 47

signaling pathways out of 209 from KEGG database (others do not

contain gene-gene relations, for a detailed list of analyzed pathways

see Additional File S2). We realize that such limitation of

Figure 1. The plot presents all consistent relations and stand for any sign statistics which reflect the direction of expression
changes between the analyzed conditions of genes and expresses the type of interaction.
doi:10.1371/journal.pone.0041541.g001
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applicability might be seen as a drawback, but we believe that it is a

drawback due to type of data, not of the method itself. Thus, in

contrast to other signaling pathway methods we deliberately do not

make assumptions about protein-protein interactions based on

transcriptional expression data. For instance, we believe that it may

be misleading to conclude about activation by phosphorylation

based solely on transcriptional expression profiles.

Another innovative aspect of our method is looking for consistent

relations. We agree that it is rather restrictive and on some occasions

our method may miss some pathways. However, occurrence of

consistently related genes is of great importance. Indicating signaling

pathway in which such consistent relation occurs might be very

useful for understanding the biological process as well as for

identifying targets for molecular therapy. We think that the methods

which lead to a lower number of false positives are desired, even if

some true positives might be missed. Nevertheless, it is important to

note that ACST may simply be used also with protein expression

data (e.g. data from protein expression arrays). Since the t-test does

not depend on scale, some gene expression data may simply be

merged or replaced with proteomic expression data and more types

of interactions may be used.

Selection of Datasets
Assessing performance of any new method for pathway analysis

is difficult because of the absence of gold standard [1,6]. The best

way to evaluate a new method is to reanalyze biologically well-

known conditions and to compare obtained results with the results

of already existing methods. Testing our method we decided to use

one more criterion-repeatability of results. As pointed in [13]

biological data may be affected by several confounding factors, so

we believe that obtaining repeatable results on independent data

sets is strongly desirable. Considering our goal to obtain correct

and biologically meaningful results we chose only datasets for

which results in original papers were confirmed using biochemical

methods or/and from well-studied biological cases. To evaluate

the repeatability we used Spearman’s rank correlation. To assess

significance of computed correlations we used F-test computed as

follows
r2(n{2)

1{r2 *F(1,n{2), where r is a correlation coefficient,

n is a number of correlated values and F (:,:) stands for F

distribution. The Bonferroni correction was used to determine the

significance of the correlations.

In this study we used nine publicly available datasets. All the

raw data were downloaded from GEO database [19] and the used

datasets are marked by GSE4107 [20], GSE9348 [21], GSE24514

[22], GSE8671 [23], GSE15641 [24], GSE14762 [25], GSE9574

[26], GSE10797 [27] and GSE5563 [28]. The GSE4107 dataset

had already been used by [6]. Four of collected datasets

(GSE4107, GSE9348, GSE24514 and GSE8671) were collected

to compare gene expression in colorectal cancer and control

samples. In our analyses these sets are marked CC1, CC2, CCms

and CCade respectively. The next two datasets (GSE15641 and

GSE14762) were collected to compare gene expression in renal

cell cancer and control samples. Originally the GSE15641 dataset

Figure 2. The plot presents scores of positions of found consistent subgraphs. Both figures present the same artificial graph but with
marked different expression changes. The expression changes were marked with colors. The red color marks overexpression in the tested group (with
regard to control), while the blue color represents underexpression. The nodes are marked with their distance (see the definitions and notations
subsection) to leaves of the graph. The green arrows represent consistent relations.
doi:10.1371/journal.pone.0041541.g002
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was employed to compare different subtypes of renal cell cancer

and normal samples, but in our study we just used cRCC (clear

cell RCC also used in GSE14762) and normal samples. We

marked this set with RCC1, and the GSE14762 dataset with

RCC2. Other two datasets (GSE9574 and GSE10797) were

collected to compare gene expression in epithelial breast cells from

breast cancer patients and control group. These sets were marked

BC1 and BC2 respectively. Finally, the GSE5563 dataset was

collected to compare gene expression in Vulvar Intraepithelial

Neoplasia and control samples. We marked this set VIN.

