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Abstract

Objective

Patients with CAD have substantial residual risk of mortality, and whether hitherto unknown

small-molecule metabolites and metabolic pathways contribute to this risk is unclear. We

sought to determine the predictive value of plasma metabolomic profiling in patients with

CAD.

Approach and results

Untargeted high-resolution plasma metabolomic profiling of subjects undergoing coronary

angiography was performed using liquid chromatography/mass spectrometry. Metabolic

features and pathways associated with mortality were identified in 454 subjects using meta-

bolome-wide association studies and Mummichog, respectively, and validated in 322 sub-

jects. A metabolomic risk score comprising of log-transformed HR estimates of metabolites

that associated with mortality and passed LASSO regression was created and its perfor-

mance validated. In 776 subjects (66.8 years, 64% male, 17% Black), 433 and 357 features

associated with mortality (FDR-adjusted q<0.20); and clustered into 21 and 9 metabolic

pathways in first and second cohorts, respectively. Six pathways (urea cycle/amino group,

tryptophan, aspartate/asparagine, lysine, tyrosine, and carnitine shuttle) were common. A

metabolomic risk score comprising of 7 metabolites independently predicted mortality in the

second cohort (HR per 1-unit increase 2.14, 95%CI 1.62, 2.83). Adding the score to a model

of clinical predictors improved risk discrimination (delta C-statistic 0.039, 95%CI -0.006,

0.086; and Integrated Discrimination Index 0.084, 95%CI 0.030, 0.151) and reclassification

(continuous Net Reclassification Index 23.3%, 95%CI 7.9%, 38.2%).
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Conclusions

Differential regulation of six metabolic pathways involved in myocardial energetics and sys-

temic inflammation is independently associated with mortality in patients with CAD. A novel

risk score consisting of representative metabolites is highly predictive of mortality.

Introduction

Patients with established coronary artery disease (CAD) are at a high risk of mortality and

CAD is the leading cause of death in the United States. [1] The current paradigm of risk assess-

ment among patients with CAD involves ascertainment of high-risk clinical characteristics

that are known to portend adverse outcomes. [2] This approach is imperfect and does not pro-

vide information regarding pathobiological factors responsible for the increased ‘residual’ dis-

ease risk observed among some patients with CAD. [3] Additionally, the precise metabolic

pathways underlying this risk of adverse outcomes are not well elucidated. Improved under-

standing of these pathways may help provide key insights into complex disease mechanisms,

personalize risk assessment by identifying novel risk markers that prognosticate outcomes,

and potentially discern targets for therapeutic interventions in this high-risk patient

population.

The emerging role of metabolomics profiling in this conceptual framework has been

recently described in a scientific statement from the American Heart Association (AHA). [4]

Metabolomics is the systematic study of small-molecule metabolites across biological systems,

and the metabolome constitutes the final downstream product of many regulatory complexes

(genome! transcriptome! proteome!metabolome) that are proximal to a disease pheno-

type. [4] Technical advances in targeted metabolomics data mapping to biological pathways

has recently provided important insights into the pathobiology of CAD. For example, one

study demonstrated a strong association of arginine and its downstream metabolites ornithine

and citrulline, key substrates in the nitric oxide synthesis pathway, with major adverse cardio-

vascular events among patients with CAD. [5] Another recent study showed that significant

alteration in metabolism of phospholipids, amino acids, short-chain acylcarnitines, and pri-

mary bile acids is associated with CAD severity among patients undergoing coronary angiog-

raphy. [6]

Nevertheless, there is a paucity of studies evaluating the prognostic utility of untargeted
metabolomics among patients with CAD. Untargeted metabolomics is an approach that

focuses on global detection and relative quantitation of small-molecule metabolites to under-

stand both known and unknown metabolic changes that accompany disease states. [7] Herein,

we used untargeted high-resolution plasma metabolomic profiling to identify metabolic path-

ways associated with mortality among patients with CAD undergoing cardiac catheterization.

We have additionally created and internally validated a novel metabolomic risk score to pre-

dict mortality risk in our cohort.

Materials and methods

Study population

We studied subjects enrolled in the Emory Cardiovascular Biobank–an ongoing prospective

registry of patients undergoing cardiac catheterization for evaluation of suspected or known

CAD at three Emory Healthcare affiliated hospitals in Atlanta, Georgia, USA. [8] In the
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current study we evaluated subjects that underwent untargeted high-resolution plasma meta-

bolomic profiling at different time points and were part of two distinct cohorts. Subjects in the

first cohort were enrolled in the years 2004 to 2005, underwent plasma metabolomic profiling

in 2012, and were sex/race propensity matched 1:1 for the presence or absence of all-cause

mortality during follow-up. Subjects in the second cohort were enrolled in the years 2004 to

2011, underwent metabolomic profiling in 2016, and were sex/race propensity matched 1:2 for

the presence or absence of all-cause mortality during follow-up.

Participants in both cohorts were interviewed to collect information about demographic

characteristics, medical history, and behavioral habits as previously described. [8] The preva-

lence of hypertension, diabetes, heart failure (HF), peripheral artery disease (PAD), stroke, and

prior coronary artery bypass grafting (CABG) was determined by physician diagnosis and/or

treatment. [8] Medical records and International Classification of Diseases (ICD)-9 diagnostic

codes were reviewed to confirm self-reported medical history. Weight and height were mea-

sured at enrollment and body mass index (BMI) was calculated by dividing weight (in kilo-

gram) by height (in meters)-square. Left ventricular ejection fraction (LVEF) was obtained

from medical records and estimated glomerular filtration rate (eGFR) was calculated using the

Chronic Kidney Disease Epidemiology Collaboration equation. [9] Serum high-sensitivity C-

reactive protein (hs-CRP), plasma high-sensitivity cardiac Troponin-I (hs-cTnI), and serum

N-terminal prohormone of brain natriuretic peptide (NT-proBNP) levels were measured

using the using a sandwich immunoassay (in mg/L, FirstMark Inc., San Diego, CA), Alere NT-

proBNP (in pg/mL, Abbott Laboratories, Inc.), and STAT Troponin-I assays (in pg/mL,

Abbott Laboratories, Inc.), respectively. All patients were stable at the time of enrollment and

those with myocardial infarction, defined using international criteria, [10] were also included

if clinically stable.

Subjects with data available regarding age, sex, and race, and prospective follow-up for all-

cause mortality were included (n = 494 for first and 440 for second cohort); while those with

cardiac transplantation, history of non-ischemic cardiomyopathy, and follow-up duration less

than 30 days were excluded (n = 40 and 118, respectively). Thus, 454 subjects in the first cohort

and 322 subjects in the second cohort were analyzed. This study complies with the Declaration

of Helsinki and was approved by the institutional review board at Emory University (Atlanta,

Georgia) under IRB00000343. All subjects provided written informed consent at the time of

enrollment.

High-resolution metabolomic profiling

All subjects underwent an overnight fast before blood collection and untargeted high-resolu-

tion metabolomic profiling using liquid-chromatography mass spectrometry (LC/MS) was

performed using standardized techniques after thawing each subject’s plasma stored at -80˚

Celsius. [11–17] Plasma samples were run in a randomized order in batches of 20 and three

technical replicates were analyzed for each sample in a sequential manner. Plasma aliquots

(65 μL) were treated with 130 μL acetonitrile (2:1 volume/volume) containing 3.5 μL of an

internal isotopic standard mix and placed on ice for 30 minutes. [14–17] The internal standard

mix consisted of 14 stable isotopic chemicals, [14] which cover a broad range of chemical

properties represented in small molecules: [13C6]-d-glucose, [15N]-indole, [2-15N]-l-lysine

dihydrochloride, [13C5]-l-glutamic acid, [13C7]-benzoic acid, [3,4-13C2]-cholesterol, [15N]-l-

tyrosine, [trimethyl-13C3]-caffeine, [15N2]-uracil, [3,3-13C2]-cystine, [1,2-13C2]-palmitic acid,

[15N,13C5]-l-methionine, [15N]-choline chloride, and 2’-deoxyguanosine-15N2,13C10-5’-mono-

phosphate. Samples were analyzed using a Thermo LTQ Velos Orbitrap high-resolution

(60,000 mass resolution) mass spectrometer (Thermo Fisher Scientific, San Diego, California)
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and C18 column chromatography (Higgins Analytical Inc., Targa, 2.1 × 10 cm) in positive ion-

ization mode with a scanning m/z range of 85–2000 over 10 minutes. [11, 18] Elution was

obtained with a formic acid/acetonitrile gradient at a flow rate of 0.35 mL/min for the initial 6

minutes and 0.50 mL/min for the remaining 4 minutes. The first 2-minute period consisted of

5% solution A (2% volume/volume formic acid in water), 60% water, and 35% acetonitrile.

