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Abstract

The emergence of similar collective patterns from different self-propelled particle models of animal groups points to a
restricted set of ‘‘universal’’ classes for these patterns. While universality is interesting, it is often the fine details of animal
interactions that are of biological importance. Universality thus presents a challenge to inferring such interactions from
macroscopic group dynamics since these can be consistent with many underlying interaction models. We present a
Bayesian framework for learning animal interaction rules from fine scale recordings of animal movements in swarms. We
apply these techniques to the inverse problem of inferring interaction rules from simulation models, showing that
parameters can often be inferred from a small number of observations. Our methodology allows us to quantify our
confidence in parameter fitting. For example, we show that attraction and alignment terms can be reliably estimated when
animals are milling in a torus shape, while interaction radius cannot be reliably measured in such a situation. We assess the
importance of rate of data collection and show how to test different models, such as topological and metric neighbourhood
models. Taken together our results both inform the design of experiments on animal interactions and suggest how these
data should be best analysed.
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Introduction

Animal swarms produce complex patterns of behaviour that

give the appearance of group intelligence, enabling animal groups

to avoid danger, make collective decisions [1–4] and navigate

more efficiently [2,5,6]. Self-Propelled Particle (SPP) models

[7,8], inspired by statistical physics, have demonstrated that these

patterns can emerge through simple interactions between

neighbouring particles.

The study of SPP models has shown that complex and realistic

appearing patterns of collective motion can emerge from a wide

variety of interaction rules, with different rules often producing

similar patterns at the group level. Viscek et al. [9] classify three

basic classes of group movement. In the disordered class the

individuals move in a non-aligned fashion, moving randomly

around a group centre. In the second class, rotational groups,

individuals move around in a closed loop, orbiting a central point,

with localised alignment but no global group movement. In ordered

groups all individuals are aligned and the group moves coherently

in a single direction. This apparent ‘universality’ in the group

structures that emerge from different rules suggests that there are

strong restrictions on the possible stable groups that can form from

locally interacting moving individuals.

While classification of patterns can tell us a great deal about

which group behaviour can emerge it complicates the identifica-

tion of the specific interaction rules used by individuals. As noted

by Li et al. [10], the emergence of a desired pattern in a simulation

can not be taken as evidence of model correctness. Recent studies

have shown that coherent group behaviour can emerge in bacteria

[11] and even inorganic rods [12,13] through physical contact

alone. This suggests that animal interactions could be far simpler,

or potentially far more complex than previously imagined. The

emergence of similar group behaviour from differing rules means it

is difficult to identify animal interaction rules by observing only the

large scale group dynamics, since the measurable macroscopic

properties of these groups such as group size and alignment may

be matched using a variety of rules. As such, it is often only

detailed analysis of the small scale motions of animals that can

reveal the underlying interaction rules.

Identification of these rules, which may differ between

individuals, between groups and between species, is the key

question in many studies of behavioural ecology. Many of the

emergent behaviours of groups can be understood without a

detailed understanding of the underlying rules that generate them.

However, questions regarding the evolution of social behaviour

can be addressed by asking how interaction rules developed and

whether the same rules evolved across different species. This

necessarily requires methods to infer these rules, which analysis of

the large scale behaviours of different models often can not

provide.

Recent work has addressed not only which rules are necessary,

and at what strengths, to produce realistic behaviour, but also

what determines who interacts with whom. The debate has

focused on how the neighbourhood of each individual, the other

animals it interacts with, should be defined. Traditional SPP

models allowed each individual to interact with others within some
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fixed geometrical distance [7,8]. More recent work has considered a

topological definition [14,15], allowing each individual to interact

with a fixed number of closest neighbours, independent of the

absolute value of the geometrical distance between them. Other

research has looked at directed and hierarchical models of

leadership and following in groups [2,4,16]. A key problem then

in examining empirical data is determining the degree to which it

supports different interaction models.

