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Abstract: The selective inhibition of immunoproteasome is a valuable strategy to treat autoimmune,
inflammatory diseases, and hematologic malignancies. Recently, a new series of amide derivatives
as non-covalent inhibitors of the 31i subunit with K; values in the low/submicromolar ranges have
been identified. Here, we investigated the binding mechanism of the most potent and selective
inhibitor, N-benzyl-2-(2-oxopyridin-1(2H)-yl)propanamide (1), to elucidate the steps from the ligand
entrance into the binding pocket to the ligand-induced conformational changes. We carried out a
total of 400 ns of MD-binding analyses, followed by 200 ns of plain MD. The trajectories clustering
allowed identifying three representative poses evidencing new key interactions with Phe31 and
Lys33 together in a flipped orientation of a representative pose. Further, Binding Pose MetaDynamics
(BPMD) studies were performed to evaluate the binding stability, comparing 1 with four other
inhibitors of the B1i subunit: N-benzyl-2-(2-oxopyridin-1(2H)-yl)acetamide (2), N-cyclohexyl-3-
(2-oxopyridin-1(2H)-yl)propenamide (3), N-butyl-3-(2-oxopyridin-1(2H)-yl)propanamide (4), and
(5)-2-(2-oxopyridin-1(2H)-yl)-N 4-diphenylbutanamide (5). The obtained results in terms of free
binding energy were consistent with the experimental values of inhibition, confirming 1 as a lead
compound of this series. The adopted methods provided a full dynamic description of the binding
events, and the information obtained could be exploited for the rational design of new and more
active inhibitors.

Keywords: immunoproteasome; non-covalent inhibitors; molecular dynamics; MD binding; metady-
namics; induced-fit docking

1. Introduction

Protein turnover is essential for cellular function and homeostasis; in eukaryotic cells,
the ubiquitin-proteasome system (UPS) is the central non-lysosomal pathway devoted to
protein degradation. Whereas the lysosomal pathway mainly degrades membrane proteins
or extracellular proteins imported into the cell by endocytosis, UPS, present both in the
cytoplasm and nucleus, controls the degradation of damaged, incorrectly synthesized, or
no longer useful intracellular proteins. Proteins are firstly tagged with several ubiquitin
units; then, the polyubiquitinated proteins are rapidly hydrolyzed to small peptides by
the proteasome, whereas ubiquitin is released and recycled [1]. The 26S constitutive
proteasome consists of a barrel-shaped 20S catalytic core and two 19S regulatory caps. The
catalytic core is constituted of four packed rings, each composed of seven different subunits,
the two outer «, and the two inner {3, respectively. The proteolytic activities reside in the
Blc, B2c, and B5c subunits that are responsible for caspase-like (C-L), trypsin-like (T-L),
and chymotrypsin-like (ChT-L) activities, respectively.
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Immunoproteasome is a specialized form of proteasome present in the vertebrates,
constitutively expressed in lymphocytes and monocytes and induced by cytokines, such
as IFN-a and TNF-¢, in many other cell types. In immunoproteasomes, the constitutive
catalytic subunits ($1c, 32¢c, and B5c) are replaced by the corresponding immunosubunits:
1i, 32i, and 35i. While 32i and $5i maintain the same type of activities as the 32c and 35c
subunits, p1i mainly performs a ChT-L activity, thus cleaving peptides after hydrophobic
amino acids [2]. High levels of immunoproteasomes have been found in a wide number
of inflammatory diseases, such as Crohn’s disease or inflammatory bowel disease, and
autoimmune diseases like rheumatoid arthritis or systemic lupus erythematosus [3]. Fur-
thermore, immunoproteasomes are overexpressed in hematologic malignancies, including
multiple myeloma or acute myeloid leukemia [4]. Therefore, the discovery of selective
immunoproteasome inhibitors is pivotal to bring new chances for the treatment of the
above-mentioned diseases. Exhaustive reports on selective covalent and non-covalent
immunoproteasome inhibitors have been recently published [5,6]. The main class of cova-
lent immunoproteasome inhibitors is that of peptide derivatives bearing an electrophile
warhead able to interact with the nucleophilic hydroxyl group of catalytic Thrl. Just to
give some examples, ONX-0914, a tripeptide «’,3’-epoxyketone, was the first 35i-selective
inhibitor identified; another «’,B’-epoxyketone, UK-101, and the peptidyl aldehyde IPSI-
001 showed a selective activity on the 31i subunit [5,6]. However, the covalent irreversible
inhibition of a human enzyme is not always desirable in medicinal chemistry, as it can be
responsible for potential toxicity due to off-target binding. Another drawback is that a
single mutation in the catalytic amino acid (i.e., Thrl) could cause a loss of activity and
acquired resistance. [7]. Non-covalent inhibition is therefore strongly desirable, because it
is free of these disadvantages. Lacking a reactive warhead, non-covalent inhibitors may
have an improved selectivity and less reactivity and instability and, therefore, may not
exhibit the side effects that occur in covalent inhibitor therapies (e.g., liver toxicity and
idiosyncratic adverse reactions) [8,9]. Furthermore, the enzyme—inhibitor complexes have
reduced lifetimes, and this promotes an extensive tissue distribution of the drug [10]. To
date, few non-covalent immunoproteasome inhibitors show selectivity towards the 31i
and/or 5i subunits. One of them is Argyrin B, a natural cyclic peptide that is a reversible,
noncompetitive inhibitor of 35i and 1i [8]. Other compounds are N,C-capped dipep-
tides, such as PKS2279 and PKS2252, in which the insertion of a 3-amino acid markedly
reduces the inhibitory potency against constitutive proteasomes, yet maintain potent
inhibitory activity against immunoproteasomes [11]. Recently, some of us identified a
panel of selective non-covalent inhibitors of the 31i and/or $5i subunits, characterized
by a 2(1H)-pyridone scaffold linked to an amide function [12]. N-Benzyl-2-(2-oxopyridin-
1(2H)-yl)propanamide (1) proved to be the most potent and selective inhibitor, with a
Ki = 21 nM against the 31i subunit. Four other compounds of this series, N-benzyl-2-(2-
oxopyridin-1(2H)-yl)acetamide (2), N-cyclohexyl-3-(2-oxopyridin-1(2H)-yl)propanamide
(3), N-butyl-3-(2-oxopyridin-1(2H)-yl)propanamide (4), and (S)-2-(2-oxopyridin-1(2H)-
yl)-N,4-diphenylbutanamide (5), showed remarkable inhibitory activity towards the $1i
subunit (Figure 1). Derivatives 3-5 were also active against the 35i subunit, whereas none
of the compounds 1-5 proved to affect the constitutive catalytic subunits.
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Figure 1. Structures and K; values of the selective f1i inhibitors 1-5.