This was followed by a 4-min linear gradient to 5% solution A, 0% water, and 95% acetonitrile.

The final 4-minute period was maintained at 5% solution A and 95% acetonitrile. For quality

control and assurance, pooled reference plasma was run before and after each batch of 20 sam-

ples. The average Pearson correlation coefficient and coefficient of variation (%) within the

quality cohort (QC) samples for the first cohort were 0.96 and 11.3%, respectively. The corre-

sponding values within the QC samples for the second cohort were 0.95 and 10.5%, respec-

tively. In addition, principal component analysis (PCA) of the QC and study samples was

performed to evaluate batch-effects (S1 Fig). Although the pairwise correlation between QC

samples were high in both cohorts, batch-effects were observed and therefore we included

batch as a covariate in the regression models as described below. Ion dissociation mass spec-

trometry (LC-MS/MS) analysis was performed using the same protocols as LC/MS using high

purity N2 at normalized collision energy of 35%. The tandem mass spectrometry data were

processed using the xcmsFragments function in XCMS, [19–21] and the experimental spectra

were compared with in-silico fragmentation using MetFrag. [22]

Data processing

Raw data files were processed into the computable document format (.cdf) format using Xcali-

bur file converter software (Thermo Fisher, San Diego, California). The adaptive processing

software package, apLCMS (available at http://web1.sph.emory.edu/apLCMS/), designed for

use with high-resolution mass spectrometry data, was used for noise removal and feature

extraction, alignment, and quantification. [23] All metabolic features were identified using a

unique combination of m/z and retention time. The mean feature intensity value was used for

analysis, which was calculated from the mean of non-zero readings for each feature of every

subject. A feature was retained for further analysis if at least 80% of subjects had non-zero

intensity reading. After exclusion, the zero mean intensity values were treated as truly zero

intensities. All intensity values were log2 transformed [log2(m+1), m = feature intensity], mean

centered and scaled by standard deviation. A total of 6,781 features entered analysis in the first

cohort and 8,714 in the second cohort.

Follow-up and outcomes

Study subjects were prospectively followed for the primary outcome of all-cause mortality and

the secondary outcome of cardiovascular death. Outcome censoring was performed at 3 years

and follow-up data was obtained by annual phone contact, electronic medical record review,

and data from the social security death index and state records. [8] Cardiovascular death was

defined as death attributable to an ischemic cardiovascular cause like fatal MI, stroke or sud-

den death secondary to a presumed cardiovascular cause in this high-risk population and car-

diovascular death events were adjudicated by two cardiologists who were blinded to study

data. [24]

Statistical analyses

Subject characteristics were reported as number (proportion) for categorical variables and

means (standard deviation) for continuous variables. The differences between first and second

cohort subjects were assessed using two sample t-tests for continuous variables and Chi-square
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or Fisher’s exact tests for categorical variables as appropriate. The characteristics of cases and

controls in the first and second cohorts were also compared.

Metabolome-wide association studies

Metabolome-wide association study (MWAS) was carried out for first and second cohort sub-

jects separately by fitting individual Cox proportional hazards regression models for each fea-

ture with time to all-cause mortality (censored at 3 years) as the dependent variable and the

feature intensity value as the independent variable. Cox models were adjusted for age, sex

(male vs female), and race (black vs other). Batch effect was accounted for by treating batches

as a categorical covariate in Cox models. Multiple hypothesis testing correction was performed

using the Benjamini-Hochberg False Discovery Rate (FDR) method. [25]

Metabolite annotation

Metabolite annotation was performed using a combination of computational methods,

LC-MS/MS, and comparison of retention time with authentic standards. Computational

metabolite annotation was performed using the R package xMSannotator (available at https://

sourceforge.net/projects/xmsannotator/). xMSannotator uses a multilevel clustering procedure

based on correlation of features, retention time, mass defect, isotope/adduct patterns, and net-

work and pathway associations for categorizing database matches into different confidence

levels. [26] Confidence levels range from zero to three, designating annotations from no to

high confidence, which reduces the risk of false annotations and allows prioritization of com-

putationally derived annotations for further experimental evaluation and confirmation using

MS/MS and authentic standards. [26] Annotations with confidence score 2 or above from

xMSannotator were targeted for MS/MS evaluation and the retention times were compared

with an in-house library of previously confirmed metabolites. Metabolite identification levels

were assigned using an identification scheme adapted from Schymanski et al. [27] A list of our

in-house database of metabolites confirmed using MS/MS and authentic standards has been

previously published. [11]

Metabolic pathway analyses

In the first cohort, features associated with all-cause mortality that had an FDR-adjusted q-

value<0.20 in MWAS were chosen as target features that entered pathway analysis in Mummi-

chog (version 1.0.7). [28] The same approach was used in the second cohort in a separate anal-

ysis. For both first and second cohort pathway analyses, all features from first (n = 6,781) and

second cohorts (n = 8,714) were utilized as the feature reference pool. The Mummichog output

of significant pathways (p-value<0.05) identified in first and second cohorts was compared.

Metabolomic score derivation

The metabolomic risk score was created by identifying common features in both cohorts that

were associated with all-cause mortality and passed the FDR-adjusted threshold of q-value

<0.20 in MWAS. We allowed for an m/z difference of 10 ppm and a retention time difference

of 40 seconds when identifying common features. These common metabolites were selected as

candidates for creating a metabolomic risk score and Least Absolute Shrinkage and Selection

Operator (LASSO) regression was utilized to further sub-select metabolites and avoid redun-

dency. [29] We evaluated the association of these sub-selected metabolites with circulating hs-

CRP, hs-cTnI, and NT-proBNP levels using linear regression models adjusted for age, sex,

race, and batch effect.
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The hazard ratio (HR) estimate for the association of each feature selected after LASSO

regression with all-cause mortality in the first cohort was natural log-transformed and the ln

(HR) (i.e., coefficient estimate) of each feature was treated as its weight. The weighted metabo-

lomic risk score was calculated as the sum of each feature’s intensity multiplied by its respec-

tive weight. The weighted score was mean centered, scaled by standard deviation, and

categorized by its median and tertile cutoffs.

Metabolomic score performance

The metabolomic risk score’s performance for predicting the primary outcome was first tested

in the second cohort. Kaplan-Meir curves were utilized to evaluate the survival probability of

subjects belonging to risk score categories by at the median and tertile cutoffs. Cox proportional

hazards regression models adjusted for age, sex, race, and batch effect were utilized to test the

score’s predictive value in the second cohort. As a sensitivity analysis, age was dichotomized at

75 years and Cox models were adjusted for current smoking, eGFR below 60 ml/min/1.73 m2,

diagnosis of hypertension, diabetes, HF, PAD, stroke, and prior CABG. These variables were

chosen because a recent study from the Thrombolysis In Myocardial Infarction (TIMI) group

showed that a simple integer-based scheme using these predictors can stratify atherothrombotic

risk in a secondary prevention population. [2] As an exploratory analysis, we further adjusted

Cox models for log-transformed circulating levels of hs-CRP, hs-cTnI, and NT-proBNP.

The score’s all-cause mortality risk calibration capability in the second cohort was studied

using a calibration plot and Hosmer-Lemeshow chi-square test. The risk discrimination and

reclassification capabilities were studied in context of two baseline models: a) a model compris-

ing of age, sex, and race; and b) a model comprising of age (dichotomized at 75 years), current

smoking, eGFR below 60 ml/min/1.73 m2, hypertension, diabetes, HF, PAD, stroke, and prior

CABG. Change c-statistic, Integrated Discrimination Index (IDI), and continuous Net Reclassi-

fication Index (NRI) after adding the metabolomic score to the two baseline models was evalu-

ated. The features were further normalized using the ‘limma’ package prior to conducting these

analyses. [30] The metabolomic score’s performance for predicting the secondary outcome of

cardiovascular death was tested using the same approach outline above. Finally, the score’s per-

formance was evaluated in the combined cohort as well. The workflow for this study is dis-

played in S2 Fig and the STROBE statement for this study is provided in S1 Table. All analyses

were performed using R version 3.5.1 (R Foundation for Statistical Computing, Vienna, Aus-

tria). All relevant data are within the manuscript and its Supporting Information files.