Referring to methodological challenges presented by Khatri et al.

[13] we believe that the presented criteria for selection of groups of

datasets may be used as a benchmark for other methods of

signaling pathway analysis.

Preprocessing and Analysis of Microarray Data
All data manipulations were performed using R statistical

environment [29] and relevant Bioconductor software [30].

According to suggestions in [31] we applied quality analyses

using affyQCReport Bioconductor package [32]. The quality of the

majority of the downloaded CEL files was acceptable, but some

of them did not meet the basic quality criteria (GAPDH 39:59

ratio v1.25, b-actin 39:59 ratio v3 and scale factor within 3-fold

of the mean of all chips) and these microarray were eliminated

from further analyses (see Additional File S2). All the microarray

datasets were preprocessed with GC-RMA separately. Next, in

order to filter out unreliably measured genes and to uniquely

map probe sets to genes we applied filtering and mapping

procedures described in [33]. Briefly, after preprocessing we

applied (i) Present/Absent/Marginal filtration to verify specificity

of measured signal and (ii) transformation of probe set

measurements into gene measurements, excluding probe sets

that are annotated to more than one gene (for details see [33]).

To do so, we used annotations of probe sets to genes provided in

the Ensembl database.

In order to compute Signaling Pathway Impact Analysis we

used SPIA and limma (genes with adj.p-valuev0.05 were

considered significantly differentially expressed) Bioconductor

packages. Gene Set Enrichment Analysis and Bayesian Pathway

Analysis were performed with java codes provided by their

authors. Our method, Analysis of Signal Transduction, was

implemented under R statistical environment and to import

pathways definitions we used parseKGML2Graph function from

KEGGgraph package and we used only nodes that represent genes.

SPIA, BPA and GSEA were used with default settings. By default

these methods test different number of signaling pathways, i.e.

SPIA tested 128, BPA 206 and GSEA 186. To facilitate

comparison of repeatability of tested methods for SPIA, BPA

and GSEA we reported results obtained for all tested pathways as

well as only for pathways used by ACST (with recomputed

adjusted p-values). For all presented methods, pathways with

adjusted p-value below 0.25 were considered significant.

Results and Discussion

In the present study we analyzed nine publicly available datasets

(described below), for which considerable background information

is available. All of them have been used to address biological

questions, namely to compare gene expression in disease versus

normal tissues. Using real datasets allows us to preserve the gene-

gene correlations and dependencies. All the methods have been

validated by testing: (i) whether the obtained results confirm

biological knowledge concerning gene expression deregulation

under studied conditions, and (ii) whether the obtained results are

repeatable on similar datasets. In order to verify (i) we used

datasets for which the original results of analyzes were further

confirmed using biochemical methods. This type of validation is

considered the most proper assessment of quality of a novel

approach and it was used in previous studies [1,6]. For verification

of (ii) we used three similar, yet independently generated datasets

(two of them from the same laboratory).

Additionally, ACTS was compared with several existing

methods including the most widely used method for gene sets

analysis-GSEA and two methods for pathway analysis-SPIA and

BPA. Signaling pathways with adj.p-valƒ0.25 were considered

significant for all tested methods and only these pathways are

listed.

Comparison of Four Colorectal Cancer Datasets
In order to test the repeatability of signaling pathway analyses,

we reanalyzed data from three recent studies of colorectal cancers.

The first dataset consists of gene expression profiling of samples

from young patients (ƒ50 years old) with early onset colorectal

cancers (n = 12) versus healthy controls (n = 10) [20]. The second

dataset consists of gene expression profiling of colorectal cancer

samples (n = 24) from older patients (§50 years old) and samples

from healthy donors (n = 7) [21]. The third dataset consists of gene

expression profiling of colorectal cancer sample with microsatellite

instability (n = 34) and normal colonic mucosa (n = 15) [22] The

fourth data set compared the gene expression profiling of

colorectal adenomas (n = 32) with normal mucosa (n = 32) [23].