The available experimental structures of immunoproteasomes provided the basis for
several computational investigations. In the recent past, most of these studies made use of
molecular docking methods. In particular, the binding mode of the non-covalent amide
derivatives 1 and 2 was investigated at this level [12], while, to the best of our knowledge,
the most accurate computational investigations were performed just on the 31i subunit
(Figure 2A,B) and the peptide «/,f’-epoxyketone UK101 (Figure 2C) using molecular
dynamics (MD) simulations. The observed selectivity of UK101 for the 1i subunit is
rationalized by the requirement for both a linear hydrocarbon chain at the N-terminus and
a bulky group at the C-terminus of the inhibitor [13]. In recent years, the constant update of
hardware capabilities allowed the development of enhanced MD methods able to provide
a full dynamical description of the target-ligand-binding events [14]. These methods are
usually employed given that the sampling issue is fundamental to describing these slow
processes while docking methods continue to be pivotal to screening large libraries, also
assisted by MD [15,16].

In this manuscript, we investigated the binding mechanism of the previously identified
most active non-covalent amide 1 in the 31i subunit. For this purpose, we employed
advanced molecular dynamics methods, such as MD binding (MDB) [17] and Binding Pose
MetaDynamics (BPMD) [18]. In particular, we used the MDB tools implemented in the
BiKi suite [19] to analyze the binding mechanism and gain insights into the ligand entrance
pathway. Then, plain MD was performed to study the stability and conformational space
into the immunoproteasome-ligand complex, thus allowing elucidation of the compound
dynamic behaviors within the binding cavity. Successively, a cluster analysis provided
representative poses that were used to evaluate the binding stability using the BPMD
protocol. To have a comparative point of view, we also carried out induced-fit docking
(IFD) and BPMD studies of the other four compounds (2-5) that showed high inhibitory
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activities towards the 31i subunit. The results obtained could provide further information
to develop the most selective and active immunoproteasome inhibitors.

= H e} |
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Figure 2. (A) 3D structure of the immunoproteasome, the two (31i subunits in red, (B) 3D structure of
the B1i subunit, and (C) the structure of inhibitors UK-101 and ONX-0914.

2. Results
2.1. MD-Binding (MDB) Analysis

We began the study using the crystal structure of the murine immunoproteasome
in complex with the inhibitor ONX-0914 (Figure 2C) bound to the 35i subunit (PDB
ID: 3UNF) [20]. Murine and human immunoproteasomes share a sequence identity of
more than 90%, and the few nonidentical residues were external to the active sites. In
the literature, a crystal structure of human immunoproteasome was recently released in
complex with a boronic acid derivative [21], but the docking of compound 1 was previously
studied on the B1i subunit structure derived from the PDB ID:3UNF that do not bind any
ligand. For these reasons, we used it as a starting point to carry out our simulations. To
gain insights into the ligand-binding mode, we employed the MDB method to predict
the path of ligand entrance into the cavity. This method has the advantage of describing
complex events without incurring prohibitive time and computational costs. It is based
on an adaptive, electrostatics-inspired bias and a campaign of trivially parallel short MD
simulations to identify a near-native binding pose from the sampled configurations. At a
reasonable computational cost, this method also provides accurate predictions when the
starting protein conformation is different from that of the crystal complex, a known hurdle
for traditional molecular docking [22]. The advanced proposed MDB protocol would
require the identification of the binding pocket with NanoShaper software [23], which
can identify the atoms facing the lumen pocket entrance in the protein target. According
to NanoShaper software, the attractive protein residues selected were Thrl, Val20, Ser21,
Phe31, Lys33, Leu45, Ser46, Gly47, Ser48, Ala49, Ala52, Ser129, and Ser168 (Figure 3).
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Figure 3. Identification of the binding cavity of the 31i subunit (solid blue) by NanoShaper software
with the residues involved in the binding pocket.