Results

Baseline characteristics

The mean age of 454 subjects in the first cohort was 67.5 years, 65% were male, and 16% were

black (Table 1). The second cohort included 322 subjects, with mean age of 65.9 years, 63%

were male, and 19% were black (Table 1). Subjects in both cohorts had similar demographic

characteristics, cardiovascular risk factor burden, prevalence of PAD, stroke, HF, and statin

use. However, subjects in the first cohort had a higher prevalence of prior CABG and acute

myocardial infarction (MI) at the time of enrolment (Table 1). The baseline characteristics of

cases and controls in the first and second cohorts are described in S2 Table.

Metabolome-wide association studies

A total of 6,781 metabolites were analyzed in the first cohort MWAS and at a raw p-value

threshold of<0.05, 948 metabolites were independently associated with all-cause mortality
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(591 with HR<1 and 357 with HR>1) after adjusting for age, sex, and race. After FDR correc-

tion, 433 metabolites remained significantly associated with all-cause mortality (298 with

HR<1 and 135 with HR>1) at the q-value threshold of<0.20. The Manhattan plots for this

analysis are depicted in Fig 1A and 1B. The MWAS analysis was performed separately in the

second cohort using 8,714 metabolites. At a raw p-value threshold of<0.05, 934 metabolites

independently associated with the primary outcome (719 with HR<1 and 215 with HR>1)

after adjusting for age, sex, and race. After FDR correction, 357 metabolites (299 with HR<1

and 57 with HR>1) passed the q-value threshold of<0.20 (Fig 1C and 1D).

Metabolic pathway analyses

Metabolic pathway analysis was conducted in the first cohort by using the 433 metabolites of

significance as input features in Mummichog. Twenty-one metabolic pathways associated with

all-cause mortality and the urea cycle/amino group metabolism pathway was the most signifi-

cant (Fig 2 and S3 Table). In the second cohort, 357 metabolites of significance were used as

input features and 9 metabolic pathways associated with all-cause mortality, among which the

tryptophan metabolism pathway was the most significant (Fig 2 and S3 Table). On comparing

significant metabolic pathways between the first and second cohorts there were six common

metabolic pathways that were associated with all-cause mortality—urea cycle/amino group

metabolism, tryptophan metabolism, aspartate/asparagine metabolism, lysine metabolism,

tyrosine metabolism, and carnitine shuttle pathway (Fig 2).

Metabolomic risk score derivation

Among the 433 and 357 metabolites that passed the FDR-adjusted q-value threshold of 0.20 during

MWAS in the first and second cohorts, respectively, we observed that 24 metabolites associated with

Table 1. Baseline characteristics of participants in the first and second cohorts.

Participant Characteristics First cohort (n = 454) Second cohort (n = 322) p-value

Age, years 67.5 (10.9) 65.9 (11.6) 0.058

Men (%) 295 (65.0) 202 (62.7) 0.571

Black race (%) 71 (15.6) 60 (18.6) 0.317

Diabetes (%) 178 (39.2) 119 (37.2) 0.621

Hypertension (%) 306 (67.7) 230 (72.1) 0.219

Current smoking (%) 51 (11.2) 27 (8.4) 0.194

Body mass index, kg/m2 28.4 (5.7) 28.9 (6.7) 0.313

Estimated GFR, ml/min/1.73 m2 68.2 (23.4) 71.0 (23.9) 0.108

History of CABG (%) 162 (35.7) 88 (27.3) 0.014

History of PAD (%) 107 (23.6) 66 (20.5) 0.311

History of stroke (%) 49 (10.8) 40 (12.4) 0.483

History of heart failure (%) 158 (34.8) 118 (36.6) 0.642

Ejection fraction, % 51.5 (13.0) 52.7 (12.2) 0.217

Acute MI at presentation (%) 51 (11.2) 19 (5.9) 0.015

ACEi/ARB use (%) 316 (69.6) 168 (52.2) <0.001

Aspirin use (%) 374 (82.4) 218 (67.7) <0.001

Beta blocker use (%) 332 (73.1) 207 (64.3) 0.009

Clopidogrel use (%) 262 (57.7) 131 (40.7) <0.001

Statin use (%) 346 (76.2) 212 (65.8) 0.002

Continuous variables described as mean (standard deviation) and categorical variables as count (proportion). Abbreviations: GFR = glomerular filtration rate,

CABG = coronary artery bypass grafting, PAD = peripheral artery disease, MI = myocardial infarction, ACEi = angiotensin converting enzyme inhibitor,

ARB = angiotensin-II receptor blocker.

https://doi.org/10.1371/journal.pone.0237579.t001
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all-cause mortality were common between the two cohorts. These metabolites were selected for

LASSO regression and a total of 7 metabolites which were not correlated with each other were

selected as components of the metabolomic risk score (Table 2). Among these 7 metabolites two

were annotated as creatinine [M+H] (13C) (m/z 115.0693, rt 55 s) and N8-Acetylspermidine (m/z

188.1755, rt 51 s). Three metabolites were associated with an increased hazard of mortality and four

metabolites were associated with a decreased hazard of mortality in both the cohorts (Table 2).

The association of these 7 metabolites with cardiovascular biomarkers was explored using

linear regression models (S4 Table), The metabolites associated with an increased mortality

hazard were also associated with higher circulating levels of hs-cTnI and NT-proBNP, and vice

versa (S4 Table). However, the associations with hs-CRP were inconsistent.

Metabolomic risk score performance

The metabolomic risk score’s values ranged from -6.203 to 4.933 with median, lower tertile,

and upper tertile cut-off values of -0.075, -0.394, and 0.255, respectively. Subjects in the second

Fig 1. Manhattan plots for metabolome-wide association studies in the first and second cohorts. Each dot represents a unique feature and red dots are features with

hazard ratio<1, while blue dots are features with hazard ratio>1. Part A: mass-to-charge (m/z) of features in first cohort plotted against -log10(p-value), Part B:

retention time (s) of features in first cohort plotted against -log10(p), Part C: mass-to-charge (m/z) of features in second cohort plotted against -log10(p-value), and Part

D: retention time (s) of features in second cohort plotted against -log10(p). Upper horizontal line depicts false discovery rate-adjusted q-value<0.2 and lower horizontal

line depicts raw p-value<0.05.

https://doi.org/10.1371/journal.pone.0237579.g001
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Fig 2. Bubble plot for metabolic pathways associated with all-cause mortality in the first and second cohorts. The color intensity of each bubble is inversely

proportional to the p-value for the association of a metabolic pathway with all-cause mortality. Twenty-one pathways in the first cohort and nine pathways in

the second cohort were associated with all-cause mortality. Six metabolic pathways were common between the two cohorts—urea cycle/amino group

metabolism, tryptophan metabolism, aspartate/asparagine metabolism, lysine metabolism, tyrosine metabolism, and carnitine shuttle pathway.

https://doi.org/10.1371/journal.pone.0237579.g002

Table 2. Unique metabolic features comprising the metabolomic risk score.

First Cohort Second Cohort

m/z (ppm) rt (s) HR 95% CI q-value HR 95% CI q-value

115.0693� 55 1.62 (1.33,1.98) 0.001 1.58 (1.22, 2.03) 0.052

188.1755¶ 51 2.27 (1.57, 3.29) 0.004 3.01 (1.63, 5.56) 0.051

207.1106 65 1.74 (1.42, 2.13) <0.001 1.77 (1.35, 2.32) 0.018

444.6726 55 0.74 (0.61, 0.90) 0.076 0.81 (0.69, 0.95) 0.198

559.2977 388 0.65 (0.50, 0.83) 0.047 0.66 (0.49, 0.89) 0.170

1050.6578 412 0.76 (0.63, 0.92) 0.107 0.73 (0.61, 0.87) 0.060

1078.627 412 0.74 (0.63, 0.88) 0.038 0.72 (0.60, 0.87) 0.058

Abbreviations: HR = hazard ratio, CI = confidence interval, m/z = mass-to-charge, rt = retention time; s = seconds. Metabolite identified as �Creatinine[M+H] (13C)

and ¶N8-Acetylspermidine

https://doi.org/10.1371/journal.pone.0237579.t002
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cohort with a score greater than the median experienced an increased risk of all-cause mortal-

ity as compared to those with a score below the median (Fig 3A). This difference was primarily

driven by subjects in the highest tertile group that were at a significantly higher risk of the pri-

mary outcome as compared with their counterparts in the lower two tertiles (Fig 3B). Similar

findings were observed in the combined cohort (Fig 3C and 3D) as well as for the secondary

outcome of cardiovascular death (S3A–S3D Fig).