As the technology for tracking animals in motion has improved,

through the use of video analysis [17,18], Radio Frequency

Identification (RFID) [19–21] and Global Positioning Satellite

(GPS) tracking [22–25], the possibility has emerged of identifying

interaction rules by observing the movements of individuals within

the collective. Recent studies have shown that the parameters of

animal swarm models can be matched to recorded data, either by

regression analysis to minimise the difference between observed

and predicted movements [26] or by more empirical analysis of

spatial correlations of position and direction within the group [27].

Where there is an explicit ‘loss-criterion’, such as the predictive

error, evaluating this criterion over a range of parameter values

can identify the best-fit parameter set. Likewise hypothesis testing

can be performed by determining which mimises this criterion.

An important aspect of model fitting is knowing the uncertainty

associated with inferred parameters. This is especially important

when considering data collected from animal groups. Experimen-

tal limitations mean data often consist of a small number of

observations, and high levels of biological variation mean that

these data are often noisy. Furthermore these observations are

typically taken from stable group structures where the configura-

tion of the neighbouring animals changes only slowly over time.

For example, fish often form stable rotating mills with a relatively

constant radius, making the interactions between individuals over

a wider range of distances impossible to examine. Under these

circumstances it is important to identify and acknowledge the

uncertainty in estimates of, for example, the interaction radius of

the fish. Animal interaction data is often collected as part of an

iterative process whereby new data becomes available with each

new experiment. If we are to make meaningful comparisons

between this series of experimental outcomes we must be able to

say how certain we were about our conclusions at each stage.

Model and parameter uncertainty are best understood through

a fully probabilistic method. Bayesian inference uses the

probability of the data, the likelihood, to provide a complete

probability distribution over the model parameters. This proba-

bility distribution can be iteratively updated as more data becomes

available, providing an easily interpretable measure of model fit

and uncertainty that can be consistently updated in the light of

new experimental evidence.

In this study we pursue two goals. Firstly to demonstrate a fully

Bayesian methodology for parameter estimation and hypothesis

testing in SPP models. Secondly to investigate how inference is

affected by the possible restraints technology places on data

collection. We will determine the effect of having very few recorded

data points, of including significant observation noise in the data

and of having temporal resolution which differs from the

characteristic timescale of the observed system. We will also show

how any issues these restrictions cause can be ameliorated through

adaption of the inference procedure.

Results

We generated simulated data from the two-dimensional SPP

model described below in ‘Methods and Materials’, with 25 particles

and with parameters chosen to allow the particles to converge to a

steady state solution of a rotating mill, a solution common to many

models of collective motion [8,9,28,29]. Figure 1 shows an example

of the system, with the particles in their initial random configuration

(Figure 1 A) and the steady state rotating mill solution (Figure 1 B).

An observation from our simulations which may be unrealistic for

natural groups is the co-existence of clockwise and anti-clockwise

moving particles within the rotating mill. This has previously been

observed in a similar model by Strömbom [29] and is a consistent

feature across our simulations within the range of parameters and

model variations investigated in this work.

Inference in random and steady-state configurations
We begin by establishing the ability of the inference procedure

to identify the correct values of parameter values in a known

model. We do this by observing convergence of the parameter

probability distribution to the known values used to simulate

Figure 1. Example of the simulated system, with random initial configuration A and the steady state rotating mill solution B. Motion
is in the direction of the red lines from each particle. Within the rotating mill there are typically particles moving both clockwise and anti-clockwise
simultaneously.
doi:10.1371/journal.pone.0022827.g001
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swarm data. We do this under two ‘experimental regimes’ – with

particles in an initially random configuration (Figure 1 A) and with

particles moving in a steady-state configuration of a rotating mill

(Figure 1 B). Using the data analysis methodology outlined in

‘Methods and Materials’ we perform inference using the first

recorded time-step of the data, then the second time-step,

continuing up to the tenth time-step of the simulation, using

equation (9) to iteratively update the probability distribution over

the parameters. We record the mean and standard deviation of the

probability distribution over each parameter to observe conver-

gence to the true value. We also record the information entropy of

the full joint distribution of all parameters to give a single value to

express the remaining uncertainty in the model parameters. We

repeat the same analysis for the final ten recorded time-steps, after

the system has converged to the steady-state solution (the rotating

mill).

