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Abstract: Disubstituted pyrenes at the non-K region by the same or different (hetero)aryl groups
have proven to be an increasingly interesting area of research for scientists over the last decade due to
their optical and photophysical properties. However, in this area, there is no systematization of the
structures and synthesis methods nor their limitations. In this review, all approaches to the synthesis
of these compounds, starting from the commercially available pyrene are described. Herein, the ways
of obtaining of disubstituted intermediates based on bromination and acylation reaction are presented.
This is crucial in the determination of the possibility of further functionalization by using coupling,
cycloaddition, condensation, etc. reactions. Moreover, the application of disubstituted pyrenes in
the synthesis of 1,3,6,8-tetrasubstituted was also reviewed. This review describes the directions of
research on chemistry of disubstituted pyrenes.

Keywords: pyrene chemistry; synthetic methods; substitution pattern; bromination; acylation;
coupling reactions; condensation; cycloaddition

1. Introduction

Despite the topic of pyrene derivatives having already been covered extensively by scientific
literature, it still proves to be a popular subject of new research [1–3]. Without a doubt, pyrene and its
derivatives exhibit intriguing properties. Multiple systematic studies have shown this already, yet still,
new areas of interest such as the non-K region (the positions 4-, 5-, 9-, and 10- of pyrene are described
as K-region due to carcinogenic effect of pyrene upon its oxidation) disubstituted by aryl or heteroaryl
groups at pyrenes (1,3-, 1,6-, and 1,8-) are being elucidated. Disubstituted pyrenes of this type are
interesting in themselves and can act as substrates in the synthesis of the other molecules that also exhibit
expected properties. The vast majority of disubstituted pyrenes can be applied in organic electronics
in materials such as organic light-emitting diodes (OLEDs) [4–9], organic field-effect transistors
(OFETs) [10,11], and solar cells [12] but also in the synthesis of nanographenes [13], metal cages [14,15],
and many others. A wide spectrum of methods for the synthesis of the reported compounds exists,
though a fundamental problem lies within the methods’ ordering. Nonetheless, in 2011, Klaus Müllen
and Teresa M. Figueira-Duarte presented a review article about pyrene-based materials for organic
electronics [1], in 2014, Anthony P. Davis et al. systematized the ways of synthesis of substituted
pyrenes by indirect methods [16], and in 2016, Xing Feng et al. described functionalization of pyrene in
detail, especially tetrasubstituted pyrenes at non-K and K-region, which are suitable as luminescent
materials [2]. However, the systematization of 1,3-, 1,6-, and 1,8-disubstituted pyrenes is still lacking.

Despite the hard work of the scientists mentioned above, an issue concerning the description of
substituted positions in recently published papers on pyrenes becomes apparent. Indeed, it could just
be a result of getting used to an idea replicated in literature. However, if a recognized misconception is
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accepted as truth, it ought to be eliminated and corrected. According to International Union of Pure
and Applied Chemistry (IUPAC) enumeration, what was also mentioned by Franz S. Ehrenhauser, [17]
it should be as presented in Figure 1 for pyrene in the frame.
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Figure 1. Various locant numeration for pyrene structure. 

In the presented review, the ways of synthesis of 1,3-, 1,6- and 1,8-disubstituted pyrenes starting 
from pyrene, followed by the intermediates such as dibromo, diacetyl, and boroorganic pyrenes 
suitable for further functionalization in pure form or as mixtures are described as reported in the 
literature. Moreover, the possibility of the application of disubstituted pyrenes in the synthesis of 
1,3,6,8-tetrasubstituted is also presented. 

2. Dibromopyrenes 

The most significant role in the synthesis of disubstituted pyrenes plays its dibromo derivatives, 
which are suitable for the further functionalization in various reactions such as substitution and 
coupling reactions (Suzuki-Miyaura, Stille, and Sonogashira). The electronic structure of pyrene 
causes a bromination reaction, and the derivatives containing bromine at positions 1-, 3-, 6-, 8- (non-
K region) can be preferably obtained. Only the application of appropriate reaction conditions allows 
us to obtain dibromopyrenes with the expected substitution pattern. 

2.1. 1,6- And 1,8-dibromopyrene 

The interest of the synthesis and obtaining of the 1,6- and 1,8-dibromopyrene (Scheme 1) in its 
pure form dates back to early 1970s of the previous century when J. Grimshaw and J. Trocha-
Grimshaw reported a procedure for synthesis that used slow addition of bromine solution in carbon 
tetrachloride into pyrene 1 solution in the same solvent, which resulted in the isomers that were 
separated by crystallization from toluene or mixture of benzene-hexane with 44% yield 1,6-isomer 2 
and 45% yield 1,8-isomer 3 [18]. 
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Scheme 1. Introduction of bromine into the pyrene structure at positions 1,6- and 1,8-. 

In the following years, various solvents, brominating agents, and reaction conditions were used. 
The vast majority of reported procedures was focused on obtaining the pure 1,6-isomer (Table 1). It 
can be noted that, in the case of carbon disulfide used as a solvent, the 1,8-isomer is obtained with 
the high yield ~85%. What is more, in other cases, almost the same reaction conditions resulted in the 
products with yields varying about 40%, which means the main problem is connected with the 
purification of the crude mixture after the reaction’s completion. 

Table 1. The reported bromination reactions of pyrene. 
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In the presented review, the ways of synthesis of 1,3-, 1,6- and 1,8-disubstituted pyrenes starting
from pyrene, followed by the intermediates such as dibromo, diacetyl, and boroorganic pyrenes
suitable for further functionalization in pure form or as mixtures are described as reported in the
literature. Moreover, the possibility of the application of disubstituted pyrenes in the synthesis of
1,3,6,8-tetrasubstituted is also presented.

