
ARTICLE OPEN ACCESS

Association of β-Amyloid Level, Clinical
Progression, and Longitudinal Cognitive
Change in Normal Older Individuals
Laura M. van der Kall, MSc, Thanh Truong, BH-BMed, Samantha C. Burnham, PhD, Vincent Doré, PhD,
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Abstract
Objective
To determine the effect of β-amyloid (Aβ) level on progression risk to mild cognitive im-
pairment (MCI) or dementia and longitudinal cognitive change in cognitively normal (CN)
older individuals.

Methods
All CN from the Australian Imaging Biomarkers and Lifestyle study with Aβ PET and ≥3 years
follow-up were included (n = 534; age 72 ± 6 years; 27% Aβ positive; follow-up 5.3 ± 1.7 years).
Aβ level was divided using the standardized 0–100 Centiloid scale: <15 CL negative, 15–25 CL
uncertain, 26–50 CL moderate, 51–100 CL high, >100 CL very high, noting >25 CL ap-
proximates a positive scan. Cox proportional hazards analysis and linear mixed effect models
were used to assess risk of progression and cognitive decline.

Results
Aβ levels in 63% were negative, 10% uncertain, 10% moderate, 14% high, and 3% very high.
Fifty-seven (11%) progressed to MCI or dementia. Compared to negative Aβ, the hazard ratio
for progression for moderate Aβ was 3.2 (95% confidence interval [CI] 1.3–7.6; p < 0.05), for
high was 7.0 (95% CI 3.7–13.3; p < 0.001), and for very high was 11.4 (95% CI 5.1–25.8; p <
0.001). Decline in cognitive composite score was minimal in the moderate group (−0.02 SD/
year, p = 0.05), while the high and very high declined substantially (high −0.08 SD/year, p <
0.001; very high −0.35 SD/year, p < 0.001).

Conclusion
The risk of MCI or dementia over 5 years in older CN is related to Aβ level on PET, 5% if
negative vs 25% if positive but ranging from 12% if 26–50 CL to 28% if 51–100 CL and 50% if
>100 CL. This information may be useful for dementia risk counseling and aid design of
preclinical AD trials.
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β-amyloid (Aβ) deposition begins decades prior to dementia
due to Alzheimer disease (AD) and is an important predictor
of mild cognitive impairment (MCI) or dementia in cogni-
tively normal (CN) individuals.1–3 Preventative treatments
should target this early stage of the disease4–10 and identifying
those at highest risk of decline would allow faster clinical trials.

In most current clinical practice and research settings, Aβ PET
scans are classified as positive or negative, but limited data
suggest that the risk of progression is related to the level of Aβ
in individuals with a positive scan.10,11

The Centiloid (CL) scale was developed to standardize Aβ
imaging measures12–15 and to aid the adoption of widely ap-
plicable thresholds for PET Aβ levels that correspond with
histopathologic classification16–18 and correlate with prognosis.
Zero CL corresponds to the mean scan measure of healthy
young adults without Aβ deposition and 100 CL corresponds
to the mean scan measure of patients with mild AD dementia.
Twenty-five CL corresponds approximately with the discrimi-
nation between a positive vs a negative scan by an expert visual
reader, and with most standardized uptake value ratio (SUVR)
thresholds.19

The objective of this study was to determine the effect of Aβ
level expressed in CL on the progression risk to MCI or de-
mentia in CN individuals. We further examined associations
between Aβ burden and longitudinal change in cognition.

Methods
Participants
A total of 534 CN individuals from the Australian Imaging,
Biomarkers and Lifestyle (AIBL) study with at least 3 years of
clinical follow-up after an Aβ PET scan were identified. They
underwent a screening visit consisting of a clinical and neu-
ropsychological assessment, APOE genotyping, and Aβ PET
and MRI scans.20 Participants were followed longitudinally at
approximately 18-month intervals. After each visit, a clinical
panel reviewed the neuropsychological information of the
participants blinded to all imaging findings and the partici-
pants were classified as CN or were diagnosed with MCI, AD,
or other dementia. Diagnosis was based on standard clinical
criteria forMCI21 and AD.22 Participants diagnosed withMCI
or any type of dementia during the follow-up period were
classified as progressors and participants not meeting any
criteria for MCI or dementia were classified as clinically stable.