The results of analysis of colorectal cancer datasets are presented

in Table 1.

The utility of the proposed method was tested in terms of its

ability to identify the colorectal cancer pathway itself. In all tested

datasets ACST identified Colorectal cancer pathway. Wnt signaling

pathway, Toll-like receptor signaling pathway, Epithelial cell signaling in

Helicobacter pylori infection, Endometrial cancer and Thyroid cancer,

Melanoma and Small cell lung carcionoma were identified for at least

two datasets. All of them are fundamental for colorectal

carcinogenesis. Wnt signaling pathway (identified with adj.p-

val~0.009, 0.237 in CC1 and CC2 respectively) is integral to

colorectal cancer and more than 90% of patients show alterations

that affect it [34]. The importance of Wnt signaling pathway in

carcinogenesis is well supported by many clinical and experimental

studies, and its blockade may lead to new treatment strategies in

cancer [35]. In CC1 and CCms ACST also identified TLR signaling

pathway as significantly perturbed (adj.p-val~0.009 and adj.p-

val~0.15 in CC1 and CCms respectively). TLR signaling plays a

crucial role in inflammation, host defense and tissue repair, and a

growing body of evidence shows involvement of TLR signaling

pathway in progression of gastrointestinal tumors, including

colorectal cancers [36,37]. Recent studies have demonstrated that

TLR signaling stabilizes the c-Myc oncoprotein through activation

of ERK and promotes tumor development [38]. On the basis of

these studies, future strategies for treatment of colorectal cancer

could involve local intestinal inhibition of TLRs [39].

Four cancer related pathways: Endometrial cancer, Thyroid cancer,

Melanoma and Small cell lung carcionoma were highly ranked by ACST

in the colorectal cancer tested datasets. The cancers connected

with indicated pathways share the same genetic alterations as

colorectal cancer e.g. the presence of oncogenic KRAS and/or b-

catenin or p53 mutations are common for these tumors [40,41].

Additionally ACST also indicated a Epithelial cell signaling in

H. pylori infection pathway for CC1 and CC2 (adj.p-val~0.128,

0.177 in the first and the second dataset respectively). Although

authors of the original work do not provide information about

status of Helicobacter pylori infection of analyzed patients it is

Consistent Signal Transduction
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generally known that in colorectal cancer there is an increased risk

of Helicobacter pylori infection [42]. Biological interpretation of

significantly changed pathway in the colorectal cancer datasets

leads us to the conclusion that ACST is able to detect pathways

characteristic for a pathological condition.

Besides identification of significantly perturbed pathways,

ACST allowed us to identify a group of transcription factors and

their products that are consistently changed in a particular

pathway. The scheme of consistently changed gene expression in

identified subgraph in Colorectal cancer pathway for all four tested

datasets is presented in Figure 3. The common motif for all four

colorectal cancer datasets consists of LEF1, Myc and CCnd1 and

expression of these genes is higher in cancer patients. Signal

transduction by LEF1 and Myc to Ccnd1 may be a driving force

of uncontrolled proliferation as Ccnd1 belongs to the Cyclin D

family and is required for the cell cycle G1/S transition. We also

observed differences among consistent subgraphs identified in the

analyzed datasets. Our findings show that in a particular group of

clinically related colorectal cancer patients we were able to

indicate a group of genes that could be directly responsible for a

pathological hallmark. Identification of major factors involved in

cancer progression characteristic for a particular group of patients

allows us to create a clinically useful hypothesis and indicated

potential targets for molecular therapy.