2. Dibromopyrenes

The most significant role in the synthesis of disubstituted pyrenes plays its dibromo derivatives,
which are suitable for the further functionalization in various reactions such as substitution and
coupling reactions (Suzuki-Miyaura, Stille, and Sonogashira). The electronic structure of pyrene causes
a bromination reaction, and the derivatives containing bromine at positions 1-, 3-, 6-, 8- (non-K region)
can be preferably obtained. Only the application of appropriate reaction conditions allows us to obtain
dibromopyrenes with the expected substitution pattern.

2.1. 1,6- And 1,8-dibromopyrene

The interest of the synthesis and obtaining of the 1,6- and 1,8-dibromopyrene (Scheme 1) in its
pure form dates back to early 1970s of the previous century when J. Grimshaw and J. Trocha-Grimshaw
reported a procedure for synthesis that used slow addition of bromine solution in carbon tetrachloride
into pyrene 1 solution in the same solvent, which resulted in the isomers that were separated by
crystallization from toluene or mixture of benzene-hexane with 44% yield 1,6-isomer 2 and 45% yield
1,8-isomer 3 [18].

Molecules 2019, 24, x FOR PEER REVIEW 2 of 32 

 

is accepted as truth, it ought to be eliminated and corrected. According to International Union of Pure 
and Applied Chemistry (IUPAC) enumeration, what was also mentioned by Franz S. Ehrenhauser, 
[17] it should be as presented in Figure 1 for pyrene in the frame. 

1
2

3

4

5

6
7

8

9

10

10
1

2

3

4

5
6

7

8

9

9
10

1

2

3

4
5

6

7

8

3
4

5

6

7

8
9

10

1

2

 

Figure 1. Various locant numeration for pyrene structure. 

In the presented review, the ways of synthesis of 1,3-, 1,6- and 1,8-disubstituted pyrenes starting 
from pyrene, followed by the intermediates such as dibromo, diacetyl, and boroorganic pyrenes 
suitable for further functionalization in pure form or as mixtures are described as reported in the 
literature. Moreover, the possibility of the application of disubstituted pyrenes in the synthesis of 
1,3,6,8-tetrasubstituted is also presented. 

2. Dibromopyrenes 

The most significant role in the synthesis of disubstituted pyrenes plays its dibromo derivatives, 
which are suitable for the further functionalization in various reactions such as substitution and 
coupling reactions (Suzuki-Miyaura, Stille, and Sonogashira). The electronic structure of pyrene 
causes a bromination reaction, and the derivatives containing bromine at positions 1-, 3-, 6-, 8- (non-
K region) can be preferably obtained. Only the application of appropriate reaction conditions allows 
us to obtain dibromopyrenes with the expected substitution pattern. 

2.1. 1,6- And 1,8-dibromopyrene 

The interest of the synthesis and obtaining of the 1,6- and 1,8-dibromopyrene (Scheme 1) in its 
pure form dates back to early 1970s of the previous century when J. Grimshaw and J. Trocha-
Grimshaw reported a procedure for synthesis that used slow addition of bromine solution in carbon 
tetrachloride into pyrene 1 solution in the same solvent, which resulted in the isomers that were 
separated by crystallization from toluene or mixture of benzene-hexane with 44% yield 1,6-isomer 2 
and 45% yield 1,8-isomer 3 [18]. 

21

Br

Br

Br

Br

reagents 

conditions +

3  

Scheme 1. Introduction of bromine into the pyrene structure at positions 1,6- and 1,8-. 

In the following years, various solvents, brominating agents, and reaction conditions were used. 
The vast majority of reported procedures was focused on obtaining the pure 1,6-isomer (Table 1). It 
can be noted that, in the case of carbon disulfide used as a solvent, the 1,8-isomer is obtained with 
the high yield ~85%. What is more, in other cases, almost the same reaction conditions resulted in the 
products with yields varying about 40%, which means the main problem is connected with the 
purification of the crude mixture after the reaction’s completion. 

Table 1. The reported bromination reactions of pyrene. 

Scheme 1. Introduction of bromine into the pyrene structure at positions 1,6- and 1,8-.

In the following years, various solvents, brominating agents, and reaction conditions were used.
The vast majority of reported procedures was focused on obtaining the pure 1,6-isomer (Table 1). It can
be noted that, in the case of carbon disulfide used as a solvent, the 1,8-isomer is obtained with the high
yield ~85%. What is more, in other cases, almost the same reaction conditions resulted in the products
with yields varying about 40%, which means the main problem is connected with the purification of
the crude mixture after the reaction’s completion.
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Table 1. The reported bromination reactions of pyrene.

Entry Brominating Agent Solvent Reaction Conditions
Yield [%]

1,6- 1,8-

1[19] Br2 CH2Cl2 rt, 24 h 15 -
2[20] Br2 CH2Cl2 rt, 2 h 50 -
4[21] Br2 CH2Cl2 rt, 20 h 25 9

4[22,23] Br2 CHCl3 rt,17 h 33 -
5 [13] Br2 CHCl3 rt, 24 h 36 -
6[24] Br2 CHCl3 rt, 5 h 14 -
7[25] Br2 CHCl3 rt, 17 h 14 6
8[26] Br2 CCl4 110 ◦C, 12 h, darkness 63 -
9[27] Br2 CCl4 rt, 16 h 21 -

10[18] Br2 CCl4 rt, 17 h 44 45
11[28] Br2 CCl4 rt, 17 h 61 -
12[29] Br2 CCl4 rt, 24 h 28 13
13[30] Br2 CCl4 rt, 48 h 38 -
14[31] Br2 CCl4 rt, 54 h 25 50
15[6,9] Br2 CS2 rt, 17 h 15 85
16[32] DBMH CH2Cl2 rt, 1 h 97

17[33] BTMABr3 + ZnCl2
CH2Cl2,
MeOH rt, 16 h quant.