Genotyping of APOE was determined by direct sequencing at
baseline. Participants with at least 1 APOE e4 allele were
classified as APOE e4 carriers.

Standard Protocol Approvals, Registrations,
and Patient Consents
Written informed consent was obtained from all participants.
Data from the AIBL study was used and a detailed description
of the AIBL methods can be found elsewhere.20 The AIBL
study was approved by the ethics committee of St Vincent’s
Health, Austin Health, Hollywood Private Hospital, and Edith
Cowan University.

Neuropsychological Evaluation
All participants received the AIBL neuropsychological test
battery as previously described in detail.20

To assess cognitive performance longitudinally, 3 measures
were used: Clinical Dementia Rating Sum of Boxes (CDR-
SoB), California Verbal Learning Test II long delay free recall
(CVLT-II LDFR), and a cognitive composite score called the
AIBL–Preclinical AD Cognitive Composite (PACC). The
AIBL-PACC is based on the ADCS-PACC derived by
Donohue et al.23 and has been shown to be sensitive for
deterioration in cognition in clinically normal older cohorts.
The AIBL-PACC consists of the Mini-Mental State Exami-
nation, Digit Symbol Substitution Test from the Wechsler
Adult Intelligence Scale, CVLT-II LDFR, and Logical Mem-
ory IIa subtest from the Wechsler Memory Scale. For each
individual, the Z scores of each of the 4 test scores were mean
averaged to give a PACC Z score.

Imaging Methods and Analysis
Aβ PET imaging was conducted using Aβ tracers: 11C–Pittsburgh
compound B (PiB), 18F-florbetapir, or 18F-flutemetamol. As de-
scribed previously, PET acquisitions were performed 40–70 mi-
nutes post-tracer injection (PI) for 11C-PiB, 50–70 minutes PI
for 18F-florbetapir, and 90–110 minutes PI for 18F-flutemetamol.
PET images were not corrected for partial volume correction. All
Aβ PET scans were quantified using CapAIBL24 and the Aβ level
was expressed in CLs as described by Klunk et al.12 and Bourgeat
et al.25 Aβ level was classified according to 5 categories: <15 CL
negative, 15–25 CL uncertain, 26–50 CL moderate, 51–100 CL
high, >100CL very high. The category limits were chosen prior to
data analysis based on publishedCL information. Notably, studies
reporting CL findings in younger controls aged under 45 years
give an average of 11 CL as the 2 SD upper limit above the
mean of 0 CL, while postmortem correlation studies indicate

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; AIBL = Australian Imaging,
Biomarkers and Lifestyle; CDR-SoB = Clinical Dementia Rating Sum of Boxes; CL = Centiloid; CN = cognitively normal;
CVLT-II LDFR = California Verbal Learning Test II long delay free recall; HA = hippocampal atrophy; HR = hazard ratio;
HV = hippocampal volume;MCI = mild cognitive impairment; PACC = Preclinical AD Cognitive Composite; PI = post-tracer
injection; PiB = Pittsburgh compound B; SUVR = standardized uptake value ratio.
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Consortium to Establish a Registry for Alzheimer’s Disease
(CERAD)–classified moderate neuritic plaque density may be
found at 15 CL but usually is associated with >25 CL.12–18

Consequently, we set <15CL as negative, 15–25 as uncertain, and
then, to reflect categories that may be useful to a clinician for
determining individual prognosis, divided the traditionally positive
scans into the 3 categories of moderate, high, and very high.

3T MRI 3D magnetization-prepared rapid gradient echo was
used to measure hippocampal volume (HV) corrected for
whole brain volume.26 Using the HV of the AIBL CN and AD
groups, the Youden Index was applied to determine optimal
HV cutoff value for hippocampal atrophy (HA), yielding HA
≤ 2.74 cm3 for sensitivity 85%, specificity 86%.

Statistical Analyses
Statistical analyses were performed using RStudio, version 3.5.3,
with statistical significance at p < 0.05. Differences between the
progressors and the clinically stable group were assessed with
independent t test for continuous data (age, years of education,
and length of follow-up), χ2 testing for categorical data (sex,
APOE e4 status, and HA), and Fisher exact test (Aβ categories).