Application to Other Datasets
In order to further demonstrate the utility of our method, we

applied ACST to five additional datasets. The first two datasets

originated from the comparison of gene expression changes in renal

cell carcinoma with normal kidney tissue samples [24,25]. Table 2

presents the results obtained with ACST. For these datasets ACST

revealed two common significantly perturbed signaling pathways:

Endocrine and other factor regulated calcium reabsorption and Vasopressin

regulated water reabsorption (with adj.p-val = 0.048; 0.074 for RCC1

and adj. p-val = 0.148; 0.236 for RCC2 respectively). These two

pathways characterize kidney functions and perturbations in those

pathways are typical for kidney failure. Vasopressin is a critical

regulator of water homeostasis by controlling the water movement

from lumen to the interstitium for water reabsorption and adjusting

the urinary water excretion. Regulation of calcium homeostasis by

reabsorption is one of the main kidney functions and elevated

calcium level is one the first symptoms of renal carcinoma. The

results are consistent with biological knowledge concerning the

pathological state.

As previously mentioned the main advantage of the proposed

method is a possibility to identify the consistent subgraph within

the identified pathway. The consistent subgraph is composed of

transcription factors as well as proteins that are directly regulated

by these transcription factors provided that observed changes have

a consistent direction. The subgraph within pathway Endocrine and

other factor regulated calcium reabsorption is composed of four important

protein VDR, ESR1, CALB1 and ATP2B1. VDR and ESR1 as

transcription factors regulate the expression of protein which play

a critical role in intracellular calcium homeostasis like CALB1 and

ATP2B1. An independent study showed that inadequate calcium

intake is an important risk factor for various types of cancer. VDR

and all vitamin D metabolizing enzymes are expressed in normal

kidney but during the malignant transformation, expression of

VDR and the metabolizing enzymes are lost, though the

implications of this loss are unknown [43]. The identified subgraph

within pathway Vasopressin regulated water reabsorption is composed of

CREB3L2 and AQP2. CREB3L2 is a transcriptional activator

that regulates the expression of AQP2-a water channel protein

located in the kidney collecting tubule. AQP2 is associated with

the pathophysiology of several sodium and water balance disorders

[44] (for the consistent subgraphs from pathways called significant

in both RCC data see Additional File S3).

Additionally, Insulin signaling pathway and Aldosterone regulated

calcium reabsorption were indicated for RCC1 and RCC2, respec-

tively. Aldosterone regulated calcium reabsorption similarly to the

two mentioned pathways describing kidney functions. Multiple

lines of evidence implicate the Insulin signaling in the development

Table 1. ACST results on four colorectal cancer datasets.

CC1 CC2 CCms CCade

Name pv adj.pv Name pv adj.pv Name pv adj.pv Name pv adj.p

Colorectal canc 0.001 0.013
Colorectal
canc 0.005 0.095

Colorectal
canc 0.014 0.116 Melanoma 0.005 0.093

MAPK sig
path

0.001 0.013 Cell cycle 0.012 0.106 TLR sig path 0.014 0.116 Insulin sig path 0.013 0.131

TLR sig path 0.002 0.019 Epith cell sig 0.013 0.106 Melanoma 0.015 0.116 Mineral abs 0.019 0.131

Prion diseases 0.003 0.023 Shigellosis 0.014 0.106 Endomet canc 0.018 0.116 Cell cycle 0.020 0.131

Bile secretion 0.005 0.033 Endomet canc 0.019 0.106 Thyroid canc 0.018 0.116 Aldoste-reg sod 0.024 0.131

Epith cell sig 0.008 0.045 Thyroid canc 0.019 0.106 African trypanos 0.020 0.116 Colorectal canc 0.030 0.131