DBMH–1,3-dibromo-5,5-dimethylhydantoin
BTMABr3–benzyltrimethylammonium tribromide

The other approach to the synthesis of 1,6- and 1,8-dibromopyrene presented in the literature
is based on the synthesis in which the starting material 1-bromopyrene 4 is used (Scheme 2).
1-Bromopyrene can be successfully obtained with the high yield up to 96% by bromination of
pyrene by the mixture HBr/H2O2 [34].
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The reaction conditions for the method mentioned above of obtaining of 1,6- and 1,8-dibromopyrene
are discussed in the literature in two publications. The first used a mixture of KBr/NaClO in HCl
and MeOH solution, yielding in a mixture of products with 43% yield, whereas in the second case,
bromine in dichloromethane obtained the target pure dibromopyrenes, with yields about 35% for every
isomer (Table 2).

Table 2. Reported bromination reactions of 1-bromopyrene.

Entry Brominating Agent Solvent Reaction
Conditions

Yield [%]
1,6- 1,8-

1[35] KBr + NaClO HCl, MeOH rt, 24 h 43
2[36] Br2 CH2Cl2 rt, 6 h 35 36

2.2. 1,3-Dibromopyrene

As presented above, the synthesis of 1,6- and 1,8-dibromopyrenes is well described, whereas the
1,3-isomer is relatively unexplored. It is related to the difficulty of substitution of the pyrene structure
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due to the preference for electrophilic substitution at the 1,6- and 1,8- positions rather than the
1,3-positions of pyrene. The determined spectroscopy yield of that isomer that is present as a byproduct
of the bromination reaction equals 3% [36]. It causes that the substitution at positions 1 and 3 is
only possible by the multistep reactions with the number of intermediates that contain the protecting
groups at 7-position. 2-Pyrenecarboxylic acid 5 is suitable for that reaction and can be obtained in two
multistep ways—starting from 4,5,9,10-tetrahydropyrene [37] or pyrene [38].

In the first approach reported in 1972 by Yu. E. Gerasimenko, 2-pyrenecarboxylic acid 5 was used
in the bromination reaction, obtaining 1,3-dibromo-7-pyrenecarboxylic acid 6, which in further steps
turned into 1,3-dibromo-7-aminopyrene 8, followed by the Sandmeyer reaction, which resulted in
1,3-dibromopyrene 9 with a 9.3% yield (Scheme 3) [39]. The other synthesis possibility was described
by T. Nielsen et al., where 1,3-dibromopyrene was prepared from 1,3-dibromo-7-pyrenecarboxylic acid
6, previously obtained in alkaline hydrolysis of methyl 1,3-dibromopyrene-2-carboxylate. Intermediate
6 is used in the decarboxylation reaction with copper powder in boiling quinoline [40]. It should be
noticed that authors describing the usage of 230 g of 6, resulting in 120 mg of 9. It can be supposed that
10 mL of quinoline and 100 mg of copper powder would be suitable for 230 mg of 6. I also conducted
the reaction on the scale of 230 mg of 6 and 100 mg of Cu powder, but the target product was not
obtained. Nontrivial synthesis of 1,3-dibromopyrene and the insufficiently reported protocols of its
synthesis are also demonstrable by the lack of its application in the synthesis of 1,3-disubstituted
pyrenes; only the approach with acylation of pyrene allows us to obtain the 1,3-disubstituted pyrenes,
as described above.
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2.3. Suzuki-Miyaura Coupling

Dibromopyrenes (1,6- and 1,8-isomer) are most often used in Suzuki-Miyaura coupling reaction
in which they can react with (hetero)arylboronates or (hetero)arylboronic acids as well as after the
functionalization as a boroorganic compounds. The synthesis of boroorganic derivatives of pyrene was
described for 1,6-isomer (Schemes 4 and 5). 1,6-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)pyrene
10 can be obtained in the commonly used reaction between the bromo derivative with
bis(pinacolato)diboron in the presence of the catalyst [PdCl2(dppf)] and AcOK as a base, which results
in a product with 99% yield [41].
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Hikaru Suenaga et al. described the synthesis of 1,6-pyrenediyldiboronic acid that was obtained
in a two-step reaction starting from 1,6-dibromopyrene and followed by 1,6-bis(trimethylsilyl)pyrene
intermediate 11, which was suitable for obtaining the target acid 12 (Scheme 5). The authors
did not report the yield of the compound 12 because it was used directly in the synthesis of
pyrene-1,6-diyldiboronic acid dimethyl ester, which was obtained with a 61% yield [30].