Cox proportional hazards analysis was used to examine the
effect of the Aβ levels and other measures (age, sex, years of

education, APOE e4 status, low baseline memory perfor-
mance, and HA) on clinical progression to MCI or dementia.
The visit with the first PET scan was identified as the baseline
visit and the event was classified as the progression to MCI or
dementia. Survival was defined as the time between baseline
and the event, or withdrawal, or the last available follow-up
examination. We also analyzed the data truncated at the 4.5-
year follow-up due to concern about the relatively small
number of at risk Aβ-positive individuals beyond this point.

For this analysis, age and years of education were dichotomized
by using a cutoff value of 72 years for age and ≤13 years for
education (mean of this CN cohort). CVLT-II LDFRwas used
to classify CN participants as low memory performance at
baseline when the Z score was ≤−1.0 using the mean and SD of
the CN cohort with no correction for age but they did notmeet
criteria for MCI. Hazard ratios (HRs) were calculated to ex-
amine the effect of the factors on progression.

Linear mixed effects models were performed to examine the
association between Aβ level and the longitudinal change in
cognitive performance. Three models were created for the
following variables: AIBL-PACC, CVLT-II LDFR, CDR-SoB.
Time from baseline (years), Aβ level, and their interaction
were included as fixed effects. Participant identification

Table 1 Participant Characteristics

All (n = 534) Progressors (n = 57) Clinically stable (n = 477)

Age, y 72 ± 6 (56–90) 74 ± 6 (62–88) 72 ± 6 (56–90)a

Female 295 (55) 27 (47) 268 (56)

Education, y 13 ± 3 (6–22) 13 ± 3 (6–22) 13 ± 3 (6–22)

Tested for APOE «4 All (n = 504) Progressors (n = 55) Clinically stable (n = 449)

APOE «4 carrier 140 (28) 30 (55) 110 (24)b

Tested for memory impairment All (n = 533) Progressors (n = 57) Clinically stable (n = 476)

Memory impairmentd 81 (15) 22 (39) 59 (12)b

Tested for hippocampal atrophy All (n = 442) Progressors (n = 48) Clinically stable (n = 394)

Hippocampal atrophy 88 (20) 19 (40) 69 (18)b

β-amyloid level

Negative 337 (63) 17 (30) 320 (67)c

Uncertain 52 (10) 4 (7) 48 (11)

Moderate 51 (10) 6 (11) 45 (9)

High 76 (14) 21 (37) 55 (12)c

Very high 18 (3) 9 (16) 9 (2)c

Time to progression, y 3.6 ± 1.8 (1.4–7.6)

Length of follow-up, y 5.3 ± 1.7 (2.7–8.0) 5.0 ± 1.7 (2.8–8.0) 5.4 ± 1.7 (2.7–8.0)

Data are presented as mean ± SD (range) or n (% of column total).
Differences between progressors and cognitively stable participants were assessed using aindependent t test p < 0.05, bPearson χ2 test p < 0.01, cFisher exact
test p < 0.01.
d Defined by California Verbal Test II delayed free recall Z score as ≤ −1.0.
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number (intercept) and time from baseline (slope) were in-
cluded as random factors. Sex, age, years of education, and
APOE e4 status were included as covariates. Data from 5
review cycles, approximately equivalent to baseline and 18
months, 36 months, 54 months, and 72 months follow-up,
were included in each of the models.

Data Availability
Most baseline data are available on the AIBL subsection of the
adni.loni.usc.edu website. Limited follow-up data are available at
this site and access to all the data in this article can be requested
through an application to the AIBL management committee.

Results
Baseline Findings
Demographic characteristics of the 534 CN participants are
shown in tables 1 and 2. At baseline, the mean age was 72 ± 6
years, 55% were women, 28% were APOE e4 positive, and
27% were Aβ scan positive using a threshold of 25 CL. During
the follow-up period of 5.3 ± 1.7 years, 57 participants (11%)
progressed to MCI or dementia.

Age, APOE e4 status, baseline CVLT-II LDFR, and HA were
significantly different between the progressors and clinically
stable group (table 1). Aβ level (>50 CL) was more prevalent
in the progressor group while Aβ level (<15 CL) was more
prevalent in the stable group. HA was more prevalent in the
progressor group (table 1).