Focal adhesion 0.016 0.078 Wnt sig path 0.023 0.113 Endomet canc 0.032 0.131

Wnt sig path 0.023 0.101 S cell lung canc 0.038 0.166 Thyroid canc 0.032 0.131

Acute myel leuk 0.050 0.199 Basal cell carc 0.032 0.131

Hedgehog sig
path

0.036 0.134

S cell lung cancer 0.048 0.164

The table presents results of ACST on four colorectal cancer datasets. Only significantly altered pathways (adj.p-value,0.25) are presented. Signaling pathways
indicated for all datasets are written in bold while signaling pathway indicated more than once are written in italic. Epith cell sig stands for Epithelial cell signaling in
Helicobacter pylori infection, S cell lung canc for Small cell lung cancer, African trypanos for African trypanosomiasis, Mineral abs for Mineral absorption and Aldoste-reg
sod for Aldosterone-regulated sodium reabsorption.
doi:10.1371/journal.pone.0041541.t001
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and progression of cancer. In the context of developing new

treatment for renal cell carcinoma, IGF1 signaling has been shown

to regulate HIF1-a, which is a master regulator of hypoxia

inducible genes including VEGFR, PDGFR, and TGF-b all of

which play important roles in the development of RCC [45]. The

results obtained on all datasets show that ACST has the power to

find a significant pathway.

The next two datasets [26,27] were collected to compare gene

expression in epithelial breast cells from breast cancer patients (14

and 27 in BC1 and BC2 respectively) and control (15 and 5 in BC1

and BC2 respectively) samples. The results obtained with ACST

are presented in Table 3. ACST indicated four common

significantly perturbed pathways: TLR signaling pathway (with adj.p

val = 0.009; 0.088 in BC1 and BC2 respectively) Legionellosis (with

adj.p val = 0.196; 0.015 in BC1 and BC2 respectively) Wnt signaling

pathway (with adj.p val = 0.022; 0.075 in BC1 and BC2 respec-

tively) Focal adhesion (with adj.p val = 0.077; 0.037 in BC1 and BC2

respectively). The indicated pathway reflect the pathological

condition. Toll-like receptors (TLR), key receptors in innate

immunity, play a role in cancer progression and development,

including breast cancer. Signaling pathways like Wnt signaling

pathway and Focal adhesion, are misexpressed in breast cancer and

correlate with poor clinical outcomes. It was recently showed that

mammary epithelial-specific disruption of focal adhesion kinase

retards tumor formation and metastasis in a mouse model of

human breast cancer [46]. The presence of Legionellosis in this

comparison is due to the presence of transcription factor Myd88.

Myd88 regulates activation of numerous proinflammatory genes

during infection as well as tumor development [47]. As described

for previous datasets also within pathways identified for BC

datasets ACST indicated substantial subgraphs which in our

opinion represent major changes describing pathological condition

(for the consistent subgraphs from pathways called significant in

both BC data see Additional File S3).

The last dataset, VIN, was generated to compare gene expression

profiles between vulvar intraepithelial neoplasia (n = 10) and control

samples (n = 9) [28]. Results for that dataset calculated with ACST

are shown in Table 4. ACST identified Cell cycle and Melanogenesis

pathways as the most affected pathways (with adj.p val~0.017,

0.138 respectively). The importance of Cell cycle pathway is well

supported by original research [28]. Immunostaining for a

proliferation marker Ki67 confirmed differences in Cell cycle

pathway, revealing considerably higher Ki67 expression in

neoplastic tissues as compared to control samples. Perturbation in

Cell cycle pathway confirms the authors’ hypothesis that vulvar

intraepithelial neoplasia, a premalignant disorder, already displays

several hallmarks of cancer. The consistent subgraph identified

within Cell cycle pathway contains many genes (TP53, CcnE1, CcnE2,

CcnA1, Myc) that are directly responsible for up-regulation of

proliferation. The second identified pathway, Melanogenesis, has not

been associated so far with VIN. However, MITF-one of the genes

being part of a consistent subgraph-has been shown recently to act

coordinately with transcription factor FoxO to regulate expression

of proapoptotic and cell cycle control genes by phosphatidylinositol

3-kinase/Akt/glycogen synthase kinase 3 signaling [48]. This result

might indicate a novel player in VIN progression.