The metabolomic risk score was associated with all-cause mortality in the second cohort

with a HR of 2.26 (95% CI 1.7, 2.90; p<0.001) per 1-unit increase, after adjusting for age, sex,

race, and batch effect (Table 3). Subjects with a metabolomic score value above the median

Fig 3. Kaplan–Meier survival curves for subjects stratified using metabolomic risk score categories. Subjects with metabolomic risk score value above the median

were at a higher risk of all-cause mortality as compared with those with a score below the median in both the second cohort (Part A) and the combined cohort (Part C).

Subjects in second (Part B) and combined cohort (Part D) with metabolomic risk score value in the highest tertile were at a higher risk of all-cause mortality as

compared with those with a score in the first two tertiles.

https://doi.org/10.1371/journal.pone.0237579.g003
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were at a three-fold risk of all-cause mortality as compared to those with score value below the

median (Table 3). Age above 75 years was the only risk factor independently associated with

all-cause mortality (HR 2.12, 95% CI 1.21, 3.71; p = 0.009) in the model containing variables

evaluated in the recent TIMI study. Nevertheless, the risk score retained its independent pre-

dictive value after multivariable adjustment (Table 3). Similarly, the risk score was associated

with the primary outcome in the combined cohort after adjusting for age, sex, race, and batch

effect (Table 3). Current smoking was the only risk factor independently associated with all-

cause mortality (HR 2.29, 95% CI 1.38, 3.80; p = 0.001) in the multivariable adjusted model.

The risk score retained its independent predictive value after multivariable adjustment in the

combined cohort as well (Table 3). Furthermore, adjustment for hs-CRP, hs-cTnI, and NT-

proBNP levels did not attenuate this association (S5 Table). The metabolomic risk score was

also associated with the secondary outcome of cardiovascular death in both the second and

combined cohorts (S6 Table).

The risk score was well-calibrated in the second cohort with Hosmer-Lemeshow chi-square

p = 0.84 (S4 Fig). Furthermore, adding the risk score to the baseline model comprising of age,

sex, and race as well as the model containing TIMI risk factors resulted in a nominal improve-

ment in C-statistic in the second cohort (Table 4). However, in the combined cohort addition

of the risk score to both models resulted in a significant improvement in the C-statistic

(Table 4). Additionally, the risk score resulted in a significant improvement in IDI and a signif-

icant change in continuous NRI for both models in the second and combined cohorts

(Table 4). Similar findings were observed for the secondary outcome as well (S7 Table).

Discussion

We report two important findings in this study of subjects with CAD undergoing untargeted

high-resolution plasma metabolomic profiling. First, differential regulation of six validated

metabolic pathways was associated with all-cause mortality in our cohort. Second, a novel

metabolomic risk score was created using seven unique metabolites that was highly predictive

of adverse cardiovascular outcomes, improved risk reclassification, and added incremental

risk discriminatory value to a risk factor model comprising of traditional cardiovascular risk

factors.

Table 3. Association of metabolomic risk score with all-cause mortality in the second and combined cohorts.

Second cohort Combined cohort

HR (95% CI) p-value HR (95% CI) p-value

Per 1-SD increase

Unadjusted 2.16 (1.69, 2.76) <0.001 2.18 (1.85, 2.56) <0.001

Model 1� 2.26 (1.76, 2.90) <0.001 2.19 (1.86, 2.59) <0.001

Model 2¶ 2.14 (1.62, 2.83) <0.001 2.00 (1.66, 2.42) <0.001

Above/Below Median†

Unadjusted 3.00 (1.68, 5.36) <0.001 3.02 (2.14, 4.28) <0.001

Model 1� 3.00 (1.65, 5.49) <0.001 2.91 (2.05, 4.12) <0.001

Model 2¶ 2.39 (1.27, 4.50) <0.001 2.38 (1.63, 3.46) <0.001

� Model 1 adjusted for age, sex, race, and batch effect.
¶ Model 2 adjusted for age (dichotomized at 75 years), current smoking, hypertension, diabetes, HF, PAD, stroke, prior CABG, eGFR (dichotomized at 60 ml/min/1.73

m2), and batch effect.
†Individuals with lower than median metabolomic risk score are the reference group. Abbreviations: HR = hazard ratio, CI = confidence interval, and SD = standard

deviation.

https://doi.org/10.1371/journal.pone.0237579.t003
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Our results indicate that six metabolic pathways (urea cycle/amino group metabolism, tryp-

tophan metabolism, aspartate/asparagine metabolism, lysine metabolism, tyrosine metabo-

lism, and the carnitine shuttle) involved in myocardial energetics and inflammation are

associated with mortality among patients with CAD. CAD is a complex condition character-

ized by inflammation, arterial remodeling and metabolic reprogramming at the level of cardiac

myocytes. [31, 32] In this regard, clinical second of the associated metabolic phenotype pro-

vides an opportunity to elucidate the end-products of genetic and environmental factors that

drive clinical outcomes among patients with CAD. [33] Herein, we have used computational

pathway analyses to investigate mechanistic biological pathways that are associated with

increased mortality in our cohort. By shifting the focus to metabolite clusters with a collective

biological function, our analytical technique reduces false positive findings, improves repro-

ducibility between independent studies, and elucidates potential culprit pathways for preclini-

cal focus. [28, 34]

Under normal conditions, the myocardium derives 50–70% of its energy requirement from

mitochondrial β-oxidation of fatty acids. [35–37] However, during ischemia, energy demand-

supply mismatch and intracellular acidification results in a metabolic shift to anaerobic, non-

glycolytic amino acid substrates that are able to replenish Kreb’s cycle intermediates through a

process known as anaplerosis. [38–42] We found that key metabolic pathways—the carnitine

shuttle, lysine, aspartate and asparagine, and urea cycle metabolism, representative of this

ischemic metabolic adaptation are associated with all-cause mortality in our cohort. Acylcarni-

tines are lipid intermediates that shuttle fatty acids into mitochondria for β-oxidation, [43]

and several prior studies have demonstrated that impaired carnitine shuttle function and ele-

vated acylcarnitine levels predict adverse cardiovascular outcomes and death in CAD patients.

[44–47] We were able to validate these findings in our cohort in addition to other novel

metabolites.

Our results also indicate that differential regulation of lysine, aspartate and asparagine, and

urea cycle is associated with mortality among patients with CAD. 6-N-trimethyllysine (TML)

is a precursor in carnitine biosynthesis, [48, 49] however few studies have focused on the role

of lysine metabolism in prognosticating CAD outcomes. Loland and colleagues showed that

baseline TML levels are associated with angiographic CAD progression in a study of 183

Table 4. Improvement in all-cause mortality risk discrimination and risk reclassification indices with metabolomic risk score.

Second cohort Combined cohort

Estimate (95% CI) p-value Estimate (95% CI) p-value

Model 1�

Baseline C-statistic 0.618 (0.527, 0.710) - 0.574 (0.515, 0.634) -

Delta C-statistic 0.066 (-0.002, 0.135) - 0.104 (0.045, 0.163) -

IDI 0.109 (0.049, 0.177) <0.001 0.097 (0.059, 0.143) <0.001

NRI 21.2% (5.8%, 35.3%) 0.006 26.3% (18.2%, 35.0%) <0.001

Model 2¶

Baseline C-statistic 0.678 (0.608, 0.748) - 0.653 (0.604, 0.703) -

Delta C-statistic 0.039 (-0.006, 0.086) - 0.047 (0.016, 0.078) -

IDI 0.084 (0.030, 0.151) 0.002 0.058 (0.026, 0.095) <0.001

NRI 23.3% (7.9%, 38.2%) 0.006 19.9% (11.2%, 29.4%) <0.001

� Model 1 consists of age, sex, and race.
¶ Model 2 consists of age (dichotomized at 75 years), current smoking, hypertension, diabetes, HF, PAD, stroke, prior CABG, and eGFR (dichotomized at 60 ml/min/

1.73 m2). Abbreviations: CI = confidence interval, IDI = Integrated Discrimination Index, and NRI = Net Reclassification Index.

https://doi.org/10.1371/journal.pone.0237579.t004
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patients. [50] Aspartate and asparagine are key metabolic sinks for excess Kreb’s cycle interme-

diates produced during anaplerosis. [39] Preclinical studies have shown that inhibition of

aspartate utilization reduces ischemic resilience, [51] and that inclusion of aspartate in cardio-

plegic solutions improves post-ischemic recovery. [52, 53] Nevertheless, these findings have

not yet been translated into prognostication of adverse outcomes in CAD patients. The urea

cycle functions to excrete excess ammonia generated from amino acid catabolism. [54] Prior

studies by Shah et al. [46] and Amin et al. [55] demonstrated that patients with CAD differen-

tially regulate urea cycle metabolism compared to healthy controls.