Compound 1 is positioned with a random orientation at a predetermined distance,
measured in terms of the thickness of the solvation shell around the ligand. From the
set, we started 20 replicas of 20 ns for each entrance starting from the apo structure, thus
collecting a total of 400 ns of MDB simulations.

The analysis of the results showed that the simulations overcome the energetic barrier
in an average time of 2 ns, reaching the binding site. The unavailability of crystallographic
structures for non-covalent ligand 1 did not allow the comparison of the conformations,
employing the RMSD of the bound ligand. For these reasons, the RMSD of the protein
backbone was used as a reference for any uncommon behaviors. All replicas showed a
protein backbone RMSD average <2 A, decreasing when the ligand arrived at the binding
site (Supplementary Materials, Figures S1-57). In most replicas, the ligand entered into the
active site in the following 8 ns of the simulations, and in the last 10 ns, its refinement at
the binding site was registered (Figure 4).

After the first 20 ns, the electrostatic bias was removed, and the sampling time was
increased starting from the final frames of each MDB replica to enhance the sampling
conformational changes and interactions of the ligand inside the binding site. For each
replica, 10 ns more of the simulation was carried out, collecting a total of 600 ns of MD
simulations. The plain MD simulations performed after the bias switch-off provided
the local refinement of the binding mode. Once the binding simulation campaign was
completed, the replicas ending without the ligand into the binding site were pruned out,
and the remaining replicas were analyzed. The major part of the simulations showed a high
stability, with the ligand strictly bound to the binding pocket, and in a few simulations,
the ligand rapidly drifted away. Twelve replicas maintained a high stability at the binding
site, as shown by averaged value of RMSD 1.5 A of the complex (Supplementary Materials,
Figures S8-510). Then, the 12 replica trajectories were clustered. Each trajectory was
recorded in 1000 frames, and these frames were clustered considering the RMSD of the
binding site backbone (12,000 frames total). Each replica returned three representative
clusters for a total of 36 MD representative poses. These last ones were further clustered
and took into consideration the conformations of the ligand into the binding site and the
most occurred interactions. In the end, it was possible to identify three final representative
poses (pose 1, pose 2, and pose 3).
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Figure 4. Time sequence of compound 1 approaching the active site of the $1i subunit studied by
MD binding. The figure is representative of the 20 replicas.

The poses obtained from the clustering analysis were characterized by the important
features observed during the simulations. In particular, in pose 1, two H-bonds were
formed between the oxygen of the amide group and Ser21 and between the hydrogen of
the amide group and Gly47 (Supplementary Information, Figure S11A). The binding of
the ligand was strengthened by several van der Waals contacts between the benzyl group
and the residues Val20, Phe31, Lys33, Gly47, Ala49, and Ala52. Val20, Ser21, Ser46, Gly47,
Ala49, and Ala52 interacted with the linker between the two rings.

The identified pose 2 showed a series of noteworthy interactions that have not been
previously identified. The benzyl group of pose 2 interacted by a pi-stacking interaction with
Phe31. This pose was stabilized by several van der Waals contacts. The 2-pyridone moiety
showed a series of contacts different from pose 1 (Lys33, Leu45, Ser46, Gly47, Ser48, Ala49,
Ala52, Ser129, and Ser168). Ser21, Phe31, Ser46, and Gly47 interacted with the ethylene
linker. It is worthy to note the absence of H-bonds in this pose (Supplementary Information,
Figure S11B).

Pose 3 was characterized by the same H-bonds network observed in pose 1, with Ser21
and Gly47 residues. The 2-pyridone moiety formed one cation-pi-stacking interaction with
the epsilon amino group of Lys33 (Supplementary Information, Figure S12A). As observed
for the other poses, van der Waals contacts strengthened the ligand binding in pose 3.
The benzyl group interacted with Ser21, Ala22, Leu45, and Ser46. The 2-pyridone moiety
showed contacts with several residues: Phe31, Lys33, Gly47, Ser48, Ala49, and andAla52.
The linker showed interactions with Thr1, Ser46, Gly47, and Ser168.

The major differences observed for these poses concerned the orientations of pose 1
and pose 3 related to their interactions with the residues of the binding site. In particular,
besides the same H-bonds, a flipped orientation of the 2-pyridone and the benzyl moieties
was observed. This evidence could reveal that the entrance mode of the ligand occurred
in different ways without affecting the binding capability during the MD runs. The
folded conformation assumed by the ligand in pose 2 seemed to represent an intermediate
conformation. Concerning previous studies [12], two pi-stacking interactions and van der
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Waals contacts between the rings and the residues Thr1, Val20, Phe31, Lys33, Leu45, Ser46,
and Ala52 were identified (Figure 5).

B

Figure 5. 3D and 2D-binding modes of compound 1: pose 1 (A,B), pose 2 (C,D), and pose 3 (E,F) after
the MDB simulations and after IFD (G,H) into the 1i active site of murine immunoproteasome (PDB
ID: 3UNFE). In the 3D figures, the H-bonds are represented in yellow dashes, the cation-pi-stacking
interactions in green dashes, and the pi-pi stacking in blue dashes.
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2.2. Induced Fit Docking (IFD)

To add more information concerning the previous docking studies and compare the
results obtained by the MDB, we used the more accurate protocol induced-fit docking
(IFD) [24]. IFD predicts the ligand-binding modes and concomitant structural changes
in the receptor. It confers flexibility to the protein side chains, allowing the ligand to
adjust and optimize the binding interactions within the active site. IFD was carried out for
compound 1 and for the other four compounds 2-5 that showed encouraging inhibitory
activity on 1i. In the previous studies, classical docking was performed for compound 2,
while computational studies have not been performed yet for compounds 3-5.