Table 2 shows that the groups with greater Aβ burden were
older and had a higher prevalence of APOE e4 and HA than
the Aβ-negative group.

Aβ and Clinical Progression
We assessed the effect of the individual factors on clinical
progression to MCI or dementia (table 3). By the 4.5-year
follow-up time point, 79 (15%) of the stable participants had
withdrawn. Their baseline demographics were no different
from the whole cohort. In particular, the proportion in each CL

Table 2 Characteristics of Participants Based on Centiloid Group

Negative (n = 337) Uncertain (n = 52) Moderate (n = 51) High (n = 76) Very high (n = 18)

Age, y 71 ± 6 72 ± 4 75 ± 6a,b 74 ± 6a,b 76 ± 6a,b

Female 191 (57) 25 (48) 26 (51) 44 (58) 9 (50)

Education, y 13 ± 3 12 ± 3 12 ± 3 13 ± 3 13 ± 3

Tested for memory Negative (n = 336) Uncertain (n = 52) Moderate (n = 51) High (n = 76) Very high (n = 18)

Memory impairmentf 43 (13) 9 (17) 13 (25)c 12 (16) 4 (22)

AIBL-PACC 0.21 ± 0.83 0.28 ± 0.78 0.04 ± 1.02 −0.15 ± 0.92a 0.27 ± 1.07

Tested for APOE «4 Negative (n = 315) Uncertain (n = 48) Moderate (n = 50) High (n = 74) Very high (n = 17)

APOE «4 carrier 60 (19) 10 (21) 23 (46)c,d 35 (47)c,d 12 (71)d,e

Tested hippocampal volume Negative (n = 277) Uncertain (n = 42) Moderate (n = 43) High (n = 65) Very high (n = 15)

Hippocampal atrophy 43 (16) 10 (24) 11 (26) 18 (28)c 6 (40)e

Abbreviations: AIBL-PACC = Preclinical AD Cognitive Composite.
Data are presented as mean ± SD or n (% of column total).
Statistical differences (p < 0.05) between Centiloid groups were assessed using aindependent t test compared to negative, bindependent t test compared to
uncertain, cPearson χ2 test compared to negative, dPearson χ2 test compared to uncertain, eFisher exact test compared to negative. No other comparisons
were significant.
f Defined by California Verbal Test II delayed free recall Z score as ≤−1.0.

Table 3 Univariate Cox Regression Hazard Ratio (95%
Confidence Interval)

All MCI or AD

4.5 y Full Data Set

Age 1.2 (0.6–2.2) 1.8 (1.1–3.1)b

Male 1.6 (0.9–3.0) 1.4 (0.8–2.3)

Lower education 1.1 (0.6–2.0) 0.9 (0.5–1.5)

CVLT-II LDFR 1.8 (0.8–3.7) 4.0 (2.4–6.8)a

APOE «4 3.3 (1.7–6.2)a 3.3 (1.9–5.6)a

Hippocampal atrophy 3.1 (1.6–6.1)a 1.8 (1.0–3.1)b

Aβ level

Uncertain 1.3 (0.4–4.3) 1.6 (0.5–4.7)

Moderate 0.9 (0.2–4.0) 3.2 (1.3–7.6)b

High 5.2 (2.5–10.5)a 7.0 (3.7–13.3)a

Very high 8.1 (3.1–20.8)a 11.4 (5.1–25.8)a

Abbreviations: MCI or AD CVLT-II LDFR Aβ
Data are hazard ratio (95% confidence interval) from univariate Cox re-
gression fitted to each column where a is p < 0.001, b is p < 0.05, age is >72
years, lower education is <13 years, CVLT is <−1.0 SD, and hippocampal
atrophy is ≤2.74 cm3.
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category was no different (64% negative, 8% uncertain, 10%
moderate, 18% high, 0% very high). Beyond the 4.5-year
time point, the number at risk in the Aβ-positive groups
declined substantially (figure 1). Consequently, progression
was assessed at 4.5 years as well as for the full data set. At 4.5
years, carriage of APOE e4, HA, and positive Aβ scan were
associated with significant increase in risk of clinical pro-
gression (table 3). Greatest risk was seen with high and very
high Aβ levels (HR 5.2 and 8.1, respectively). An uncertain
or moderate Aβ PET result did not affect the risk of clinical
progression by 4.5 years (HR 1.3 and 0.9, respectively). With
the full data set, age greater than 72 years, low baseline
memory performance on the CVLT-II LDFR, and moderate
Aβ level (26–50 CL) emerged as significant risks. The risk
from APOE e4 carriage was unchanged, the risk from HA
declined, and the risk from high and very high Aβ level
increased (table 3). Figure 1 illustrates that progression to
MCI or dementia in the moderate Aβ level group occurred
predominantly after 4.5 years of follow-up.