Figure 2 A–F shows how the mean and standard deviation of

the probability distribution for each parameter and the entropy

changes with increasing data size for both the random and steady-

state configurations. As more time-steps are included in the

analysis all parameters converge rapidly towards their indicated

true values when using data taken from the start of the simulation

(black stars). Using data taken from the steady-state (blue circles)

markedly reduces the rate of convergence for all parameters. This

is consistent with the idea that the data now contain fewer different

configurations of the particles and are thus less informative. The

extreme example of this can be seen in the distribution of the

interaction radius (Figure 2 A). The black stars show the

interaction radius is well identified after just a couple of time-

steps from the random configuration. Conversely, the blue circles

show that using steady-state data the distribution of this parameter

is practically unchanged from the prior probability distribution

and shows no convergence towards the true value. This is

explainable as the result of all particles within the rotating mill

being within a single interaction radius. Whilst this does not mean

that all particles interact (due to the blind angle) it means the data

analysis is unable to ‘see’ the effect of particles being further

separated and therefore can not judge whether interactions cease

beyond some range. All that can be said is that the interaction

radius is above some value that would lead to particles within the

mill being disconnected.

The entropy of the joint parameter probability distribution

(Figure 2 F), calculated via equation (10), describes the total

uncertainty in the parameter estimate. This shows a roughly linear

decrease for both initial- and steady-states. This indicates that

within this small time region each new time-step adds approxi-

mately the same levels of information to the inference. As expected

from the individual distributions we see that the entropy in the

steady-state is consistently higher than the initial-state and

decreases more slowly, indicating slower convergence of the

inference.

The effect of noise
The noise parameter in the model represents unexplained

variation – variation that the model cannot account for. In real

systems this variation comes from two sources. One is observation

noise, due to the limits of the technology to accurately track real

animals. The other is the deviation of the animal’s true behaviour

from the model predictions. In our simulation data these two

effects are approximated by the addition of random angular noise

to the heading of each particle at each time-step.

Excessive noise from either of these two effects may make

inference difficult in real systems. To test the effect of increasing

noise we performed inference on simulated data with varying noise

levels. We used ten recorded time-steps from each simulation to

infer the probability distribution over the parameters and tracked

the mean and standard deviation of each parameter along with the

entropy of the distribution. Figure 3 shows that every model

parameter become more uncertain and more divergent from the

indicated true value as the noise level is increased. The quality of

inference is rather sensitive to the noise level, with some

parameters, notably the blind angle (Figure 3 D), rapidly

approaching the a priori distribution as the noise is increased.

Other parameters undergo a non-linear increase in uncertainty at

some critical value of the noise. For example, the attraction

parameter is inferred well for noise levels below approximately

p=4 but then rapidly deteriorates (Figure 3 C).

The clearest indication of how inference quality is determined

by the noise is given by the entropy of the parameter distribution

(Figure 3 E). The entropy of the distribution first increases linearly

with noise, showing that information is being rapidly lost. With

noise levels above approximately p=2 the entropy plateaus at a

value equal to the entropy of the a priori distribution – the first

guess at the parameters before any data are seen. Therefore we

can establish that in this system no useful inference is possible

when the angular noise – the variation in movement that can not

be modeled – exceeds p=2. This is consistent with intuition since

this degree of noise allows for a full range of angular direction

changes within a semi-circle ahead of the particle through random

chance alone.