The best IFD pose of 1 reported the same two interactions observed after the MD
simulation: the H-bonds between the residues Gly47 and Ser21 of the protein and NH
amide and the carbonyl group of the molecule (Figure 5G,H). Besides, other hydrogen
bonds were found. In particular, the carbonyl of 2-pyridone moiety formed an H-bond
network with Ala49 and Ala50. Concerning the other MDB poses, this was a peculiar
difference of the IFD pose that was not observed in the docking study. These residues,
together with Ser48, stabilized the ligand binding by van der Waals contacts, such as
observed in the previous docking study. Other van der Waals contacts were formed
between the benzyl group and Val20, Phe31, Lys33, Leu45, Gly47, and Ala52. Finally, the
ethylene linker between the rings interacted with Thrl, Val20, Ser21, Gly47, and Ala49. It is
interesting to note that the pi-stacking interactions observed in pose 2 between the benzyl
group and Phe31 and the cation-pi-stacking interaction in pose 3 between the 2-pyridone
and Lys33 were not evidenced in the IFD pose but only as van der Waals contacts (Figure 5).

The other four analogs of amide 1 were characterized by structural variations at the
N-substituent and the methylene/ethylene linker between the 2-pyridone scaffold and the
amide function. Compound 2 showed a methylene linker between the 2-pyridone scaffold
and the amide function, and the experimental activity was recorded with a Ki value of
2.23 uM on the p1i subunit. The best IFD pose for 2 showed three H-bonds: Ser21 with
the carbonyl of amide and Gly47 with the NH amide and the carbonyl of 2-pyridone. The
benzyl moiety of the molecule formed a cation-pi-stacking interaction with Lys33, as also
evidenced for 1 in pose 3 (Figure 6A,B).

The cyclohexyl derivative 3 (Ki = 2.92 uM) formed four H-bonds. The residue Thrl
made two H-bonds with the carbonyl of amide and the carbonyl of 2-pyridone. Gly47
formed two H-bonds with NH amide and carbonyl of 2-pyridone (Figure 6C,D). The
interactions of the best IFD pose of n-butyl derivative 4 (Ki = 3.09 uM) were characterized
by two H-bonds between the carbonyl and NH of the amide of the molecule with Ser21
and Gly47, respectively. The 2-pyridone moiety formed pi-pi stacking with the Phe31
(Figure 6E,F). The last compound, (5)-2-(2-oxopyridin-1(2H)-yl)-N 4-diphenylbutanamide
(5) (Ki = 5.9 uM), showed two H-bonds, one between Ser21 and carbonyl of amide and
the other between Ala49 and carbonyl of 2-pyridone (Figure 6G,H). Additionally, for these
molecules, the recurrent interactions were between the residues Ser21, Gly47, and the
amide group, but it underlined the pi-stacking interactions with Phe31 and Lys33, which
could constitute clear evidence of the key role of these residues in the inhibition pattern.
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Figure 6. 3D and 2D-binding modes of compound 2 (A,B), compound 3 (C,D), compound 4 (EF),
and compound 5 (G,H) into the 1i active site of murine immunoproteasome (PDB ID: 3UNF) after
the IFD study. In the 3D figures, the H-bonds are represented in yellow dashes, the cation-pi-stacking
interactions in green dashes, and the pi-pi stacking in blue dashes.



Molecules 2021, 26, 4046

10 of 19

2.3. Binding Pose MetaDynamics Analysis

Binding Pose MetaDynamics (BPMD) is an automated, enhanced sampling, metadynamics-
based protocol, in which the ligand is forced to move around its binding pose. The possible
higher mobility of the ligand under a biasing potential is a mark of the binding mode
instability. This method showed the ability to reliably discriminate between the ligand-
binding pose retrieved by MDB and a plausible alternative generated with IFD studies [22].

We decided to use BPMD to evaluate the affinity of the three representative poses
obtained from MDB and the pose of IFD into the binding site for compounds 1 and 2-5.
The results were defined in terms of the pose stability based on the PoseScore, which is the
RMSD of the ligand related to the starting coordinates of the heavy atoms of the ligand.
Moreover, to evaluate the results, another metric is used, such as the PersScore, which is a
clue of the H-bond formed between the ligand and the target during the simulations. The
linear combination of these two scores provides a third score, the CompScore, which is
calculated with Equation (1):

CompScore = PoseScore — 5 x PersScore 1

Lower values of the CompScore indicate more stable complexes.