Aβ and Cognitive Change
With sex, age, years of education, and APOE e4 status as
covariates, compared to the negative CL group, the moderate,
high, and very high groups showed decline in longitudinal
cognitive performance on the AIBL-PACC (moderate −0.02
SD/year, p = 0.05; high −0.08 SD/year, p < 0.001; and very

high −0.35 SD/year, p < 0.001) (figure 2). The same was
observed for performance on the CVLT-II LDFR (moderate
−0.02 SD/year, p = 0.03; high −0.1 SD/year, p < 0.05; and
very high −0.24, p < 0.05). On the CDR-SoB, only the high
and very high groups performed worse compared to the
negative group (high −0.17/y and very high −0.38/y). Prac-
tice effects were observed for the negative group on the AIBL-
PACC and CVLT-II LDFR (+0.18 SD/year and +0.04 SD/
year, respectively). No other significant differences were ob-
served between the groups.

Discussion
In this study, we showed that the level of Aβ deposition in the
brain could identify CN people at risk for cognitive decline and
clinical progression toMCI or dementia and better stratify that
risk than binary classification of an Aβ PET scan as just positive
or negative. The greatest cognitive decline and rate of clinical
disease progression was seen in the participants with an Aβ
level higher than 50 CL. Participants with a moderately positive
scan of 26–50 CL showed little clinical progression until after
4.5 years of follow-up. We found that the prevalence of MCI or
dementia with an average follow-up of 5.3 years was 5% if <15
CL, 7% if 16–25 CL, 12% if 26–50 CL, 28% if 51–100 CL, and
50% if >100 CL. This indicates that the level of Aβ provides
important prognostic information.

Figure 1 Kaplan-Meier Survival Analysis by β-amyloid Level

An event was defined as progression to mild cog-
nitive impairment (MCI) or dementia. Number at
risk refers to those assessed at each timepointwho
had not progressed.
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We have previously reported this observation but only in
patients with 11C-PiB PET quantified with SUVR using in-
house–derived regions of interest.11 Consequently, the find-
ings could not be easily translated into clinical practice. In the
present larger study, we used the CL scale to allow inclusion
of participants imaged with a variety of Aβ tracers (11C-PiB in
44%, 18F-florbetapir in 27%, 18F-flutemetamol in 29%) and to
stratify the level of Aβ into categories that can be replicated in
any clinical or research PET site, purposes for which the CL
method was developed.12

The close match of our cohort characteristics, including age,
prevalence of APOE e4, proportion with positive Aβ PET, and
clinical progression rate in the Aβ-positive participants, with
other longitudinal studies of older CN cohorts suggests that
our findings are widely applicable.27–31 For example, in our
cohort, the risk of progression to MCI or dementia over a
mean of 5.3 years of follow-up was 25% in Aβ-positive CN
when defined as >25 CL. This is consistent with progression
rates for Aβ-positive CN in the Mayo Clinic Study of Aging
(18% at 3.7 years),28 the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (32% at 4 years),29 the Washington Uni-
versity Knight Alzheimer Disease Research Center (26% at 5
years),30 and the Harvard Aging Brain Study (20% at 3
years).31 Our study is unique in that it has demonstrated that
the level of Aβ deposition in a positive Aβ scan provides
additional prognostic information.