Effect of data collection rate
In real systems data collection rates are determined by the

selected tracking technology. Modern tracking solutions offer very

high frequency data collection, often many data points per second,

that may greatly exceed the characteristic timescale over which

animals react to each other and change direction. Here we show

that it is important to consider the temporal resolution of the data

relative to the characteristic timescale by performing inference on

simulated data sets with differing data collection rates.

We simulate a data collection rate above the characteristic

timescale by providing for each particle in the simulation to update

at each time-step with some fixed probability, qv1, such that only

a subset of the particles update their direction on each time-step.

Those particles that do not update retain their previous direction,

but still with the addition of random noise. We then investigate the

consequences of not accounting for the rapid sampling rate by

inferring the parameters of the system assuming an update

probability of unity. We observe how the probability distribution

of each parameter and the entropy change as the update rate is

varied between zero and one. In Figure 4 A–E we plot the

variation in the mean and standard deviation of the probability

distributions with q based on ten observed time-steps of simulated

data in two cases. The first is when we make the assumption

during inference that q~1 (black stars). This shows the

consequences of failing to consider the possibility of a lower

update rate. The second case is when we allow the update rate to

be inferred simultaneously with the other parameters (red

triangles). For the case where the update rate is assumed to be

unity we see that every distribution converges towards the

indicated true value as q is increased towards one. The

distributions of different parameters show differing behaviour as

q is decreased. The parameters associated with the structure of the

neighbourhood – the interaction radius (Figure 4 A) and the blind

angle (Figure 4 E), show little consistent bias and simply become

rather more uncertain with lower q. This is consistent with there

being fewer updates for the model to learn the neighbourhood

from, which effectively represents less available data. On the other

Identifying Interaction Rules in Animal Groups
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hand, the alignment parameter (Figure 4 B) and attraction

parameter (Figure 4 C) show consistent and monotonically

increasing biases as q is varied. In the case of the attraction

parameter this bias is very well defined and almost linear, while the

alignment parameter is less consistent, likely due to its proximity to

zero. What this shows is that with fewer updates each particle

changes its direction less per time-step than would otherwise be the

case. If the inference procedure believes the update rate to be one

then it must compensate by making the respective forces weaker.

These adjustments necessarily make the model less accurate at

predicting the fine-scale motions, since it either updates too

strongly when no update should occur or too weakly when one

should. To account for this we infer a great deal more noise

(Figure 4 D) when q is less than one.

This bias, imposed by collecting data at a rate faster than the

characteristic timescale, is compensated by inferring the update

rate simultaneously. Adding this parameter to the model and

performing the inference again we find that we consistently infer

the correct value of a and c (Figure 4 B and C, red triangles). The

distribution of the interaction radius (Figure 4 A) and the blind

angle (Figure 4 E) remain unbiased and broadly unchanged, with

rather less uncertainty in the interaction radius and somewhat

more on the blind angle. The update rate itself is inferred with

very high accuracy (Figure 4 F). Since the model now fits the data

better we infer a lower amount of noise, much closer to the true

value (Figure 4 D). The entropy of the parameter distribution

(Figure 4 G) is consistently lower when q is inferred. The entropy

in both cases converge as q approaches unity.

Model selection
We examined two model selection scenarios. Firstly, since one

of the primary advantages of Bayesian inference is the automatic

 

 

 

Figure 2. Convergence of the parameter probability distribution toward the true values over ten recorded time-steps. Points
represent the mean of the probability distribution while error bars represent the standard deviation. Black stars show results using data recorded
from a random initial particle configuration. Blue circles show results using data taken from the steady-state rotating mill configuration. All results are
averaged over five independent trials.
doi:10.1371/journal.pone.0022827.g002
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selection of an appropriate model complexity (number of free