2.3.1. Pyrene Derivative Acting as a Boroorganic Compound

The application of the boroorganic derivative of pyrene 10 was presented by Long Chen
and co-workers. Molecule 10 was applied in the reaction with methyl 2-iodobenzoate with the
catalytic system [Pd(PPh3)4]/K2CO3 in THF/H2O, which resulted in the derivative 13 with 49% yield
(Scheme 6) [10]. This compound was used further in the synthesis of the angularly fused bistetracene.
Compound 10 was also reacted with bromo derivatives of methyl benzo[b]thiophene-2-carboxylate or
methyl thiophene-2-carboxylate that yielded 14 (59%) and 15 (30%), which were used in the synthesis
of bisthienoacenes [42].
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Xinliang Feng et al. reported the synthesis of 1,6-di(pyridin-2-yl)pyrene based on the
Suzuki-Miyaura coupling reactions between 10 and 2-bromopyridine with catalytic system
[Pd(PPh3)4]/Na2CO3 in PhMe/MeOH/H2O, which obtained product 16 with 96% yield (Scheme 7) and
which was further used in synthesis of target cationic nitrogen-doped helical nanographenes [41].
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dibromopyrenes react with (hetero)arylboronic acids. The introduction of anthracen-9-yl motifs into 
a pyrene structure was presented by Jongwook Park et al., where [Pd(PPh3)4]/K2CO3 in PhMe/THF 
was used as a catalytic system (Scheme 9). It resulted in 1,6-di(anthracen-9-yl)pyrene 18 with a 66% 
yield, which was used in the preparation of organic emitter films [7]. 
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There is only one report where 1,6-pyrenediyldiboronic acid is used in the synthesis of the
pyrene derivative containing substituted heteroaryl groups. In that case, 1,6-bis(bipyridinyl)pyrene 17
was synthesized by using the system [PdCl2(PPh3)2]/CaCO3 in DMF with 4-bromo-2,2′-bipyridine,
which resulted in a product with 60% yield (Scheme 8) [43].
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2.3.2. Suzuki-Miyaura Coupling of Dibromopyrenes with (Hetero)Arylboronic Acids

Plenty of the reports are dedicated to the Suzuki-Miyaura coupling reactions where
dibromopyrenes react with (hetero)arylboronic acids. The introduction of anthracen-9-yl motifs
into a pyrene structure was presented by Jongwook Park et al., where [Pd(PPh3)4]/K2CO3 in PhMe/THF
was used as a catalytic system (Scheme 9). It resulted in 1,6-di(anthracen-9-yl)pyrene 18 with a 66%
yield, which was used in the preparation of organic emitter films [7].

Due to the wide interest in organic semiconductors based on the expanded polyaromatic structures
such as bistetracene and naphtho-tetracenone, molecule 13, which is suitable for their synthesis,
was also obtained by Michel Frigoli and co-workers using 2-methoxycarbonylphenylboronic acid
with catalytic system [Pd2(dba)3]/K3PO4 in PhMe with two kinds of phosphines—SPhos and XPhos
(Scheme 10). [44,45] The results of the reactions did not show any differences in the yield of the product
(88%) in reference to using phosphine. It should be noted that the presented method resulted in a
product with a higher yield of about 39% in comparison to the report of Long Chen et al. [10].
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Scheme 10. Synthesis route to compound 13 [44,45].

Among the other important disubstituted pyrene derivatives that are necessary for the synthesis of
nanographenes, 1,6-bis(2-formylphenyl)pyrene 19 plays an important role. The compound mentioned
above was obtained by two research teams (Scheme 11). Both of them used catalytic system
[Pd(PPh3)4]/K2CO3 but different solvents. Wenming Su et al. carried out the reaction in a mixture of
THF/H2O which led to obtaining a product with a higher yield (84%) [46] in comparison to Konstantin
Amsharov et al., who applied a mixture of PhMe/MeOH, obtaining a product with 61% yield [13].
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Investigation of the efficient organic light-emitting devices based on pyrene derivatives was also a
stimulus to the synthesis of 1,6-disubstituted pyrenes, which contain various aryl groups 20–28, such as
presented in Schemes 12–15 [4,8,47–50]. All reactions used [Pd(PPh3)4] as a catalyst and are divided
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in reference to applied bases Na2CO3, NaOH, and K2CO3, and solvents PhMe/EtOH, 1,4-dioxane,
and THF.
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2.3.3. Suzuki-Miyaura Coupling of Dibromopyrenes with (Hetero)Arylboronates

The synthesis of the next part of reported disubstituted pyrene derivatives was also conducted
using the Suzuki-Miyaura coupling reaction, but in this case, with (hetero)arylboronates. The aim of
the synthesis was similar—obtaining the most efficient materials for OLEDs or molecules that will
be used in further functionalization. Liheng Feng et al. presented two 1,6-disubstituted pyrenes
containing 4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenyl 29 and 9-benzyl-9H-carbazol-2-yl 30 groups and
described by them as pyrenes substituted at positions 2 and 7 (Scheme 16) [51]. The catalytic system
[Pd(PPh3)4]/K2CO3 in DMSO/H2O was used, which resulted in the products 29 and 30 with yields of
65% and 56%, respectively.
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In 2014 and 2015, Jonathan R. Nitschke and co-workers published two papers about the
pyrene-edged cages where 1,6-bis(4-aminophenyl)pyrene 31 or 1,6-bis(3-aminophenyl)pyrene 32
were used as a starting material [14,15] As the authors described, molecules 31 and 32 were obtained
in the presence of Pd(PPh3)4]/Na2CO3 in DMF/H2O with similar yields of about 75% (Scheme 17).

Among the described derivatives of 1,6-disubstituted pyrene, the group of molecules containing
4-cyanophenyl 33 [20,52], 2-methyl-1-naphthyl 34 [53], or expanded groups based on diindolocarbazole
35 [54] were obtained using [Pd(PPh3)4] with base K2CO3 or Na2CO3 in PhMe/H2O or 1,4-dioxane/H2O
solution, which resulted in target products with yields up to 60% (Schemes 18–20).
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In the case of synthesis of the compound containing phenylcoumarin 36, a small excess of
tetrabutylammonium bromide (TBAB) (5% mol) was used, which significantly increased the yield of
the reaction, and the product was obtained with a 76% yield (Scheme 21) [55].
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The previously mentioned research team of Konstantin Amsharov also reported the synthesis
of 1,6-bis(3-formylnaphthyl)pyrene, which, in contrast to disubstituted pyrene by 2-formylphenyl
groups, was obtained in the Suzuki-Miyaura coupling reaction with 3-formylnaphthalene-2-boronic
acid pinacol ester, which resulted in 37 with a higher yield of 76% (Scheme 22) [13].
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Scheme 22. Synthesis of 1,6-bis(3-formylnaphthyl)pyrene 37 [13].