During the metadynamics simulations, pose 1 reached a steady PoseScore = 1.397,
considered stable, while the PersScore showed that the hydrogen bonds identified at the
start of the metadynamics run were kept for 60% of the averaged time (Figure 7A). In
particular, the H-bond between the NH amide group of the ligand and Gly47 was kept
for 88% of the simulation time, while the H-bond between the carbonyl of the ligand and
Ser21 for 36% (Figure 7B). The CompScore value was -1.694. Due to the absence of H-bonds
recorded, pose 2 with recorded pi stacking and van der Waals interactions showed the
same value for the PoseScore and CompScore, 3.129 (Figure 7C), while, for pose 3, the
scores were PoseScore = 3.349, PersScore = 0.223, and CompScore = 2.235, respectively
(Figure 7E). As for pose 1, pose 3 kept the H-bond between NH amide and Gly47 as 26%
and 18% between carbonyl and Ser21 (Figure 7F).

The PoseScore for the pose of amide 1 obtained by the IFD was 4.576, and the PersS-
core showed that the hydrogen bonds identified at the start of the MetaDynamics run were
kept for 13% of the averaged time. The value of the CompScore was 3.917 (Figure 7G).
It is interesting to point out that, of the four H-bonds detected by IFD, the two interac-
tions between the amide group and Ser21 and Gly47 were maintained—in particular, the
interaction between NH amide and Gly47 for 43% and 9% between carbonyl and Ser21
(Figure 7H).

The RMSD values and the percentage of the H-bonds retrieved from BPMD studies
for the amide 1 in the three MDB poses and in the IFD pose showed that pose 1 could
be considered more stable. Pose 1, pose 3, and the IFD pose adopted the same plain
conformation and H-bonds between Ser21, Gly47, and the amide group. The differences
were in the additional interactions between Ala49, Ala50, and the carbonyl of 2-pyridone,
which led to a rotation of 2-pyridone, causing the ring to be specular in the IFD pose and
showed a high value of RMSD (4.02 A).

The BPMD analysis was also carried out for compounds 2-5 to evaluate their binding
stability with respect to the most active compound of the series, 1. The results of the BPMD
calculations are reported in Figure 8. As can be evidenced from the plots, all showed
PoseScore values higher than the averaged PoseScore for 1. The hydrogen bonds identified
at the start of the MetaDynamics run were maintained for 10-30% of the averaged time
(Figure 8B,D,FH) The CompScore values for compounds 2-5 were 4.750, 4.276, 5.979,
and 1.728, respectively. Moreover, MM-GBSA-binding free energy calculations for all the
complexes were performed. The plot of the calculated AG binding vs. the Ki values is
reported in Figure 9, and it shows an R? = 0.8071 (compound 1 AG = —52.912 Kcal/mol,
compound 2 AG = —41.684 Kcal/mol, compound 3 AG = —41.355 Kcal/mol, compound 4
AG = —36.701 Kcal/mol, and compound 5 AG = —35.340 Kcal /mol).
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Figure 7. Plots of the RMSD estimate averaged over all 10 trials vs. the simulation time for the
BindingPoseMetaDynamics runs: pose 1 (A), pose 2 (C), pose 3 (E), and IFD pose (G). Persistence
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Figure 8. Plots of the RMSD estimate averaged over all 10 trials vs. the simulation time for the
BindingPoseMetaDynamics runs: compound 2 (A), compound 3 (C), compound 4 (E), and compound
5 (G). Persistence Score plots of compounds 2 (B), compound 3 (D), compound 4 (F), and compound
5 (H). The blue dots represent the values of the CV RMSD at different times (2 ns, 4 ns, 6 ns, 8 ns,
and 10 ns) for each simulation trial. The blue lines represent the mean CV RMSD values along
the 10 x 10 ns of the simulation trials. The orange and blue bars represent the fraction of H-bonds
maintained during the simulation for each trial.
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Figure 9. The plot of the MM-GBSA AG binding vs. the Ki values of compounds 1-5. The binding
free energy is expressed in Kcal/mol, and the ICsq is expressed in puM.

3. Discussion

The inhibition of the human immunoproteasome is a hot topic of recent years in
medicinal chemistry due to its involvement in a wide range of diseases. Promising im-
munoproteasome inhibitors, both covalent and non-covalent, have been recently identified.
In covalent inhibitors, the presence of a reactive warhead may cause significant off-target
activities against other proteins, which may result in side effects (e.g., liver toxicity and
idiosyncratic adverse reactions) and reduced selectivity over time [8,9]. For these reasons,
the attention was focused on non-covalent immunoproteasome inhibitors. In this context,
a series of amide derivative 31i subunit inhibitors with K; values in the low micromolar
or submicromolar range have been recently identified [12]. The use of computational
approaches could characterize the binding process of these inhibitors—in particular, the
use of advanced molecular dynamics approaches able to explore the dynamic features
of the protein/ligand complex could overcome the limitations of semiflexible molecular
docking methods in which the protein target is treated as a rigid body. Several advanced
methods have been proposed in the last years for computing association and dissocia-
tion mechanisms, and all of them were shown to be promising in the interpretation of
such mechanisms. With the aim to gain more insights into non-covalent inhibitors of the
immunoproteasome, we decided to exploit these enhanced sampling methods.