parameters) and the avoidance of overfitting (see Methods and

Materials: Data analysis), we examine whether our method can

identify when a potential force factor is absent. In this case we

simulate data using two subtly different SPP models, one including

an alignment force and one where alignment is absent. Both

models converge to the same large scale behaviour, the rotating

mill formation, and therefore cannot be trivially distinguished by

observations of the macroscopic motion. We calculate the Bayes

factor to determine how well each data set supports a model

including an alignment term as opposed to a no-alignment model,

using equation (11) and defining the alignment model as model i in

the numerator and the no-alignment model as model j in the

denominator. We perform this calculation with data recorded in

both the random initial configuration and the steady-state to

determine if the configuration of the swarm has an influence on

the power of the selection procedure. Figure 5 A shows that when

an alignment model is used to generate the data we see rapidly

increasing support in the Bayes factor for an alignment model in

both the initial (black stars) and steady-state (blue circles)

configurations. When data are simulated from a non-alignment

model we also see decreasing support for the inclusion of an

alignment force in both the initial state (red triangles) and the

steady-state (green points), though here the absolute value of the

Bayes factor is much lower. This is likely to be because a no-

alignment model can be accurately approximated by a model

allowing alignment simply by reducing the alignment parameter to

zero, so only a complexity penalty is left to discern between the

models.

Secondly, in line with current interest in the literature [14,15]

we aimed to determine whether a given data set was simulated

from a topological or a geometrical model. We simulate data from

two similar SPP models, this time differing in the definition of each

particles neighbourhood. In one model neighbours are selected

Figure 3. Divergence of the parameter probability distribution away from the true values with increasing simulation noise. Points
represent the mean of the probability distribution while error bars represent the standard deviation. Results are from data taken from a random initial
configuration and are averaged over five independent trials.
doi:10.1371/journal.pone.0022827.g003
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according to geometrical scheme and in the second a topological

scheme is used. As before we check the the rotating mill formation

is the steady-state for each model and evaluate the Bayes factor in

both the initial and steady-state configurations, using equation (11)

and defining the geometrical model as model i in the numerator

and the topological model as model j in the denominator. Again

we see strong support for the correct model in each case in Figure 5

B. In line with our earlier findings, for both the complexity

 

 

 

Figure 4. Variation of the parameter probability distribution with varying update rate in simulation, in the case where inference
assumes an fixed update rate of unity (black stars) and the case where the update rate is variable and inferred (red triangles). Points
represent the mean of the probability distribution while error bars represent the standard deviation. Results are from data taken from a random initial
configuration and are averaged over five independent trials.
doi:10.1371/journal.pone.0022827.g004
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selection and the neighbourhood scheme selection we see clearer

support for the correct model when using data from an initially

random configuration. In the neighbourhood scheme selection we

see a striking difference between this and the steady-state data,

which is due to a lack of variation in neighbour positions whilst in

the steady state. This is further confirmation that inference is best

served by collecting data from a wide variety of swarm

configurations.

Discussion

We have demonstrated a fully Bayesian approach to parameter

inference and model selection in models of collective animal

motion. The probability distribution over models and parameters

allows us to determine the conditions under which inference is

successful and the degree of accuracy in fitting. Parameters

relating to attraction and alignment can be measured with a high

degree of accuracy from a comparatively small quantity of data.

Eriksson et al. [26] used 3|106 observations to estimate the

parameters in their simulations. By comparison, here we could

reliably estimate the parameters from a total of 250 individual

observations. It is likely that Eriksson et al. could have made

reliable estimates from fewer data points, and one should be

careful in comparing analyses on different models, but this shows

that a realistic number of experimentally collected data points is

sufficient to make accurate parameter inference. The specific

number of observations required is less important than the ability

to estimate the parameter uncertainty, which means we can

determine when sufficient data have been collected. Our method

allows for more direct calculation of parameter uncertainty and

iterative inclusion of additional data than Eriksson et al. [26]. This

is particularly relevant in cases such as the three-dimensional

starling flock data set collected by the STARFLAG project

[14,30,31] where large numbers of individuals are tracked for only

a few frames. Given the correct model for starling behaviour we

would be able to accurately estimate the interaction parameters

from these limited observations. The trade-off of this added power

in the analysis is a greater computational load. In principle our

methods could be applied to large scale groups with thousands or

more members over long time periods. However, the high

processing demands of the full Bayesian analysis has limited us

to a small group in this instance. Bayesian methods become

extremely intensive for models with many free parameters. As the

quantity of data becomes very large we would expect our methods

and those of Eriksson et al. [26] to converge as the distribution over

the parameters becomes more peaked around the true value.