Dysregulated tyrosine and tryptophan metabolic pathways were also predictive of mortality

in our cohort. Interferon gamma (IFN-γ), an inflammatory cytokine that plays a key role in

the development and progression of CAD [56–59] regulates tryptophan and tyrosine metabo-

lism. Tryptophan is catabolized to kynurenine by Indoleamine 2,3-Dioxygenase, a rate limiting

enzyme that is induced by IFN-γ. [60–66] The resultant high kynurenine:tryptophan ratio has

previously been shown to correlate with the presence of CAD, [67] and to predict major coro-

nary events and all-cause mortality in stable CAD patients. [61, 68] Tyrosine, a precursor for

catecholamine biosynthesis, is synthesized from phenylalanine via phenylalanine hydroxylase

(PAH). [69] Oxidative stress in IFN-γ stimulated macrophages reduces PAH bioavailability,

diminishing tyrosine production. [70–72] In a large cohort of CAD patients, Murr et al. [72]

showed that elevated Phenylalanine:Tyrosine ratios correlate with high sensitivity CRP levels,

a well-established biomarker of adverse cardiovascular outcomes. [73, 74] Alterations in cate-

cholamine biosynthesis and consequent neurohormonal dysregulation could represent an

additional mechanism by which dysregulated tyrosine metabolism affects mortality in CAD

patients. [75–77]

From a risk prediction perspective, it is well established that patients with stable CAD vary

in their risk of mortality and personalizing risk assessment by identifying those at high-risk of

adverse outcomes has been an area of active research interest. The TIMI risk score for second-

ary prevention predicts adverse outcomes among patients with known atherosclerotic vascular

disease. [2] This risk score consists of nine easily measurable clinical variables (age, current

smoking, hypertension, diabetes, heart failure, stroke, prior coronary artery bypass grafting,

peripheral artery disease, and chronic kidney disease) and has been shown to perform well in

external validation studies. [78, 79] However, this approach does not identify individual

plasma metabolites or the dysregulated metabolic pathways associated with mortality in this

high-risk patient population. In addition to identifying the six significant metabolic pathways

described above, we identified a unique subset of seven metabolites was identified using strin-

gent statistical criteria and these were used to create a novel metabolomic risk score. This risk

score independently predicted mortality with each absolute unit increase in its value. This

independent association was not attenuated after adjusting for cardiovascular biomarkers that

represent systemic inflammation (hs-CRP), [80] subclinical myocardial injury (hs-cTnI), [81]

or myocyte stretch (NT-proBNP), [82] and can be useful for prognosticating outcomes among

patients with CAD. [83] Furthermore, adding the risk score to a model containing TIMI risk

factors improved risk discrimination and reclassification indices. Once externally validated,

this novel risk score may serve as an important tool for personalizing risk assessment among

patients with CAD.

Strengths and limitations

Strengths of our study include a high-risk patient population analyzed as two independent

cohorts. Our untargeted high-resolution plasma metabolomic profiling technique is unique

and the measurement of each metabolite in triplicate make our observations robust. Finally,
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the significant metabolic pathways and individual metabolites identified in our study along

with the novel metabolomic risk score were internally validated.

Limitations of the study include a modest sample size and the lack of annotation for several

unique metabolites associated with mortality. However, we have ascertained validated meta-

bolic pathways that contain these metabolites and thus used them in our analysis. Our cohort

consists of subjects living in Southeastern US and thus our findings may not be generalizable

to other geographical regions. Most importantly, our findings pertaining to metabolic path-

ways and the risk predictive value of metabolomic risk need replication in external cohorts.

Conclusions

The differential regulation of six metabolic pathways involved in myocardial energetics and

inflammation, identified using untargeted high-resolution plasma metabolomic profiling is

associated with all-cause mortality among patients with CAD. A novel metabolomic risk score

consisting of metabolites associated with all-cause mortality in our cohort is highly predictive

of mortality and holds promise for serving as a tool that prognosticates outcomes in this high-

risk patient population.

Supporting information

S1 Fig. Principal component analysis plots of study samples and quality control samples.

(DOCX)

S2 Fig. Study design.

(DOCX)

S3 Fig. A. Kaplan–Meier survival curves for cardiovascular death among second cohort sub-

jects stratified using metabolomic risk score categories above and below median. B. Kaplan–

Meier survival curves for cardiovascular death among second cohort subjects stratified using

metabolomic risk score categories of highest, middle, and lowest tertile. C. Kaplan–Meier sur-

vival curves for cardiovascular death among all subjects stratified using metabolomic risk

score categories above and below median. D. Kaplan–Meier survival curves for cardiovascular

death among all subjects stratified using metabolomic risk score categories of highest, middle,

and lowest tertile.

(DOCX)

S4 Fig. Metabolomic risk score calibration in the second cohort.

(DOCX)

S1 Table. STROBE statement.

(DOCX)

S2 Table. Baseline characteristics of cases and controls in the first and second cohorts.

(DOCX)

S3 Table. Metabolic pathways associated with all-cause mortality in the first and second

cohorts.

(DOCX)

S4 Table. Association of significant metabolites and metabolomic risk score with cardio-

vascular biomarkers.

(DOCX)

PLOS ONE Plasma metabolomics and outcomes in CAD

PLOS ONE | https://doi.org/10.1371/journal.pone.0237579 August 18, 2020 14 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237579.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237579.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237579.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237579.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237579.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237579.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237579.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237579.s008
https://doi.org/10.1371/journal.pone.0237579


S5 Table. Association of metabolomic risk score with death after adjustment for cardiovas-

cular biomarkers in the second and combined cohorts.

(DOCX)

S6 Table. Association of metabolomic risk score with cardiovascular death in the second

and combined cohorts.

(DOCX)

S7 Table. Improvement in cardiovascular death risk discrimination and risk reclassifica-

tion indices with metabolomic risk score�.

(DOCX)

Acknowledgments

The authors would like to acknowledge the Emory Cardiovascular Biobank participants and

study coordinators

Author Contributions

Conceptualization: Anurag Mehta, Yi-An Ko, Salim S. Hayek, Karan Uppal, Dean P. Jones,

Arshed A. Quyyumi.

Data curation: Anurag Mehta, Chang Liu, Ayman S. Tahhan, Devinder S. Dhindsa, Jeong

Hwan Kim, Salim S. Hayek, Laurence S. Sperling, Puja K. Mehta, Yan V. Sun, Karan Uppal,

Dean P. Jones, Arshed A. Quyyumi.

Formal analysis: Chang Liu, Aditi Nayak, Yi-An Ko, Karan Uppal, Dean P. Jones.

Funding acquisition: Dean P. Jones, Arshed A. Quyyumi.

Investigation: Anurag Mehta, Devinder S. Dhindsa, Jeong Hwan Kim, Salim S. Hayek, Lau-

rence S. Sperling, Puja K. Mehta, Yan V. Sun, Karan Uppal, Dean P. Jones, Arshed A.

Quyyumi.

Methodology: Anurag Mehta, Chang Liu, Aditi Nayak, Ayman S. Tahhan, Yi-An Ko, Puja K.

Mehta, Yan V. Sun, Karan Uppal, Dean P. Jones.

Project administration: Arshed A. Quyyumi.

Resources: Arshed A. Quyyumi.

Software: Chang Liu, Karan Uppal.

Supervision: Arshed A. Quyyumi.

Writing – original draft: Anurag Mehta, Chang Liu, Aditi Nayak, Ayman S. Tahhan, Arshed

A. Quyyumi.

Writing – review & editing: Yi-An Ko, Devinder S. Dhindsa, Jeong Hwan Kim, Salim S.

Hayek, Laurence S. Sperling, Puja K. Mehta, Yan V. Sun, Karan Uppal, Dean P. Jones.