Here, we investigated the dynamic binding mechanism of compound 1, the most active
of a series of non-covalent amide derivatives. With the aim of collecting mechanistic insight
on the binding process, we performed the MDB protocol implemented in BiKi software
to simulate the events that elapsed among the ligand unbound and the ligand entrance
in the binding pocket. Successively, plain MD simulations were performed to extend the
sampling of the bound states. The clustering of the survived complexes trajectories allowed
identifying three representative poses (pose 1, pose 2, and pose 3) observed during the
simulation. The most important interactions for the inhibition pattern were, in pose 1, two
H-bonds between the amide group and Ser21 and Gly47 and, in pose 2, the benzyl group
interacting by pi-pi stacking with Phe31. The residues Ser21 and Gly47 of pose 3 formed
H-bonds with carbonyl and NH amide, and at the same time, the 2-pyridone moiety made
a cation-pi-stacking interaction with the epsilon amino group of Lys33. Moreover, pose 1
showed a different orientation of the 2-pyridone moiety with respect to the docking and
IFD studies. The 2-pyridone moiety was stabilized in the binding pocket by van der Waals
contacts, as observed in MDB, while, in docking and IFD studies, it was stabilized by
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H-bonds with Ala49 and Ala50 beyond van der Waals contacts. In pose 3, the peculiarity
is represented by the 2-pyridone moiety interacting with the pi-stacking interaction with
Lys33, which determined a flipped orientation with respect to pose 1. Finally, in pose 2,
a different folded conformation with respect to pose 1 and pose 3 was observed, with a
new pi-stacking interaction between the benzyl group and Phe31. The flipped orientations
obtained for pose 1 and pose 3 suggested a different entrance mode of the ligand into the
active site. Through the BPMD studies, it was possible to observe that both poses were
stable, but, according to the RMSD value, the conformation of pose 1 showed major stability
compared to pose 3 in the active site. Beyond the van der Waals contacts observed, the
conformation of pose 1 could be strengthened by the pi-stacking interactions shown in pose
2 and pose 3 to improve the potency and selectivity of the 31i subunit. To pursue the matter,
we also carried out IFD calculations for the other four amide derivatives 2-5 that showed
an appreciable inhibitory activity on 31i. These studies revealed that Phe31 and Lys33
residues could play a key role in the inhibition pattern, in addition to the already known
Ser21 and Gly47 ones, showing the importance not only of the hydrogen bonds but also of
the pi-stacking interactions for the stabilization of the binding of the inhibitors. Moreover,
the BPMD analysis confirmed the higher binding stability of inhibitor 1 with respect to the
inhibitors 2-5, as evidenced by in vitro tests. Compound 1 showed the best CompScore
(—1.694) with respect to the other compounds. The consistency of the computational
analysis with the experimental data was further confirmed by the MM-GBSA-binding free
energy calculations. These outputs were plotted against the experimental Ki values, and
the R? = 0.8071 confirmed compound 1 as the best derivatives of this series.

4. Materials and Methods
4.1. System and Ligand Preparation

For the purposes of this study, we selected the catalytic subunit 31i (LMP2 and PSMB9)
extracted from the murine i20S in complex with the inhibitor ONX-0914 bound to the (35i
subunit (PDB ID: 3UNF) [20]. Both 20S subunits, murine and human, share a sequence
identity of more than 90%, and the few nonidentical residues are external to the active
sites. As reported in the literature, in the case of covalent cocrystallized inhibitors [25,26],
the reactive residue at the catalytic site was rebuilt after removing the covalent inhibitor
by breaking the covalent bond and filling in the open valence. In this case, the involved
residue was Thrl. The protein was prepared with the Protein Preparation Wizard [27]
included in the Maestro suite (Maestro, Schrodinger, LLC, 2021, New York, NY, USA):
adding bond orders and hydrogen atoms to the crystal structure using the OPLS2005
force field. Next, Prime [28] was used to fix missing residues or atoms in the protein and
to remove cocrystallized water molecules. The protonation states at pH 7.2 &= 0.2 of the
protein and the ligand were evaluated using Epik 3.1 [29]. The hydrogen bonds were
optimized through the reorientation of hydroxyl bonds, thiol groups, and amide groups.
In the end, the systems were minimized with the value of convergence of the RMSD of 0.3
A. The ligands were drawn using Marvin Sketch 19.25 [30]. Amide 1 was parameterized
using the BiKi suite [19] at the AM1-BCC [22] level of theory. Partial charges were derived
using the RESP method [23] in Antechamber [24]. Compounds 2-5 were prepared using
Schrodinger LigPrep v. 2021-1 (LigPrep, Schrodinger, LLC, 2021, New York, NY, USA).
The force field adopted was OPLS2005, and Epik was selected as the ionization tool at pH
7.0 £ 2.0. Tautomers generation was flagged, and the maximum number of conformers
generated was set at 32.

4.2. MD-Binding Simulations

The MD-binding method [17] within the BiKi suite [19] (BiKi Technologies s.r.1., Gen-
ova, Italy) exploits an additive external force that is summed as the regular potential
energy of the system to enhance the probability of observing the binding event. The bias
is represented by external electrostatic-like forces acting between a subset of the residues
of the binding site and the ligand. The intensity of the bias is controlled by the adaptivity
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rules and gradually switches off as the ligand moves torward the subset of residues; after
the conjectured passing of the transition state has occurred, it slowly recovers the behavior
of classical unbiased MD [31].