In 2016, Jongwook Park and co-workers obtained 1,6-bis(3,5-diphenylbiphenyl-4-yl)pyrene 38 by
using the system [Pd(OAc)2]/Et4NOH in PhMe/THF what resulted in a product with low yield ≈ 7%
(Scheme 23) [24]. Two years later, the same team presented extensive research with molecule 38 and its
1,8- and 4,9- isomers, which were synthesized starting from the pure dibromopyrene isomers using the
catalytic system [Pd(OAc)2]/Et4NOH in PhMe with the addition of triphenylphosphine (PPh3). As a
result of the reaction, molecule 38 was obtained with a 16% higher yield (23%), whereas the 1,8-isomer
39 had a 67% yield [25].

Introduction of the 3-dodecylthiophen-2-yl units into pyrene at positions 1,6- and 1,8- was
described by Deqing Gao et al., where, as a starting material, pure dibromopyrenes were applied
and reacted with dodecylthiophene-2-boronic acid pinacol ester using [Pd(PPh3)4] with base Na2CO3

in PhMe/H2O solution, which resulted in products with comparable yields 65% and 63% for
1,6-bis(3-dodecylthiophen-2-yl)pyrene 40 and 1,8-bis(3-dodecylthiophen-2-yl)pyrene 41, respectively
(Scheme 24) [21].
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41 [21].

Based on similar reaction conditions, Yoshiteru Sakata introduced 3,5-di-tert-butylphenyl
substituents into 1,6- and 1,8- positions of pyrene using 5,5-dimethyl-2-(3,5-di-tert-butylphenyl)-1,3,2-
dioxaborinane, which resulted in molecules 42 and 43 with 82% and 70% yields, respectively
(Scheme 25) [56].
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2.3.4. Mono-Suzuki-Miyaura Coupling

The pioneer in applying the mono-Suzuki-Miyaura coupling reactions in the synthesis of
asymmetric 1,6-disubstituted pyrenes is Jongwook Park and co-workers, who presented in several
papers derivatives of pyrene that contain at 1-position anthracen-9-yl motif (mostly substituted at
10-position) and at 6-position various aryl/heteroaryl groups. The introduction of anthracen-9-yl group
into the pyrene structure was achieved by the Suzuki-Miyaura coupling of anthracene-9-boronic acid
with 1,6-dibromopyrene, where the boroorganic compound was used with 1.5 excess, which resulted in
44 with a 32% yield (Scheme 26). The further functionalization of the obtained compound was possible
by bromination reaction using N-bromosuccinimide (NBS), which resulted in 45 with a 96% yield.
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Obtained intermediate 45 was used in the next reactions of the introduction of aryls at the
6-position of pyrene and also at 10-position of the substituted anthracen-9-yl group, which was
conducted using Suzuki-Miyaura coupling with various boroorganic derivatives, i.e., boronic acids
or boronates (Schemes 27–29). The catalytic systems based on [Pd(OAc)2]/Et4NOH resulted in
molecules 46 and 48 with higher yields—i.e., 51% and 53%, respectively—in comparison to system
[Pd(OAc)2]/K2CO3 and [Pd(PPh3)4]/K2CO3 for molecules 47 (30%) and 49 (14%) [22,57–59].
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In the same year, Baoming Ji and co-workers published a paper with unsymmetrical
1,6-disubstituted pyrene derivatives where the starting monosubstituted pyrene was substituted
by 1,1’:3’,1”-terphenyl-5’-yl unit 52, which was obtained with 43% yield (Scheme 32) [61]. Molecule 52
was subjected in the next reaction with boronic acids pinacol ester, which allowed them to introduce
3-(2-phenyl)-9-phenylcarbazole 53 and 5′-phen-2-yl-1,1′:3′,1”-terphenyl 54 at 6-position groups with
45% and 48% yields, respectively (Scheme 33).
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2.4. Stille Coupling

In the area of disubstituted pyrene derivatives obtained using the Stille coupling reaction, there are
only three papers in which authors used tributylstannyl derivatives of heteroaryls. The other approach
to synthesis of previously mentioned 1,6-di(pyrid-2-yl)pyrene 16 was reported by Yu-Wu Zhong and
Yan-Qin He in the presence of [PdCl2(PPh3)2], LiCl in PhMe, which resulted in a product with a
significantly lower yield of 44% (Scheme 34). Synthesis using the Suzuki-Miyaura reaction obtained a
product with a 96% yield (Scheme 7) [62].
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K. R. Justin Thomas and co-workers reported two isomers of pyrene derivative (1,6- and 1,8-) that
are substituted by thienylphenothiazine groups and that were obtained starting from pure dibromo
isomers of pyrene using [PdCl2(PPh3)2] as a catalyst in DMF solution, which resulted in products 55
and 56 with high yields of 60% and 70%, respectively (Scheme 35) [63].
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1,8-Disubstituted pyrenes dedicated for materials that can be used as high-performance organic
field-effect transistors containing 5-octyl-2-thienyl 57 and 5-octyl-(2,2′-bithiophen)-5′-yl 58 substituents
were obtained with 73% and 40% yields, as described by Deqing Gao et al. (Scheme 36) [11].
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2.5. Sonogashira Coupling

Applying the Sonogashira coupling reaction in the synthesis of disubstituted pyrenes containing
directly substituted (hetero)aryl groups was described by Bo Song and co-workers [64]. The authors
presented the synthetic route leading to 1,6-diethynylpyrene 60, which was obtained in a two-step
reaction with a 44% yield. That compound was suitable for the Huisgen cycloaddition reaction,
which allowed for the synthesizing of pyrene substituted by triazolyl groups 61 (Scheme 37). It should
be mentioned that, in the literature, other examples of disubstituted pyrenes by triazolyl groups are
present, but the synthetic methodology is similar [65,66].
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2.6. Ullmann, Buchwald-Hartwig, Rosenmund-von Braun, and Substitution Reactions

Another important approach to the synthesis of disubstituted pyrenes is based on Ullmann C-N
coupling reaction, described by Yoon Soo Han and co-workers, where 1,6-di(9H-carbazol-9-yl)pyrene
62 was obtained at the presence of Cu/K2CO3 in PhNO2, which resulted in a product with 27% yield
(Scheme 38) [67].