Where the parameter uncertainty is low the added computational

speed of other methods may in some cases be preferred.

The probability distribution over parameters also allows us to

identify when our parameter estimation is poor. In particular

systems that are too stable present a limited number of particle

configurations, which then lead to large uncertainties in model

parameters. For example we found that stable milling configura-

tions, which are a common feature of experimentally observed of

groups [8], prevented inference of the interaction radius. Since in

the random configuration we were able to estimate the interaction

radius and improve our estimates of other parameters our results

suggest that some degree of disorder can be useful for determining

behavioural rules since it provides the animals with a wider range

of situations to respond to. We note that it can be difficult in

practice to manufacture random initial starting conditions without

disturbing the animals’ natural behaviour. However, the iterative

nature of Bayesian updating (see equation (9)) allows a sequence of

data collected from different natural configurations to be

incorporated one-by-one to improve model estimates. For

example, fish placed in a sequence of tanks of varying shape

 

 

 

 

 

 

 
 

Figure 5. Two model selection scenarios. Panel A shows the log Bayes factor for a model including an alignment term versus a model without
such a term. Each curve shows the variation in the Bayes factor as the quantity of data is increased and represents a different simulated data set.
Positive values indicate support for an alignment model, while negative values indicate support for a no-alignment model. Black stars and blue circles
show results derived from simulations including an alignment term (+A) and represent the initial and steady-state configurations respectively. Red
triangles and green dots show the same calculations based on simulations where an alignment force was not included (2A). Panel B shows similar
results from a model selection between a geometrical and a topological model. Positive values indicate support for an geometrical model, while
negative values indicate support for a topological model. Black stars and blue circles show the Bayes factor calculated based on simulations where a
geometrical scheme was used (G) and represent the initial and steady-state configurations respectively. Red triangles and green dots show the same
calculations based on simulations where a topological scheme was used (T). In all four cases the correct model is increasingly supported as more data
are analysed. All results were averaged over five independent trials.
doi:10.1371/journal.pone.0022827.g005
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may exhibit different stable modes of collective movement, which

can then aid the estimation of interaction rules when these data

are combined.

Large quantities of random variation, either through observa-

tion noise or through overly simplified modeling eventually

prevent useful inference. We have shown that the effect of noise

in the system is generally non-linear. We found that while the loss

of information, as measured by the information entropy of the full

parameter distribution, was linearly dependent on the quantity of

noise, each parameter individually had a non-linear increase in

uncertainty beyond some value of the simulation noise. This

demonstrates the importance of finding the right balance between

the time and expense of data collection and the quality of the data.

Since the quantity of data was found to have a more linear effect

on inference uncertainty our results suggest it may often be better

to collect fewer, higher quality data than to record movements

inaccurately over longer times.

Our results demonstrate that a mismatch between the data

collection rate and the characteristic time scale over which animals

change direction leads to biased estimates of parameter values.

However, in our model the inferred values of parameters associated

with the interaction structure (who interacts with whom) were not

biased when data were collected faster than the characteristic time

scale. Parameters associated with the strength of forces such as

attraction and alignment were linearly biased as a function of the

data collection rate. Since the effect of these forces is multiplied by

the number of time steps within any unit of time this suggests that

the behaviour of the particles is still consistent with this inference.

We also find that explicitly including a variable rate of direction

change in the inference procedure can remove this bias and reduce

the inferred level of noise, making inference of each parameter more

robust. This comes at the cost of further extending the

computational cost for inference and is most applicable when the

direction changing rate is much lower than the data collection rate.