The protocol for MD-binding consists of crucial steps: characterization of the bind-
ing pocket using NanoShaper [23] (BiKi Technologies s.r.l.,, Genova, Italy). NanoShaper
calculations provide a characterization of the binding pocket, which identifies the atoms
facing the pocket entrance in the protein structure. This information was then used by
BiKi software for the initial ligand positioning outside the binding cavity. Subsequently,
an additive external force was made to enhance the sampling of the binding event. Once
the ligand was positioned through the “Residue Placement” tool in BiKi, the system was
solvated in an orthorhombic box using the TIP3P water model [32]. A suitable number
of counterions were added to neutralize the overall system. Then, the whole system un-
derwent energy minimization by using the Amber995SB-ildn force field [33]. According to
the standard protocol [17], four different consecutive equilibration steps were performed:
(1) 100 ps in the NVT ensemble at 100 K with both the protein backbone and ligand re-
strained (1000 kJ/mol nm?), (2) 100 ps in the NVT ensemble at 200 K with both the protein
backbone and the ligand restrained, (3) 100 ps in the NVT ensemble at 300 K with the
free protein and the ligand restrained, and (4) 1000 ps in the NPT ensemble at 300 K with
the free protein and the ligand restrained. Electrostatic interactions were treated with the
cutoff method for short-range interactions and with the particle mesh Ewald method for
long-range interactions (rlist = 1.1 nm, cutoff distance = 1.1 nm, vdW distance = 1.1 nm,
and PME order = 4). The constant temperature conditions were provided using the velocity
rescale thermostat [34], which is a modification of Berendsen’s coupling algorithm [35].
The coordinate output from the last simulation was then used as the input to produce the
biased molecular dynamics. Finally, 20 replica production runs, 20-ns-long in the NVT
ensemble at 300 K, were performed for each complex using C = 0.1 (the fraction of the felt
force, here 10%), a smoothing window size of 1000 samples, and a maximal K(t) of 0.001
(maximal steering constant).

4.3. Plain MD Simulations

The plain MD simulations were carried out using Desmond 6.5 [36] using the OPLS2005
force field [37] (Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY,
USA). The complexes were solvated in orthorhombic boxes using the TIP3P water model.
Ions were added to neutralize the charges. The systems were minimized and equilibrated at
a temperature of 303.15 K and a pressure of 1.013 bar. The system was simulated as an NPT
ensemble; a Nose-Hover thermostat and Martyna—Tobia-Klein barostat were used. The
integration time step was chosen to be 2 fs. To keep the hydrogen-heavy atom bonds rigid,
the SHAKE algorithm was used. A 9 A cutoff radius was set for the short-range Coulomb
interactions, and smooth particle mesh Ewald was used for the long-range interactions.
For each replica, we carried out 10-ns MD simulations for a total of 200 ns, with 1.2-ps
detection ranges for energy and 4.8 ps for the trajectory frames. The stability of the systems
was evaluated using the root mean square deviation (RMSD) of the aligned protein and
ligand coordinate set calculated against the initial frame. Visualization and analysis of the
MD trajectories were performed using the Desmond simulation analysis tools in Maestro.
The trajectories frames were clustered according to the hierarchical cluster linkage method.
The 1000 frames recorded in each simulation were clustered considering the binding site
conformations into 10 clusters based on the atomic RMSDs.

4.4. Binding Pose MetaDynamics (BPMD)

Binding pose MetaDynamics (BPMD) is an automated, enhanced sampling, metadynamics-
based protocol in which the ligand is forced to move around its binding pose. This method
showed the ability to reliably discriminate between the correct ligand binding pose and
plausible alternatives generated with docking or plain MD studies [18].
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According to the protocol, 10 independent metadynamics simulations of 10 ns were
performed using as a collective variable (CV) the measure of the root mean square deviation
(RMSD) of the ligand heavy atoms with respect to their starting positions. The alignment
before the RMSD calculations was done by selecting protein residues within 3 A of the
ligand. The Cas of these binding site residues were then aligned to those of the first frame
of the metadynamics trajectory before calculating the heavy atom RMSD to the ligand
conformation in the first frame. The hill height and width were set to 0.05 kcal/ mol (about
1/10 of the characteristic thermal energy of the system, kBT) and 0.02 A, respectively. Before
the actual metadynamics run, the system was solvated in a box of SPC water molecules [38],
followed by several minimizations and restrained MD steps that allow the system to slowly
reach the desired temperature of 300 K, as well as releasing any bad contacts and/or strain
from the initial starting structure. The final snapshot of the short unbiased MD simulation
of 0.5 ns was then used as the reference for the following metadynamics production phase.
After the simulation, the stability of the ligand during the course was represented by three
scores: PoseScore, PersistenceScore (PersScore), and CompositeScore (CompScore). The
PoseScore is indicative of the average RMSD from the starting pose. A steep increase of this
value is a symptom that the ligand is not in a well-defined energy minimum and, probably,
it might not have been accurately modeled. PersScore is a measure of the hydrogen bond
persistence calculated in the last 2 ns of the simulation that have the same number of
hydrogen bonds as the input structure, averaged over all the 10 repeated simulations. It
covers a range between 0 and 1, where 0 indicates that either the starting ligand pose
did not have any interactions with the target or that the interactions were lost during the
simulations, while 1 indicates that the interactions between the staring ligand pose and the
last 2 ns of the simulations were retained. CompositeScore is the linear combination of the
PoseScore and PersScore; lower values equate to more stable complexes. Each complex,
previously obtained, was run, Country) on a single node with a 1 GPU card NVIDIA
GeForce RTX2070.