Figure 3. Fragment of Colorectal cancer pathway presenting consistent subgraphs of deregulated pathways found for four
colorectal cancer datasets. The red color marks a higher expression in cancer samples, while the blue color represents a higher expression in a
control group. The color scale represents the magnitude of changes. The green arrows represent consistent relations.
doi:10.1371/journal.pone.0041541.g003

Table 2. ACST results on Renal Cell Cancer.

RCC1 RCC2

Name pv adj.pv Name pv adj.pv

Endocrine and other factor-reg
calcium

0.003 0.048 Aldosterone-reg sodium reab 0.001 0.019

Insulin signaling pathway 0.004 0.048 Endocrine and other factor-reg
calcium

0.011 0.148

Vasopressin-reg water reab 0.008 0.074 Vasopressin-reg water reab 0.023 0.236

The table presents results of ACST on RCC datasets. Only significantly altered pathways (adj.p-value,0.25) are presented. Signaling pathways indicated for both
datasets are written in bold. Endocrine and other factor-reg calcium stands for Endocrine and other factor-regulated calcium reabsorption, Aldosterone-reg sodium
reab stands for Aldosterone-regulated sodium reabsorption, and Vasopressin-reg water reab stands for Vasopressin-regulated water reabsorption.
doi:10.1371/journal.pone.0041541.t002
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Repeatability of Tested Methods and Comparison with
Other Methods

The five mentioned datasets were also analyzed with SPIA, BPA

and GSEA. The results of these analyses are presented in Additional

File S2. Although SPIA, BPA and ACST were designed to analyze

signaling pathways all those methods are based on different

assumptions. SPIA measures overrepresentation of differentially

expressed genes and propagation of expression changes, BPA uses

Bayesian network models while ACST is designed to capture genes

with consistent expression changes. On the other hand, GSEA,

which is designed for analysis of gene sets, does not take into account

relations among genes and measures enrichment of genes from a

tested gene set in the list of differentially expressed genes. Moreover,

SPIA and BPA use information not only about gene expression

interactions, but also about protein-protein interactions. The

different approaches cause that not all KEGG pathways could be

analyzed with those methods. BPA may be used to analyze 206 out

of 209 pathways included in KEGG database. SPIA analyzes 113

pathways. Since ACST is focused on gene expression interaction it

may analyze 47 KEGG pathways.

Importantly, only ACST identified Colorectal cancer pathway as

significantly perturbed in three colorectal cancer datasets. None of

the other methods indicated this pathway as significantly changed,

even when computations of adj.p-values were limited to pathways

analyzed with ACST. It is worth noticing that regardless of the

number of tested pathways, the pathways which seem to be

fundamental for colorectal carcinogenesis (in particular Wnt signaling

pathway, TLR signaling pathway or MAPK signaling pathway) were not

indicated by BPA, SPIA or GSEA. Most of the pathways indicated

by GSEA and BPA in colorectal cancer datasets as well as in RCC,

BC and VIN characterize cell metabolism (Metabolic pathways are

poorly reflected by gene expression interactions and have not been

analyzed with ACST). It is generally accepted that cancer cells

display dramatically altered metabolic circuitry [49] and it has been

shown that reprogramming of a few metabolic pathways indicated

by GSEA and BPA is associated with tumor progression. SPIA did

not identify any pathway common for all four colorectal cancer

datasets but three pathways, Extracellular matrix-receptor interaction,

Focal adhesion and Cell cycle, indicated for at least two colorectal

cancer datasets known to be relevant to colorectal cancer.

To assess repeatability of a given method, we compared an each

pair of the results with two factors (i) the number of signaling

pathways called significant for both datasets and (ii) Spearman’s

rank correlation coefficient between lists of nominal p-values. (i)

allowed us to compare agreement of the top of the lists, which is the

most important but depends on the cutoff, while with (ii) we

measured agreement of the whole rankings. We show values

computed for all possible signaling pathways (in brackets) as well as

only for the pathways used by ACST (the results are presented in

Additional file S3).