References
1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and

Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019; 139

(10):e56–e66. https://doi.org/10.1161/CIR.0000000000000659 PMID: 30700139

2. Bohula EA, Bonaca MP, Braunwald E, Aylward PE, Corbalan R, De Ferrari GM, et al. Atherothrombotic

Risk Stratification and the Efficacy and Safety of Vorapaxar in Patients With Stable Ischemic Heart

PLOS ONE Plasma metabolomics and outcomes in CAD

PLOS ONE | https://doi.org/10.1371/journal.pone.0237579 August 18, 2020 15 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237579.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237579.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237579.s011
https://doi.org/10.1161/CIR.0000000000000659
http://www.ncbi.nlm.nih.gov/pubmed/30700139
https://doi.org/10.1371/journal.pone.0237579


Disease and Previous Myocardial Infarction. Circulation. 2016; 134(4):304–13. https://doi.org/10.1161/

CIRCULATIONAHA.115.019861 PMID: 27440003

3. Patel KV, Pandey A, de Lemos JA. Conceptual Framework for Addressing Residual Atherosclerotic

Cardiovascular Disease Risk in the Era of Precision Medicine. Circulation. 2018; 137(24):2551–53.

https://doi.org/10.1161/CIRCULATIONAHA.118.035289 PMID: 29643058

4. Cheng S, Shah SH, Corwin EJ, Fiehn O, Fitzgerald RL, Gerszten RE, et al. Potential Impact and Study

Considerations of Metabolomics in Cardiovascular Health and Disease: A Scientific Statement From

the American Heart Association. Circ Cardiovasc Genet. 2017; 10(2).

5. Tang WH, Wang Z, Cho L, Brennan DM, Hazen SL. Diminished global arginine bioavailability and

increased arginine catabolism as metabolic profile of increased cardiovascular risk. J Am Coll Cardiol.

2009; 53(22):2061–7. https://doi.org/10.1016/j.jacc.2009.02.036 PMID: 19477356

6. Fan Y, Li Y, Chen Y, Zhao YJ, Liu LW, Li J, et al. Comprehensive Metabolomic Characterization of Cor-

onary Artery Diseases. J Am Coll Cardiol. 2016; 68(12):1281–93. https://doi.org/10.1016/j.jacc.2016.

06.044 PMID: 27634119

7. Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted Metabolomics Strategies-

Challenges and Emerging Directions. J Am Soc Mass Spectrom. 2016; 27(12):1897–905. https://doi.

org/10.1007/s13361-016-1469-y PMID: 27624161

8. Ko YA, Hayek S, Sandesara P, Samman Tahhan A, Quyyumi A. Cohort profile: the Emory Cardiovascu-

lar Biobank (EmCAB). BMJ Open. 2017; 7(12):e018753. https://doi.org/10.1136/bmjopen-2017-

018753 PMID: 29288185

9. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to esti-

mate glomerular filtration rate. Ann Intern Med. 2009; 150(9):604–12. https://doi.org/10.7326/0003-

4819-150-9-200905050-00006 PMID: 19414839

10. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Writing Group on the Joint

ESCAAHAWHFTFftUDoMI, Thygesen K, Alpert JS, White HD, et al. Third universal definition of myo-

cardial infarction. Eur Heart J. 2012; 33(20):2551–67. https://doi.org/10.1093/eurheartj/ehs184 PMID:

22922414

11. Go YM, Walker DI, Liang Y, Uppal K, Soltow QA, Tran V, et al. Reference Standardization for Mass

Spectrometry and High-resolution Metabolomics Applications to Exposome Research. Toxicol Sci.

2015; 148(2):531–43. https://doi.org/10.1093/toxsci/kfv198 PMID: 26358001

12. Johnson JM, Yu T, Strobel FH, Jones DP. A practical approach to detect unique metabolic patterns for

personalized medicine. Analyst. 2010; 135(11):2864–70. https://doi.org/10.1039/c0an00333f PMID:

20838665

13. Osborn MP, Park Y, Parks MB, Burgess LG, Uppal K, Lee K, et al. Metabolome-wide association study

of neovascular age-related macular degeneration. PLoS One. 2013; 8(8):e72737. https://doi.org/10.

1371/journal.pone.0072737 PMID: 24015273

14. Soltow QA, Strobel FH, Mansfield KG, Wachtman L, Park Y, Jones DP. High-performance metabolic

profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the

exposome. Metabolomics. 2013; 9(1 Suppl):S132–S43. https://doi.org/10.1007/s11306-011-0332-1

PMID: 26229523

15. Frediani JK, Jones DP, Tukvadze N, Uppal K, Sanikidze E, Kipiani M, et al. Plasma metabolomics in

human pulmonary tuberculosis disease: a pilot study. PLoS One. 2014; 9(10):e108854. https://doi.org/

10.1371/journal.pone.0108854 PMID: 25329995

16. Burgess LG, Uppal K, Walker DI, Roberson RM, Tran V, Parks MB, et al. Metabolome-Wide Associa-

tion Study of Primary Open Angle Glaucoma. Invest Ophthalmol Vis Sci. 2015; 56(8):5020–8. https://

doi.org/10.1167/iovs.15-16702 PMID: 26230767

17. Mitchell SL, Uppal K, Williamson SM, Liu K, Burgess LG, Tran V, et al. The Carnitine Shuttle Pathway is

Altered in Patients With Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci.

2018; 59(12):4978–85. https://doi.org/10.1167/iovs.18-25137 PMID: 30326066

18. Roede JR, Uppal K, Park Y, Lee K, Tran V, Walker D, et al. Serum metabolomics of slow vs. rapid

motor progression Parkinson’s disease: a pilot study. PLoS One. 2013; 8(10):e77629. https://doi.org/

10.1371/journal.pone.0077629 PMID: 24167579

19. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for

metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006; 78

(3):779–87. https://doi.org/10.1021/ac051437y PMID: 16448051

20. Tautenhahn R, Bottcher C, Neumann S. Highly sensitive feature detection for high resolution LC/MS.

BMC Bioinformatics. 2008; 9:504. https://doi.org/10.1186/1471-2105-9-504 PMID: 19040729

PLOS ONE Plasma metabolomics and outcomes in CAD

PLOS ONE | https://doi.org/10.1371/journal.pone.0237579 August 18, 2020 16 / 20

https://doi.org/10.1161/CIRCULATIONAHA.115.019861
https://doi.org/10.1161/CIRCULATIONAHA.115.019861
http://www.ncbi.nlm.nih.gov/pubmed/27440003
https://doi.org/10.1161/CIRCULATIONAHA.118.035289
http://www.ncbi.nlm.nih.gov/pubmed/29643058
https://doi.org/10.1016/j.jacc.2009.02.036
http://www.ncbi.nlm.nih.gov/pubmed/19477356
https://doi.org/10.1016/j.jacc.2016.06.044
https://doi.org/10.1016/j.jacc.2016.06.044
http://www.ncbi.nlm.nih.gov/pubmed/27634119
https://doi.org/10.1007/s13361-016-1469-y
https://doi.org/10.1007/s13361-016-1469-y
http://www.ncbi.nlm.nih.gov/pubmed/27624161
https://doi.org/10.1136/bmjopen-2017-018753
https://doi.org/10.1136/bmjopen-2017-018753
http://www.ncbi.nlm.nih.gov/pubmed/29288185
https://doi.org/10.7326/0003-4819-150-9-200905050-00006
https://doi.org/10.7326/0003-4819-150-9-200905050-00006
http://www.ncbi.nlm.nih.gov/pubmed/19414839
https://doi.org/10.1093/eurheartj/ehs184
http://www.ncbi.nlm.nih.gov/pubmed/22922414
https://doi.org/10.1093/toxsci/kfv198
http://www.ncbi.nlm.nih.gov/pubmed/26358001
https://doi.org/10.1039/c0an00333f
http://www.ncbi.nlm.nih.gov/pubmed/20838665
https://doi.org/10.1371/journal.pone.0072737
https://doi.org/10.1371/journal.pone.0072737
http://www.ncbi.nlm.nih.gov/pubmed/24015273
https://doi.org/10.1007/s11306-011-0332-1
http://www.ncbi.nlm.nih.gov/pubmed/26229523
https://doi.org/10.1371/journal.pone.0108854
https://doi.org/10.1371/journal.pone.0108854
http://www.ncbi.nlm.nih.gov/pubmed/25329995
https://doi.org/10.1167/iovs.15-16702
https://doi.org/10.1167/iovs.15-16702
http://www.ncbi.nlm.nih.gov/pubmed/26230767
https://doi.org/10.1167/iovs.18-25137
http://www.ncbi.nlm.nih.gov/pubmed/30326066
https://doi.org/10.1371/journal.pone.0077629
https://doi.org/10.1371/journal.pone.0077629
http://www.ncbi.nlm.nih.gov/pubmed/24167579
https://doi.org/10.1021/ac051437y
http://www.ncbi.nlm.nih.gov/pubmed/16448051
https://doi.org/10.1186/1471-2105-9-504
http://www.ncbi.nlm.nih.gov/pubmed/19040729
https://doi.org/10.1371/journal.pone.0237579