Our findings also have implications for preclinical AD thera-
peutic trials if slowing or halting cognitive decline is the
proposed primary outcome measure. Suitable participants for
such trials must be at high risk for detectable cognitive decline

over the period of the study. Figure 2 suggests by separation of
the confidence limits that the groups with high or very high Aβ
burden (i.e., >50 CL) have significantly declined compared to
the Aβ-negative group on several cognitive measures within 3
years of follow-up. In contrast, those with a moderate Aβ
burden declined much less compared to baseline perfor-
mance, with minimal change and no increased risk of pro-
gression to MCI or dementia at 4.5 years (HR 0.9). This
suggests that in a preclinical AD trial time frame of 3 to 4
years, therapeutic benefit may be better assessed in CN with
<50 CL of Aβ by change in disease biomarkers rather than by
slowing of cognitive decline.

In this study, we examined several measures known to be
predictive of clinical progression in older CN adults. Low
score on the baseline CVLT-II LDFR posed a moderate risk
for clinical progression, though this may be a partly circular
argument as low cognitive scores are a key component of a
clinical diagnosis of MCI. As expected, APOE e4 carriage was
associated with a 3-fold increase in risk of clinical
progression.32,33 The effect of e4 may be indirect, as APOE e4
is associated with greater prevalence of AD and earlier disease
onset so that at a given age, e4 carriers have more advanced
disease and higher Aβ levels.33 We found no effect of sex on
progression risk. Other studies suggest that AD is more
prevalent in women and females have a greater risk of clinical
progression fromMCI to AD dementia.34–36 More research is
needed on the effect of sex differences in the preclinical phase
of the development of AD. HA predicts clinical progression to
dementia and can discriminate patients with MCI from con-
trols.37 In this study, the individuals with HA also had greater
risk for progression. High and very high Aβ level had the

Figure 2 Cognitive Trajectories by β-amyloid Level

Cognitive trajectory measured by (A) Clinical Dementia Rating Sum of Boxes (CDR SoB), (B) California Verbal Learning Test II Long Delay Free Recall (CVLT-II
LDFR), and (C) Preclinical AD Cognitive Composite (PACC). Shaded regions are 95% confidence interval. *p < 0.05 and ***p < 0.001 significantly different slope
from the “negative” reference category. Decline is against baseline for each category.
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largest HRs for progression of any of the factors examined,
reaching 8.1 in the very high group and 11.4 in the full data set.
The very high Aβ group had the highest prevalence of HA and
APOE e4, both of which are consistent with longer disease
duration and a more advanced preclinical stage of AD at the
time of initial assessment.

We did not examine for interaction with other factors that may
alter risk of disease progression in preclinical AD. This includes
comparison to the ATN (Aβ, tau, neurodegeneration) classi-
fication scheme7 as tau measures were not available at baseline
in this cohort. Previous analysis of longitudinal data from AIBL
reported that rate of decline on cognitive test scores inCNwith
positive Aβ PET was greater in those who were APOE e4
carriers38 but this was not found in ADNI or BioFINDER.27

Extrapolation of our findings to an individual should be
approached with caution. Aβ PET imaging of asymptomatic
individuals other than for clinical trial screening is not rec-
ommended by the Society of Nuclear Medicine/Alzheimer’s
Association Amyloid Imaging Task Force.39 Although we
have demonstrated that risk of clinically significant decline in
CN older individuals is strongly related to the degree of Aβ
burden, the value of this prognostic information remains
unclear in the absence of effective treatment. Although the CL
method provides a standardized measure of brain Aβ burden,
the results can differ slightly between laboratories due to
factors such as PET camera make and model and local
modifications to the standard CL method, some of which
show tracer-dependent variance.14,25 Provided appropriate
corrections have been made for modified methods, any re-
sidual variation between laboratories should not affect the
conclusions of this study as they are based on groups with a
broad range of CL. A limitation of all longitudinal studies is
the withdrawal of participants over time. At 4.5 years, 15% of
the stable cohort had withdrawn or not reached this time
point. Their baseline demographics matched the entire cohort
so this is unlikely to affect the study findings. The participant
retention rate in this study compares well to other longitu-
dinal studies.27

The level of Aβ deposition is important for the prediction of
progression to MCI or dementia. This study provides evi-
dence that the currently used binary classification of positive
or negative for the reporting of an Aβ scan is suboptimal for
determination of prognosis in CN older individuals. Aβ level
stratified by CL-defined groupings provides greater individual
prognostic information and should assist design of therapeutic
trials in preclinical AD.
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