Synthesis of disubstituted pyrenes in which substituents are connected by the C-N bond can also
be obtained by the Buchwald-Hartwig cross coupling reaction, which was reported by Qingbo Meng
et al. for 1,6-disubstituted by N3,N6-bis(di-4-anisylamino)-9H-carbazole groups 63. This was obtained
by using the catalytic system [Pd2(dba)3]/P(t-Bu)3/NaOt-Bu in PhMe with a 38% yield (Scheme 39) [12].
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The same coupling reaction was also applied for the previously described product of mono
Suzuki-Miyaura coupling reaction 50, which allowed the introduction of the diphenylamine moiety
into the structure at 6-position with a 58% yield 64 (Scheme 40) [60].
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1,6- And 1,8-disubstituted pyrenes by 2-butyl-2H-1,2,3,4-tetrazol-5-yl groups 66 and 68 were
synthesized starting from pure dibromo isomers in which, as the result of the Rosenmund-von Braun
reaction using CuCN in NMP, bromine atoms were exchanged on cyano groups 65 and 67. The obtained
intermediates were suitable for the cycloaddition reaction [3 + 2] using NaN3/NH4Cl in a DMF solution,
followed by the alkylation with butyl bromide. This resulted in molecules 66 and 68 with 45% and 48%
yields (Scheme 41) [68].Molecules 2019, 24, x FOR PEER REVIEW 21 of 32 
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Deqing Gao and co-workers reported a synthesis route based on the nucleophilic aromatic 
substitution SNAr, which used the lithiation of 1,6-dibromopyrene using n-BuLi in THF at −78 °C, 
which formed the carbanion. The obtained intermediate reacted with the large excess of 
octafluorotoluene, which resulted in 1,6-di[2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl]pyrene 69 
with a 35% yield (Scheme 42) [52]. 
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Scheme 42. Synthesis of 1,6-di[2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl]pyrene 69 based on  the 
SNAr process [52]. 

2.7. Reaction with a Mixture of 1,6- and 1,8-dibromo Isomers 

Depending on target molecules and separation possibility of isomers, there is also another 
approach to the synthesis of 1,6- and 1,8-disubstituted pyrenes, which was presented by three 
research teams. Krzysztof Idzik and co-workers described the spectrum of pyrene derivatives 
containing furyl and thienyl units substituted at various positions of pyrene. In the case of 1,6- and 
1,8- isomers, as a starting material, the mixture of 1,6- and 1,8-dibromopyrenes (authors described 
the isomers as 1,6- and 1,4-) was applied in the Stille-coupling reaction with 2-
(tributylstannyl)thiophene or 2-(tributylstannyl)furan. This resulted in mixtures of isomers that were 
isolated using column chromatography, yielding compounds 70 (80%) and 71 (10%) in the case of 
thienyl units and 72 (70%) and 73 (10%) containing furyl groups (Scheme 43) [69,70]. It should be 
noted that the yields of reaction strongly depend on the applied bromination method of pyrene, and 
the authors did not report the ratio of the starting material mixture. 

Scheme 41. Rosenmund-von Braun reaction followed by cycloaddition reaction [68].

Deqing Gao and co-workers reported a synthesis route based on the nucleophilic aromatic
substitution SNAr, which used the lithiation of 1,6-dibromopyrene using n-BuLi in THF at
−78 ◦C, which formed the carbanion. The obtained intermediate reacted with the large excess
of octafluorotoluene, which resulted in 1,6-di[2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl]pyrene 69
with a 35% yield (Scheme 42) [52].
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Scheme 42. Synthesis of 1,6-di[2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl]pyrene 69 based on the
SNAr process [52].

2.7. Reaction with a Mixture of 1,6- and 1,8-dibromo Isomers

Depending on target molecules and separation possibility of isomers, there is also another approach
to the synthesis of 1,6- and 1,8-disubstituted pyrenes, which was presented by three research teams.
Krzysztof Idzik and co-workers described the spectrum of pyrene derivatives containing furyl and
thienyl units substituted at various positions of pyrene. In the case of 1,6- and 1,8- isomers, as a starting
material, the mixture of 1,6- and 1,8-dibromopyrenes (authors described the isomers as 1,6- and 1,4-) was
applied in the Stille-coupling reaction with 2-(tributylstannyl)thiophene or 2-(tributylstannyl)furan.
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This resulted in mixtures of isomers that were isolated using column chromatography, yielding
compounds 70 (80%) and 71 (10%) in the case of thienyl units and 72 (70%) and 73 (10%) containing
furyl groups (Scheme 43) [69,70]. It should be noted that the yields of reaction strongly depend on
the applied bromination method of pyrene, and the authors did not report the ratio of the starting
material mixture.
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Scheme 45. Suzuki-Miyaura coupling reaction resulted in 80 and 81 [71]. 

They also reported another example where a mixture of the two dibromopyrenes reacted with 
2-bromophenylboronic acid at conditions, which resulted in a mixture of diindenopyrenes, but there 
was no possibility to separate the isomers. Therefore, a two-step variant was applied, obtaining pure 
isomers 82 and 83 with a total reaction efficiency of 64% (Scheme 46), which were reacted further in 
the direction of diindenopyrenes [71]. 