21. Benton HP, Want EJ, Ebbels TM. Correction of mass calibration gaps in liquid chromatography-mass

spectrometry metabolomics data. Bioinformatics. 2010; 26(19):2488–9. https://doi.org/10.1093/

bioinformatics/btq441 PMID: 20671148

22. Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. MetFrag relaunched: incorporating strat-

egies beyond in silico fragmentation. J Cheminform. 2016; 8:3. https://doi.org/10.1186/s13321-016-

0115-9 PMID: 26834843

23. Yu T, Park Y, Johnson JM, Jones DP. apLCMS—adaptive processing of high-resolution LC/MS data.

Bioinformatics. 2009; 25(15):1930–6. https://doi.org/10.1093/bioinformatics/btp291 PMID: 19414529

24. Patel RS, Ghasemzadeh N, Eapen DJ, Sher S, Arshad S, Ko YA, et al. Novel Biomarker of Oxidative

Stress Is Associated With Risk of Death in Patients With Coronary Artery Disease. Circulation. 2016;

133(4):361–9. https://doi.org/10.1161/CIRCULATIONAHA.115.019790 PMID: 26673559

25. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to

Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995; 57(1):289–

300.

26. Uppal K, Walker DI, Jones DP. xMSannotator: An R Package for Network-Based Annotation of High-

Resolution Metabolomics Data. Anal Chem. 2017; 89(2):1063–67. https://doi.org/10.1021/acs.

analchem.6b01214 PMID: 27977166

27. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via

high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014; 48

(4):2097–8. https://doi.org/10.1021/es5002105 PMID: 24476540

28. Li S, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, et al. Predicting network activity from

high throughput metabolomics. PLoS computational biology. 2013; 9(7):e1003123. https://doi.org/10.

1371/journal.pcbi.1003123 PMID: 23861661

29. Tibshirani R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society

Series B (Methodological). 1996; 58(1):267–88.

30. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W,et al. limma powers differential expression analy-

ses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7):e47. https://doi.org/

10.1093/nar/gkv007 PMID: 25605792

31. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005; 111(25):3481–8.

https://doi.org/10.1161/CIRCULATIONAHA.105.537878 PMID: 15983262

32. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, et al. Cardiovascular remodelling in cor-

onary artery disease and heart failure. Lancet. 2014; 383(9932):1933–43. https://doi.org/10.1016/

S0140-6736(14)60107-0 PMID: 24831770

33. Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008; 134

(5):714–7. https://doi.org/10.1016/j.cell.2008.08.026 PMID: 18775301

34. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G,et al. MetaboAnalyst 4.0: towards more transparent

and integrative metabolomics analysis. Nucleic Acids Res. 2018; 46(W1):W486–W94. https://doi.org/

10.1093/nar/gky310 PMID: 29762782

35. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in

health and disease. Physiological reviews. 2010; 90(1):207–58. https://doi.org/10.1152/physrev.00015.

2009 PMID: 20086077

36. Fillmore N, Mori J, Lopaschuk G. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic

heart disease and diabetic cardiomyopathy. British journal of pharmacology. 2014; 171(8):2080–90.

https://doi.org/10.1111/bph.12475 PMID: 24147975

37. Folmes CD, Sowah D, Clanachan AS, Lopaschuk GD. High rates of residual fatty acid oxidation during

mild ischemia decrease cardiac work and efficiency. Journal of molecular and cellular cardiology. 2009;

47(1):142–48. https://doi.org/10.1016/j.yjmcc.2009.03.005 PMID: 19303418

38. Taegtmeyer H, Harinstein ME, Gheorghiade M. More than bricks and mortar: comments on protein and

amino acid metabolism in the heart. The American journal of cardiology. 2008; 101(11):S3–S7.

39. Drake KJ, Sidorov VY, McGuinness OP, Wasserman DH, Wikswo JP. Amino acids as metabolic sub-

strates during cardiac ischemia. Experimental Biology and Medicine. 2012; 237(12):1369–78. https://

doi.org/10.1258/ebm.2012.012025 PMID: 23354395

40. McDonald TF, MacLeod D. Metabolism and the electrical activity of anoxic ventricular muscle. The Jour-

nal of physiology. 1973; 229(3):559–82. https://doi.org/10.1113/jphysiol.1973.sp010154 PMID:

4693674

41. Des Rosiers C, Labarthe F, Lloyd SG, Chatham JC. Cardiac anaplerosis in health and disease: food for

thought. Cardiovascular research. 2011; 90(2):210–19. https://doi.org/10.1093/cvr/cvr055 PMID:

21398307

PLOS ONE Plasma metabolomics and outcomes in CAD

PLOS ONE | https://doi.org/10.1371/journal.pone.0237579 August 18, 2020 17 / 20

https://doi.org/10.1093/bioinformatics/btq441
https://doi.org/10.1093/bioinformatics/btq441
http://www.ncbi.nlm.nih.gov/pubmed/20671148
https://doi.org/10.1186/s13321-016-0115-9
https://doi.org/10.1186/s13321-016-0115-9
http://www.ncbi.nlm.nih.gov/pubmed/26834843
https://doi.org/10.1093/bioinformatics/btp291
http://www.ncbi.nlm.nih.gov/pubmed/19414529
https://doi.org/10.1161/CIRCULATIONAHA.115.019790
http://www.ncbi.nlm.nih.gov/pubmed/26673559
https://doi.org/10.1021/acs.analchem.6b01214
https://doi.org/10.1021/acs.analchem.6b01214
http://www.ncbi.nlm.nih.gov/pubmed/27977166
https://doi.org/10.1021/es5002105
http://www.ncbi.nlm.nih.gov/pubmed/24476540
https://doi.org/10.1371/journal.pcbi.1003123
https://doi.org/10.1371/journal.pcbi.1003123
http://www.ncbi.nlm.nih.gov/pubmed/23861661
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
https://doi.org/10.1161/CIRCULATIONAHA.105.537878
http://www.ncbi.nlm.nih.gov/pubmed/15983262
https://doi.org/10.1016/S0140-6736%2814%2960107-0
https://doi.org/10.1016/S0140-6736%2814%2960107-0
http://www.ncbi.nlm.nih.gov/pubmed/24831770
https://doi.org/10.1016/j.cell.2008.08.026
http://www.ncbi.nlm.nih.gov/pubmed/18775301
https://doi.org/10.1093/nar/gky310
https://doi.org/10.1093/nar/gky310
http://www.ncbi.nlm.nih.gov/pubmed/29762782
https://doi.org/10.1152/physrev.00015.2009
https://doi.org/10.1152/physrev.00015.2009
http://www.ncbi.nlm.nih.gov/pubmed/20086077
https://doi.org/10.1111/bph.12475
http://www.ncbi.nlm.nih.gov/pubmed/24147975
https://doi.org/10.1016/j.yjmcc.2009.03.005
http://www.ncbi.nlm.nih.gov/pubmed/19303418
https://doi.org/10.1258/ebm.2012.012025
https://doi.org/10.1258/ebm.2012.012025
http://www.ncbi.nlm.nih.gov/pubmed/23354395
https://doi.org/10.1113/jphysiol.1973.sp010154
http://www.ncbi.nlm.nih.gov/pubmed/4693674
https://doi.org/10.1093/cvr/cvr055
http://www.ncbi.nlm.nih.gov/pubmed/21398307
https://doi.org/10.1371/journal.pone.0237579


42. McDonald TF, MacLeod DP. DNP-induced dissipation of ATP in anoxic ventricular muscle. J Physiol.

1973; 229(3):583–99. https://doi.org/10.1113/jphysiol.1973.sp010155 PMID: 4266423

43. Reuter SE, Evans AM. Carnitine and acylcarnitines. Clinical pharmacokinetics. 2012; 51(9):553–72.

https://doi.org/10.1007/BF03261931 PMID: 22804748

44. Rizza S, Copetti M, Rossi C, Cianfarani M, Zucchelli M, Luzi A, et al. Metabolomics signature improves

the prediction of cardiovascular events in elderly subjects. Atherosclerosis. 2014; 232(2):260–64.

https://doi.org/10.1016/j.atherosclerosis.2013.10.029 PMID: 24468136

45. Shah SH, Sun J-L, Stevens RD, Bain JR, Muehlbauer MJ, Pieper KS, et al. Baseline metabolomic pro-

files predict cardiovascular events in patients at risk for coronary artery disease. American heart journal.