Of potentially even greater importance than parameter

estimation within models is determining which of a variety of

models best captures the animals’ behaviour. Recent data

collected from starling flocks has challenged the standard

geometric model of interactions, suggesting that a topological

model better accounts for the global structure of flocks. These

results are not, however, based on looking at the interactions

between the birds. Using the methods proposed here, even with

limited available data on individual interactions, we are able to

determine when the data favours one model over the other. This is

just one example of distinguishing between models which in terms

of their global pattern belong to the same universality class [9]. For

example, Strömbom [29] uses a similar model to ours, but without

an alignment term to produce a rotating mill. The Bayesian model

automatically eliminates unnecessary parameters and thus when

we analyse data simulated from this alignment-free model we can

infer the simpler attraction-only model.

The study of collective motion is entering an exciting phase

where global observation of animal groups is being complemented

by fine-scale individual tracking. The physicists’ ideal of

universality in group behaviour must be reconciled with the

biologists’ aim of identifying the differences between animal

species. By allowing inference of different particular interaction

structure within the same global group behaviour our method

presents a way out of this dichotomy.

Materials and Methods

The ‘data’ we analyse comes from simulations of swarms using

an SPP model adapted from Strömbom [29]. Particles experience

inertia, align with their neighbours’ direction of motion and are

attracted to the centre-of-mass of the neighbouring particles. The

neighbourhood is defined to include all particles within some

perceptual range, but limited by a blind angle that prevents each

particle from ‘seeing’ proximate particles within a region behind it.

The neighbourhood can also be defined through a topological

distance, which we explore later. At each timestep every particle

updates its current direction and position according to these rules,

the relative strengths of which are determined by a set of

adjustable parameters.

Equations of motion
We use the current positions X (:,t) and headings, V (:,t) of the

particles to determine which particles are in the neighbourhood,

H, of particle i. From this neighbourhood we calculate the

alignment vector, A(i,t) and centre of mass vector C(i,t), which

we normalise to unit length. In the default geometrical model

‘neighbours’ are those particles within some euclidean distance R.

In the topological model the ‘neighbours’ are the closest K

particles not excluded by the blind angle. Particles move in an

L|L sized space, and move over periodic boundary conditions.

A(i,t)~
1

N

X

j[H
V (j,t),

ÂA(i,t)~A(i,t)=jA(i,t)j,
ð1Þ

C(i,t)~
1

N

X

j[H
X (j,t){X (i,t),

ĈC(i,t)~C(i,t)=jC(i,t)j:
ð2Þ

We update the direction based on these forces, modulated by

parameters a and c respectively. The direction vector will

subsequently be normalised to unit length, therefore we can set

the inertial parameter to one without loss of generality.

V (i,tz1)~V (i,t)zaÂA(i,t)zcĈC(i,t), ð3Þ

Random noise, c is added to the new direction vector, to represent

the effect of observation inaccuracy and unexplained variation in

the movement. We use angular noise drawn from a wrapped

Gaussian distribution.

h(i,tz1)~arctan(Vy(i,tz1)=Vx(i,tz1))zc, ð4Þ

c*N (0,s2) ð5Þ

V̂V (i,tz1)~½sin (h(i,tz1)),cos (h(i,tz1))� ð6Þ

Finally the position of particle i, is updated according to its new

direction. The speed of all particles is constant and identical, v.

X (i,tz1)~X (i,t)zvV̂V (i,tz1): ð7Þ

Variable speed could be introduced as an additional element in the

model. Our experience suggests that variation in speed that is not
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directly correlated with direction changes does not change the

results of our analysis.

Data analysis
Inference of model parameters involves determining the probabil-

ity distribution of the parameter values based on observed data. The

first step is to define the likelihood function – the probability of a set of

observations conditioned on a known model, M and parameter set w.

Since the positions of the particles are completely determined by their

headings (speed being constant), we need only examine the

probability of the changes in direction. The system is Markovian

and the random noise is added to each particle independently.