4.5. Induced-Fit Docking

The induced-fit protocol (IFD)—developed by Schrodinger [24]—is a method for
modeling the conformational changes induced by ligand binding. This protocol models
induced-fit docking of one or more ligands using the following steps, as also reported
in references [39-42]. The protocol starts with an initial docking of each ligand using a
softened potential (van der Waals radii scaling). Then, a side-chain prediction within a
given distance of any ligand pose (5 A) is performed. Subsequently, a minimization of the
same set of residues and the ligand for each protein/ligand complex pose is performed.
After this stage, any receptor structure in each pose reflects an induced fit to the ligand
structure and conformation. Finally, the ligand is rigorously docked, using Glide XP (Glide,
Schrodinger, LLC, 2021, New York, NY, USA), into the induced-fit receptor structure.
IFD was performed using a standard protocol, and the OPLS2005 force field was chosen.
The receptor box was centered on the active site of 31i, according to the NanoShaper
calculations. During the initial docking procedure, the van der Waals scaling factor was
set at 0.5 for both the receptor and ligand. The Prime refinement step was set on the side
chains of residues within 5 A of the ligand. For each ligand docked, a maximum of 20
poses was retained to then be redocked in XP mode.

4.6. MM-GBSA-Binding Free Energy Calculations

Prime/MM-GBSA was used for the estimation of AG binding. The MM-GBSA ap-
proach employs molecular mechanics, the generalized Born model, and the solvent ac-
cessibility method to elicit free energies from structural information, circumventing the
computational complexity of free energy simulations, wherein the net free energy is treated
as a sum of a comprehensive set of individual energy components, each with a physical
basis [25]. In our study, the VSGB solvation model was chosen using the OPLS2005 force
field with a minimized sampling method [28].
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5. Conclusions

In this study, we investigated the mechanism of non-covalent inhibition of the potent
and selective immunoproteasome inhibitor 1. For this purpose, we employed advanced
molecular dynamics methods such as MD binding (MDB) and Binding Pose MetaDynamics
(BPMD) and advanced docking methods such as induced-fit docking (IFD). MD binding
allowed analyzing the binding mechanisms and gained insights into the ligand entrance
pathway. Then, plain MD was performed to study the stability and conformational space
in the immunoproteasome-ligand complex, thus allowing elucidation of the compound
dynamic behavior within the binding cavity. These results were compared with the IFD
poses of the other four inhibitors, revealing new key residues in the binding pattern, and
confirmed the different binding stability of 1 with respect to the other compounds, 2-5.
The collected information and outcome could be useful in ameliorating the activity of
compound 1 and providing a dynamical point of view for the definition of the pharma-
cophoric features that could be exploited through dynamic pharmacophore modeling
approaches, such as the Common Hits Approach (CHA) [43] or MYSHAPE [44], for the
scaffold-hopping of new non-covalent inhibitors through a virtual screening campaign.

Supplementary Materials: The following supplementary materials are available online, Figures S1-512.
Figure S1: MD-binding: Ligand RMSD calculated from the centroid of binding pocket and protein
backbone RMSD (20 ns) for Replica 1 (A,B) and Replica 2 (C,D). Figure S2. MD-binding: Ligand
RMSD calculated from the centroid of binding pocket and protein backbone RMSD (20 ns) for Replica
3 (A,B), Replica 4 (C,D), Replica 5 (EF). Figure S3. MD-binding: Ligand RMSD calculated from the
centroid of binding pocket and protein backbone RMSD (20 ns) for Replica 6 (A,B), Replica 7 (C,D),
Replica 8 (E,F). Figure S4. MD-binding: Ligand RMSD calculated from the centroid of binding pocket
and protein backbone RMSD (20 ns) for Replica 9 (A,B), Replica 10 (C,D), Replica 11 (E,F). Figure S5.
MD-binding: Ligand RMSD calculated from the centroid of binding pocket and protein backbone
RMSD (20 ns) for Replica 12 (A,B), Replica 13 (C,D), Replica 14 (EF). Figure S6. MD-binding: Ligand
RMSD calculated from the centroid of binding pocket and protein backbone RMSD (20 ns) for Replica
15 (A,B), Replica 16 (C,D), Replica 17 (E,F). Figure S7. MD-binding: Ligand RMSD calculated from the
centroid of binding pocket and protein backbone RMSD (20 ns) for Replica 18 (A,B), Replica 19 (C,D),
Replica 20 (E,F). Figure S8. Ligand and protein RMSD during MD-plain(10 ns). Replica 1 (A); Replica
2 (B); Replica 8 (C); Replical0 (D). Figure S9. Ligand and protein RMSD during MD-plain(10 ns).
Replica 11 (A); Replica 12 (B); Replica 13 (C); Replica 14 (D). Figure S10. Ligand and protein RMSD
during MD-plain(10 ns). Replica 15 (A); Replica 16 (B); Replica 17 (C); Replica 20 (D). Figure S11.
Ligand Interaction Diagram of posel (A) and pose2 (B). Purple arrows show H-bond interactions
and green line Pi-Pi stacking. Figure S12. Ligand Interaction Diagram of pose3 (A) and IFD pose (B).
Purple arrows show H-bond interactions and red line Pi-cation.
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