For colorectal cancer datasets the highest repeatability was

obtained with BPA analyzing all pathways from KEGG. ACST also

led to high Spearman’s correlations between colorectal cancer

datasets. Although Spearman correlation for CC1 with other datasets

is much lower (19 with CCms and 19 with CCade), two pathways

significantly perturbed in both sets were indicated. The low

correlation could be explained by the fact that in CC1 morpholog-

ically normal-appearing mucosa from patients with cancer were

compared with that of healthy controls. Our data suggest that the

mucosa of patients were actually not normal but were already

‘‘primed’’ for carcinogenesis although it is not cancer tissue.

Moreover, only tumors classified as microsatellite stable were

included in CC1, while CCms contains only tumors classified as

microsatellite unstable. It was shown that patients exhibiting high

microsatellite instability have different expression profiles and cancer

etiology [50,51]. ACST led to the highest correlation between RCC1

and RCC2 datasets (60) as well as between BC1 and BC2 (66). The

values of Spearman’s correlation obtained for SPIA and GSEA for

colorectal cancer datasets are generally low (regardless of the number

of pathways used) which indicates low repeatability of the results.

Comparison of the results obtained with ACST and the mentioned

methods showed that ACST may be a complementary method to the

existing ones, with several favoring features.

Conclusions
In this study we propose Analysis of Consistent Signal

Transduction (ACST), a novel method for detection of deregulat-

ed signaling pathways using microarray gene expression data.

ACST incorporates information about pathway topology, as well

Table 3. ACST results on Breast Cancer.

BC1 BC2

Name pv adj.pv Name pv adj.pv

TLR signaling pathway 0.001 0.009 Legionellosis 0.001 0.015

MAPK signaling pathway 0.001 0.009 Wnt signaling pathway 0.002 0.022

Epithelial cell signaling in
Helicobacter pylori infection

0.001 0.009 Focal adhesion 0.009 0.077

Focal adhesion 0.005 0.037 TLR signaling pathway 0.014 0.088

Wnt signaling pathway 0.012 0.075 Prion diseases 0.017 0.088

Legionellosis 0.036 0.196 Endometrial cancer 0.020 0.088

The table presents results of ACST on BreastCancer dataset. Only significantly altered pathways (adj.p-value,0.25) are presented. Signaling pathways indicated for both
datasets are written in bold.
doi:10.1371/journal.pone.0041541.t003

Table 4. ACST results on VIN.

VIN

Name pv adj.pv

Cell cycle 0.001 0.017

Melanogenesis 0.009 0.116

The table presents results of ACST on VIN dataset. Only significantly altered
pathways (adj.p-value,0.25) are presented.
doi:10.1371/journal.pone.0041541.t004
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as about the position of every gene in each pathway. Using nine

independent biological datasets, we have compared the perfor-

mance of ACST with three methods commonly used to analyze

signaling pathways in terms of biological significance (relevance of

the results), as well as repeatability of the results among similar, yet

independent, datasets. The obtained results led us to three

conclusions. First, we demonstrate usefulness of predefined

information of a pathway structure as well as genes functions in

an analyzis of signaling pathways. Second, although not only

ACST led to biologically meaningful results, we show that ACST

is characterized by the highest repeatability among similar, yet

independent, datasets. Third, we present that ACST is character-

ized by high specificity. In some cases it may result in loss of

sensitivity, however, when false positives could not be easily

excluded (e.g. verification of a novel function of a particular

protein when nothing is known about the expected outcome) such

characteristic is highly preferred.

Supporting Information

File S1 An R code used to perform ACST.

(R)

File S2 This document shows (i) list of analyzed pathways; (ii)

results obtained with SPIA, BPA and GSEA; (iii) lists of

eliminated.CEL files; (iv) correlations (with p{values) between

results obtained for different datasets.

(XLS)

File S3 Fragments of pathways containing all consistent

subgraphs of signifcantly deregulated pathways in both RCC

datasets as well as in both BC datasets. Additionally, this file

contains also table which contain a summary of results obtained

with each of tested methods.

(PDF)
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