Scheme 43. Stille-coupling reaction with a mixture of 1,6- and 1,8-dibromopyrene [69,70].

Zhonghai Ni et al. used a mixture of 1,8-dibromopyrene (85%) and 1,6-dibromopyrene
(15%) in the Suzuki-Miyaura coupling reactions with phenylboronic acid (for 74 and 75) or
4-substituted-phenylboronic acids (for 76–79). Target compounds were isolated by crystallization
or column chromatography with yields in the range of 65–90%, expressed per the starting material
(Scheme 44) [6,9].
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Scheme 44. Suzuki-Miyaura coupling reaction with a mixture of dibromo isomers [6,9].

Lawrence T. Scott et al. also applied a mixture of 1,6- and 1,8-dibromopyrene (the ratio of the starting
material mixture is unknown) in the Suzuki-Miyaura coupling reaction with 2-methoxyphenylboronic
acid, and the obtained isomers 80 and 81 were separated by a simple treatment with acetone, resulting in
the products with 58% (80) and 32% (81) yields (Scheme 45) [71].
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They also reported another example where a mixture of the two dibromopyrenes reacted with
2-bromophenylboronic acid at conditions, which resulted in a mixture of diindenopyrenes, but there
was no possibility to separate the isomers. Therefore, a two-step variant was applied, obtaining pure
isomers 82 and 83 with a total reaction efficiency of 64% (Scheme 46), which were reacted further in the
direction of diindenopyrenes [71].Molecules 2019, 24, x FOR PEER REVIEW 23 of 32 
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isomer 84 and 1,3-diacetylpyrene 86. [73–75] Separation of the isomers can be achieved by 
crystallization or column chromatography (Table 3). Moreover, application of the ionic liquid (1-
methyl-3-ethylimidazolium chloride) in the acylation of pyrene was described by Martyn J. Earle et 
al., which resulted in a mixture of 1,6- and 1,8- isomer with total reaction efficiency of 55% [76]. 
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3. Acetylpyrenes

Apart from 1,6- and 1,8-dibromopyrenes, the significant role as a starting material in the synthesis
of 1,6-, 1,8-, and 1,3-disubstituted pyrenes by heteroaryl groups play acetylpyrenes due to the wide
possibility of functionalization of an acetyl group [72]. Their synthesis is based on the acylation of
pyrene using acetyl chloride (AcCl), what resulted in disubstituted and various isomers of acetylpyrenes
(Scheme 47).
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Reaction conditions reported in the literature are based on AcCl with AlCl3 as a catalyst
in carbon disulfide, which results in 1,8-diacetylpyrene 85 with the highest yields up to 46%,
followed by 1,6-isomer 84 and 1,3-diacetylpyrene 86. [73–75] Separation of the isomers can be
achieved by crystallization or column chromatography (Table 3). Moreover, application of the
ionic liquid (1-methyl-3-ethylimidazolium chloride) in the acylation of pyrene was described by
Martyn J. Earle et al., which resulted in a mixture of 1,6- and 1,8- isomer with total reaction efficiency
of 55% [76].

Table 3. Reported conditions of acylation reaction.

Entry Reaction Conditions
Yield [%]

1,6- 1,8- 1,3-

1[73] AcCl, AlCl3, CS2, rt, 3 h 9.6 37.5 9.4
2[74] AcCl, AlCl3, CS2, rt, 2 h 25.0 46.0 11.0
3[75] AcCl, AlCl3, CS2, rt, 2 h 14.8 40.2 12.3
4[76] AcCl, [emim]Cl–AlCl3, rt, 2 h 55.0 -

[emim]Cl–1-methyl-3-ethylimidazolium chloride
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Masahiro Minabe and co-workers reported the way of synthesis of diacetylpyrenes starting from
1-acetylpyrene 87, which resulted in isomers 84 (27%), 85 (38%), and 86 (35%) (Scheme 48) [36].Molecules 2019, 24, x FOR PEER REVIEW 24 of 32 
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Scheme 49. Friedländer condensation resulted in compounds 87 and 88 [77]. 

As the result of the Friedländer reaction between 1,3-, 1,6- and 1,8-diacetylpyrene 84–86 with 8-
amino-7-quinolinecarbaldehyde, Randolph P. Thummel et al. obtained bis(2′-
[1′,10′]phenanthrolinyl)pyrenes 89–91 with high yields up to 96% (Scheme 50) [74]. They were applied 
as ligands in the synthesis of dinuclear ruthenium complexes. 
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Condensation Reactions with Acetylpyrenes

Pure 1,6- and 1,8-diacetylpyrene (84 and 85) were used by Carlos Peinador and co-workers in the
Friedländer condensation reaction with 2-amino-5-cyano-6-ethoxy-4-phenylpyridine-3-carbaldehyde,
which resulted in 1,6- and 1,8-di(1,8-naphthyridyn-20-yl)pyrenes with yields of 60% for 87 and 67% for
88 (Scheme 49) [77].
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As the result of the Friedländer reaction between 1,3-, 1,6- and 1,8-diacetylpyrene 84–86 with 8-
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Scheme 49. Friedländer condensation resulted in compounds 87 and 88 [77].