Therefore the likelihood is a product of terms, multiplying over

particles and timesteps. Each term is a Gaussian probability

determined by the difference between the new heading, h(i,t) and

the expected heading, �hh(i,t,w) calculated from the known parameters,

w~fa,c,R,s,ablindg. If D is the data, representing all the recorded

direction changes of every particle within an experiment then,

p(DjM,w)~P
t
P
i
N (hi

t;
�hh(i,t,w),s2), ð8Þ

where the notation N is used to denote the wrapped Gaussian

probability density function, with variance s2. Since the system is

Markovian the probability of the observations depends only on the

value of the model parameters, w, and not directly on any previously

observed data.

Bayesian inference (see [32]) is based on iteratively updating the

probability distribution of the parameters, p(wjM,D) based on the

likelihood of the new observations, evaluated using Bayes’ rule. Let the

current data, D, be composed of previously recorded data, D1, and

new data D2, then,

p(wjM,D)~
p(D2jD1,M,w)p(wjD1,M)Ð
p(D2jD1,M,w)p(wjD1,M)dw

~
p(D2jM,w)p(wjD1,M)Ð
p(D2jM,w)p(wjD1,M)dw

ð9Þ

Where p(wjD1,M) represents the probability distribution over the

model parameters before observing the new data. Before any data is

observed this is typically set to be a uniform distribution over a broad

range of sensible parameter values. Bayes’ rule therefore allows us to

incorporate each new piece of evidence as it appears to refine our

estimates of w. We have used the Markov property to remove the

dependence of p(D2jD1,M,w) on the previous data, since the

probability of observations are only connected by the model

parameters.

The probability distribution of a single parameter can be

concisely summarised by the mean and standard deviation in cases

where the distribution is approximately symmetrical around the

mean. The uncertainty of the distribution, for either a single

parameter or for the joint distribution of many parameters, can also

be quantified by the Shannon information entropy, S [33]. Entropy

is a functional of the probability distribution. For a finite set of

sample parameter values, wi [W, S is calculated as,

S(p(wjM,D))~{
X

W

p(wijM,D) log2 p(wijM,D) ð10Þ

The entropy of a parameter distribution represents the expected

information gained by learning the true value of the parameters, or

equivalently the expected information lacking due to not knowing

these true values. The change in S each time new data is added to

the inference therefore measures how informative the new data is.

As the distribution converges to a single point estimate the entropy

tends to zero, expressing that no new information can be acquired.

Alternative models are readily compared by evaluation of the

Bayes factor, BFij – the relative probability of the all observed data

conditioned on the two different models, Mi and Mj . Model

parameters are marginalised by integration so that the models

themselves are directly compared. We can also calculate the Bayes

factor iteratively, utilising the Markov property to remove direct

dependences between data sets.

BFij~
p(DjMi)

p(DjMj)

~

Ð
p(Djw,Mi)p(qjMi)dwÐ
p(Djw,Mj)p(wjMj)dw

~

Ð
p(D2jw,Mi)p(D1jw,Mi)p(wjMi)dwÐ
p(D2jw,Mj)p(D1jw,Mj)p(wjMj)dw

ð11Þ

This allows us to compare classes of models, as opposed to

determining the correct model parameters. Hence, for example,

we can infer if the data support a geometrical or a topological

model, or whether certain model aspects such as alignment,

attraction or the blind angle should be included at all. The

integration over model parameters provides a quantitative

incorporation of the principle of Occam’s razor, automatically

penalising overly-complex models by decreasing the prior

probability mass for any particular set of parameter values since

the prior must sum to unity over the complete space (see Mackay

[34] for more details). The Bayes factor gives the relative

probability of models Mi and Mj if both models are equally

probable a priori. Therefore we can interpret the Bayes factor as

the extent to which the data support one model over the other.

Matlab source code implementing the methods described is

provided alongside this paper.
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