2012; 163(5):844–50. e1. https://doi.org/10.1016/j.ahj.2012.02.005 PMID: 22607863

46. Shah SH, Bain JR, Muehlbauer MJ, Stevens RD, Crosslin DR, Haynes C, et al. Association of a periph-

eral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events.

Circulation: Cardiovascular Genetics. 2010; 3(2):207–14. https://doi.org/10.1161/CIRCGENETICS.

109.852814 PMID: 20173117

47. Strand E, Pedersen ER, Svingen GF, Olsen T, Bjørndal B, Karlsson T, et al. Serum acylcarnitines and

risk of cardiovascular death and acute myocardial infarction in patients with stable angina pectoris. Jour-

nal of the American Heart Association. 2017; 6(2):e003620. https://doi.org/10.1161/JAHA.116.003620

PMID: 28159823

48. Bremer J. Carnitine—metabolism and functions. Physiol Rev. 1983; 63(4):1420–80. https://doi.org/10.

1152/physrev.1983.63.4.1420 PMID: 6361812

49. Strijbis K, Vaz FM, Distel B. Enzymology of the carnitine biosynthesis pathway. IUBMB Life. 2010; 62

(5):357–62. https://doi.org/10.1002/iub.323 PMID: 20306513

50. Løland KH, BleieØ, Borgeraas H, Strand E, Ueland PM, Svardal A, et al. The association between pro-

gression of atherosclerosis and the methylated amino acids asymmetric dimethylarginine and trimethyl-

lysine. PLoS One. 2013; 8(5):e64774. https://doi.org/10.1371/journal.pone.0064774 PMID: 23734218

51. Julia P, Young H, Buckberg G, Kofsky E, Bugyi H. Studies of myocardial protection in the immature

heart. II. Evidence for importance of amino acid metabolism in tolerance to ischemia. The Journal of tho-

racic and cardiovascular surgery. 1990; 100(6):888–95. PMID: 2246911

52. Suleiman M, Dihmis W, Caputo M, Angelini G, Bryan A. Changes in myocardial concentration of gluta-

mate and aspartate during coronary artery surgery. American Journal of Physiology-Heart and Circula-

tory Physiology. 1997; 272(3):H1063–H69.

53. Rosenkranz ER. Substrate enhancement of cardioplegic solution: experimental studies and clinical

evaluation. The Annals of thoracic surgery. 1995; 60(3):797–800. https://doi.org/10.1016/0003-4975

(95)00456-U PMID: 7677536

54. Nelson DL, Lehninger AL, Cox MM. Lehninger principles of biochemistry: Macmillan; 2008.

55. Amin AM, Mostafa H, Arif NH, Kader M, Hay YK. Metabolomics profiling and pathway analysis of

human plasma and urine reveal further insights into the multifactorial nature of Coronary Artery Disease

(CAD). Clin Chim Acta. 2019; 493:112–22. https://doi.org/10.1016/j.cca.2019.02.030 PMID: 30826371

56. Robertson A-KL, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK. Disruption of TGF-β signaling

in T cells accelerates atherosclerosis. The Journal of clinical investigation. 2003; 112(9):1342–50.

https://doi.org/10.1172/JCI18607 PMID: 14568988

57. Ait-Oufella H, Salomon BL, Potteaux S, Robertson A-KL, Gourdy P, Zoll J, et al. Natural regulatory T

cells control the development of atherosclerosis in mice. Nature medicine. 2006; 12(2):178. https://doi.

org/10.1038/nm1343 PMID: 16462800

58. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis.

Nature. 2011; 473(7347):317. https://doi.org/10.1038/nature10146 PMID: 21593864

59. Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from

mice to humans. Immunity. 2013; 38(6):1092–104. https://doi.org/10.1016/j.immuni.2013.06.009

PMID: 23809160

60. Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease and healthy states. Interna-

tional Journal of Tryptophan Research. 2009; 2:IJTR. S2097.

61. Murr C, Grammer TB, Kleber ME, Meinitzer A, März W, Fuchs D. Low serum tryptophan predicts higher

mortality in cardiovascular disease. European journal of clinical investigation. 2015; 45(3):247–54.

https://doi.org/10.1111/eci.12402 PMID: 25586781

62. Werner ER, Bitterlich G, Fuchs D, Hausen A, Reibnegger G, Szabo G, et al. Human macrophages

degrade tryptophan upon induction by interferon-gamma. Life sciences. 1987; 41(3):273–80. https://

doi.org/10.1016/0024-3205(87)90149-4 PMID: 3110526

63. Weiss G, Murr C, Zoller H, Haun M, Widner B, Ludescher C, et al. Modulation of neopterin formation

and tryptophan degradation by Th1-and Th2-derived cytokines in human monocytic cells. Clinical and

PLOS ONE Plasma metabolomics and outcomes in CAD

PLOS ONE | https://doi.org/10.1371/journal.pone.0237579 August 18, 2020 18 / 20

https://doi.org/10.1113/jphysiol.1973.sp010155
http://www.ncbi.nlm.nih.gov/pubmed/4266423
https://doi.org/10.1007/BF03261931
http://www.ncbi.nlm.nih.gov/pubmed/22804748
https://doi.org/10.1016/j.atherosclerosis.2013.10.029
http://www.ncbi.nlm.nih.gov/pubmed/24468136
https://doi.org/10.1016/j.ahj.2012.02.005
http://www.ncbi.nlm.nih.gov/pubmed/22607863
https://doi.org/10.1161/CIRCGENETICS.109.852814
https://doi.org/10.1161/CIRCGENETICS.109.852814
http://www.ncbi.nlm.nih.gov/pubmed/20173117
https://doi.org/10.1161/JAHA.116.003620
http://www.ncbi.nlm.nih.gov/pubmed/28159823
https://doi.org/10.1152/physrev.1983.63.4.1420
https://doi.org/10.1152/physrev.1983.63.4.1420
http://www.ncbi.nlm.nih.gov/pubmed/6361812
https://doi.org/10.1002/iub.323
http://www.ncbi.nlm.nih.gov/pubmed/20306513
https://doi.org/10.1371/journal.pone.0064774
http://www.ncbi.nlm.nih.gov/pubmed/23734218
http://www.ncbi.nlm.nih.gov/pubmed/2246911
https://doi.org/10.1016/0003-4975%2895%2900456-U
https://doi.org/10.1016/0003-4975%2895%2900456-U
http://www.ncbi.nlm.nih.gov/pubmed/7677536
https://doi.org/10.1016/j.cca.2019.02.030
http://www.ncbi.nlm.nih.gov/pubmed/30826371
https://doi.org/10.1172/JCI18607
http://www.ncbi.nlm.nih.gov/pubmed/14568988
https://doi.org/10.1038/nm1343
https://doi.org/10.1038/nm1343
http://www.ncbi.nlm.nih.gov/pubmed/16462800
https://doi.org/10.1038/nature10146
http://www.ncbi.nlm.nih.gov/pubmed/21593864
https://doi.org/10.1016/j.immuni.2013.06.009
http://www.ncbi.nlm.nih.gov/pubmed/23809160
https://doi.org/10.1111/eci.12402
http://www.ncbi.nlm.nih.gov/pubmed/25586781
https://doi.org/10.1016/0024-3205%2887%2990149-4
https://doi.org/10.1016/0024-3205%2887%2990149-4
http://www.ncbi.nlm.nih.gov/pubmed/3110526
https://doi.org/10.1371/journal.pone.0237579


experimental immunology. 1999; 116(3):435. https://doi.org/10.1046/j.1365-2249.1999.00910.x PMID:

10361231

64. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation

by macrophage tryptophan catabolism. Journal of Experimental Medicine. 1999; 189(9):1363–72.

https://doi.org/10.1084/jem.189.9.1363 PMID: 10224276

65. Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA. Indoleamine 2, 3-dioxygenase production by

human dendritic cells results in the inhibition of T cell proliferation. The Journal of Immunology. 2000;

164(7):3596–99. https://doi.org/10.4049/jimmunol.164.7.3596 PMID: 10725715
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