As the result of the Friedländer reaction between 1,3-, 1,6- and 1,8-diacetylpyrene 84–86
with 8-amino-7-quinolinecarbaldehyde, Randolph P. Thummel et al. obtained bis(2′-[1′,10′]
phenanthrolinyl)pyrenes 89–91 with high yields up to 96% (Scheme 50) [74]. They were applied as
ligands in the synthesis of dinuclear ruthenium complexes.
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In 2016, Mahesh Hariharan et al. described the way of synthesis of bisthiazolylpyrenes starting 
from the pure isomers of acetylpyrenes 84–86, which were then reacted with copper(II) bromide 
resulted in bromoacetylpyrene derivatives 92, 94, and 96. Intermediates were used in the Hantzsch 
condensation reaction between thioacetamide and appropriate bis(bromoacetyl)pyrene, which 
obtained target molecules 93, 95, and 97 with 64%, 68%, and 55% yields, respectively (Scheme 51) 
[78]. It should be noted that, as the result of all presented condensations reactions, isomers with 
substitution pattern 1,8 were obtained with the highest yields. 

Scheme 50. Friedländer reaction resulting in pyrenes with phenanthrolinyl units [74].

In 2016, Mahesh Hariharan et al. described the way of synthesis of bisthiazolylpyrenes starting
from the pure isomers of acetylpyrenes 84–86, which were then reacted with copper(II) bromide
resulted in bromoacetylpyrene derivatives 92, 94, and 96. Intermediates were used in the Hantzsch
condensation reaction between thioacetamide and appropriate bis(bromoacetyl)pyrene, which obtained
target molecules 93, 95, and 97 with 64%, 68%, and 55% yields, respectively (Scheme 51) [78]. It should
be noted that, as the result of all presented condensations reactions, isomers with substitution pattern
1,8 were obtained with the highest yields.
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4. 1,3-Disubstituted Pyrene 

The most challenging of disubstituted pyrenes are the derivatives with the 1,3-substitution 
pattern, as presented earlier. Apart from their synthesis starting from 1,3-diacetylpyrene, which 
allows for the introduction of a limited group of substituents into the pyrene structure at positions 1 
and 3, another approach is presented in the literature. Takehiko Yamato et al. reported 1,3-
diphenylpyrene 101, which was obtained in a multistep procedure [79]. As the first step, the 
introduction of the protecting group was achieved by the alkylation of pyrene at the 2-position by 
tert-butyl chloride, resulting in molecule 98 with a 71% yield [79]. The intermediate 98 was 
brominated by benzyltrimethylammonium tribromide (BTMABr3), which led to the synthesis of 1,3-
dibromo-7-tert-butylpyrene 99 with a 76% yield (Scheme 52). 
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Compound 99 was used in the Suzuki-Miyaura coupling reaction with phenylboronic acid and 
molecule 100 containing phenyl groups at positions 1 and 3, and a protecting group at 7-position was 
obtained. Removing the protecting tert-butyl was conducted by using Nafion-H as a catalyst, which 
resulted in compound 101 with an 80% yield (Scheme 53) [80]. 
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4. 1,3-Disubstituted Pyrene

The most challenging of disubstituted pyrenes are the derivatives with the 1,3-substitution pattern,
as presented earlier. Apart from their synthesis starting from 1,3-diacetylpyrene, which allows for the
introduction of a limited group of substituents into the pyrene structure at positions 1 and 3, another
approach is presented in the literature. Takehiko Yamato et al. reported 1,3-diphenylpyrene 101,
which was obtained in a multistep procedure [79]. As the first step, the introduction of the protecting
group was achieved by the alkylation of pyrene at the 2-position by tert-butyl chloride, resulting in
molecule 98 with a 71% yield [79]. The intermediate 98 was brominated by benzyltrimethylammonium
tribromide (BTMABr3), which led to the synthesis of 1,3-dibromo-7-tert-butylpyrene 99 with a 76%
yield (Scheme 52).
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Compound 99 was used in the Suzuki-Miyaura coupling reaction with phenylboronic acid and
molecule 100 containing phenyl groups at positions 1 and 3, and a protecting group at 7-position
was obtained. Removing the protecting tert-butyl was conducted by using Nafion-H as a catalyst,
which resulted in compound 101 with an 80% yield (Scheme 53) [80].
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5. Synthesis of 1,3,6,8-tetrasubstituted Starting from Disubstituted Pyrenes

In many cases, disubstituted pyrenes by (hetero)aryl groups act as substrates in the subsequent
reactions: functionalization of already introduced substituents or the introduction of other groups
into the pyrene structure at unoccupied positions, especially at the non-K region, which is possible by
the introduction of bromine atoms. Brominating agent bromine solution in DMF or CHCl3 was used,
which resulted in products with yields above 95% (Schemes 54 and 55) [6,9,44].
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What is more, another approach to bromination of disubstituted pyrene was achieved using the
hexamethylenetetramine-bromine complex (HMTAB) (Scheme 56) [13] and benzyltrimethylammonium
tribromide (BTMABr3) (Scheme 57) [80].
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Unlike bromination using N-bromosuccinimide (NBS), the unoccupied positions of disubstituted
pyrene remained unchanged, which was reported for 1,6-di(anthracen-9-yl)pyrene 18 (Scheme 58) [7].
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6. Summary

The review of structures of 1,3-, 1,6-, and 1,8-disubstituted pyrenes by (hetero)aryl groups and
the methods for their synthesis revealed that the number of 1,6-isomer derivatives is the highest and
compounds are preferably obtained using the Suzuki-Miyaura coupling reaction. The main reason for
taking interesting in those compounds is connected with their optical and photophysical properties,
which make them potential materials for broadly defined organic electronics. The wide possibility
of obtaining of 1,6- and 1,8-dibromopyrene, unlike 1,3-dibromopyrene, showed that, in the case of
1,3-isomer, indirect methods must be applied. Moreover, acylation of pyrene allows 1,3-, 1,6-, and
1,8-isomers to be obtained, which can be successfully used in condensation reactions that result in
products with high yields. I believe that, as the results of the presented systematization and described



Molecules 2019, 24, 2551 28 of 32

diversity in the area of disubstituted pyrenes at the non-K region, the expected direction in pyrene
chemistry will be followed.
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