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a b s t r a c t

The world is currently experiencing an ongoing pandemic of an infectious disease named coronavirus
disease 2019 (i.e., COVID-19), which is caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). Computed Tomography (CT) plays an important role in assessing the severity of the
infection and can also be used to identify those symptomatic and asymptomatic COVID-19 carriers.
With a surge of the cumulative number of COVID-19 patients, radiologists are increasingly stressed
to examine the CT scans manually. Therefore, an automated 3D CT scan recognition tool is highly
in demand since the manual analysis is time-consuming for radiologists and their fatigue can cause
possible misjudgment. However, due to various technical specifications of CT scanners located in
different hospitals, the appearance of CT images can be significantly different leading to the failure of
many automated image recognition approaches. The multi-domain shift problem for the multi-center
and multi-scanner studies is therefore nontrivial that is also crucial for a dependable recognition and
critical for reproducible and objective diagnosis and prognosis. In this paper, we proposed a COVID-19
CT scan recognition model namely coronavirus information fusion and diagnosis network (CIFD-Net)
that can efficiently handle the multi-domain shift problem via a new robust weakly supervised learning
paradigm. Our model can resolve the problem of different appearance in CT scan images reliably and
efficiently while attaining higher accuracy compared to other state-of-the-art methods.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The pandemic of coronavirus disease (COVID-19) is spreading
ll over the world rapidly. The number of infections is grow-
ng exponentially in different regions, which has triggered great
ealth concerns in the international communities. One of the
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effective diagnostic methods confirmed by the World Health Or-
ganization is via viral nucleic acid detection using the reverse
transcription polymerase chain reaction (RT-PCR) test [1]. How-
ever, the RT-PCR test is not sensitive sufficiently in some cases,
which may put hurdles for presumptive patients to be identified
and treated early.

As a non-invasive imaging technique, computed tomography
(CT) can detect those characteristics, e.g., bilateral patchy shad-
ows or ground glass opacity (GGO), manifested commonly in the
COVID-19 infected lung. Hence CT may serve as an important
tool for COVID-19 patients to be pre-screened and diagnosed
early. The quantified imaging biomarkers extracted from CT im-
ages can also provide crucial prognostic values. Recently, deep
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. (a) Samples of CT images are taken from five different hospitals and
(b) The histograms of these CT images. Compared with images from Hospital A
and Hospital D, it is clear that the brightness levels are distinctive. Moreover,
the contrast of the data collected from the China Consortium of Chest CT Image
Investigation (CC-CCII) dataset is considerably different from CT images acquired
from other hospitals. The right bottom figure demonstrates the distribution
of the images from different hospitals after normalization, however, these
distributions still behave distinctively. It is of note that there are no visually
distinctive features across CT scan images but it is easy for human radiologists
to correctly classify despite CT scanner changes. On the contrary, deep learning
based automated methods may fail to generalize across CT images acquired from
different hospitals.

learning based methods have been developed efficiently for the
chest X-ray/CT data analysis and classification [2–4], and these
approaches can achieve state-of-the-art performance on X-ray/CT
image diagnosis and prognosis.

Nevertheless, most CT scan datasets for COVID-19 only con-
tain CT volumes with a set of CT slices with only patient-level
annotations provided (i.e., patient-level class labels available)
indicating the patient is infected or not. There is a lack of per-slice
labels since annotating each slice is labor-intensive and time-
consuming for radiologists. It has been reported that it could take
an experienced radiologist about 21.5 min [5] to analyze and
label one whole CT volume. Consequently, convolutional neural
network (CNN) based deep learning models trained on CT slices
with only the patient-level label can perform poorly because
some annotations of these CT slices are incorrect (e.g., non-lesion
2

slices of the lung are actually be falsely labeled) leading training
data to be noisy.

Yet another challenge when employing deep learning methods
to medical image recognition is called data distribution shift (a.k.a.,
multi-domain shift). Data distribution shift refers to the phe-
nomenon that a common object or organ collected under various
scenarios (e.g., different machine vendors and sequence param-
eters) can result in vastly different data distributions. Therefore,
models trained under the empirical risk minimization (ERM) [6]
might cause the failure of model generalization. It is because the
ERM assumes that training and testing data are sampled from the
same or similar distribution and domains. However, in the data
distribution shift scenario, this assumption would be violated.

When a neural network is trained with images from one
domain and tested on another domain (i.e., distinct imaging sce-
narios), the recognition performance often degrades dramatically.
Fig. 1 represents images of different CT data collected from dif-
ferent hospitals. In the figure, it can be observed that CT data
obtained from different hospitals are visually different although
they all present image slices of the lung. It is on the grounds
that every hospital uses different protocols and parameters for
CT scanners when collecting the images for patients. Therefore,
the multi-domain shift problem of the multi-center and multi-
scanner studies is nontrivial. It is crucial to solving the multi-
domain shift problem to achieve a dependable recognition, which
is critical for reproducible diagnosis and prognosis.

To cope with the issues above, in this work, we trained our
model on both patient-level and image-level with multiple do-
main information. In particular, we consider the sequential infor-
mation within the CT volume when predicting a patient is tested
COVID-19 positive or not. To preserve the sequential information,
we divide a lung CT volume into individual sections from the
upper lobe all the way to the inferior lobe. As illustrated in Fig. 2,
our method aggregates these sections as the representation of a
patient. When aggregating these sections, we utilize the multiple
instance learning method with the k-max selection strategy for
images in each section. With the help of the k-max selection,
our model can filter out the uncertain and noisy images that can
be beneficial to make an accurate prediction. Moreover, multiple
instance learning method is incorporated that can enforce our
model to mine confident candidates for training and testing [7]
while ignoring modeling the joint distribution of sections from
the patient rather than a single image, which is rewarding for
unseen center prediction.

In summary, our contributions are mainly three-fold:

• We proposed a weakly supervised learning based multi-
domain information fusion framework for automated COVID-
19 diagnosis from multi-center and multi-scanner CT scans
that only requires patient-level annotations for training.
• We propose a novel noisy label correction technique that

propagates the patient-level predictions to individual slices
and identifies the COVID-19 infected slices accurately.
• We develop a slice aggregation module to alleviate the data

distribution shift problem, which is essential for the deploy-
ment of the developed model in the real-world scenario.

By validation on the China Consortium of Chest CT Image
Investigation (CC-CCII) [8] benchmark dataset, our proposed coro-
navirus information fusion and diagnosis network achieves su-
perior performance compared to state-of-the-art models on both
patient-level and image-level.

2. Related work

Before the COVID-19 pandemic, a huge amount of deep learn-
ing based methods has been proposed for lung cancer CT image
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Fig. 2. The architecture of our proposed CIFD-Net. It is of note that P(c | Si) denotes the probability of the Section Si , and P(c | P) represents the probability of the
patient who is tested COVID-19 positive or not. Q ∈ R2×2×C indicates the noise transaction from the probability of the true label P(yc | I) to the probability of the
noise label P(zc | I). In addition, φ(·) is a feature embedding function. In addition, ResNet-50 [9] is adopted for backbone network.
analysis. In this research area, there have been great achieve-
ments, culminating in the development of many end-to-end
pipelines for lung cancer diagnosis, classification, treatment plan-
ning, and prognostic evaluation [10–16]. In the treatment of
interstitial lung disease (ILD), deep learning approaches have also
been developed [17–20]. In CT scans for COVID-19 patients, image
characteristics, e.g., ground glass opacity and/or consolidation, are
akin to those observed from lung cancer and ILD patient CT scans.
Therefore, in the design of COVID-19 detection algorithms using
CT images, insights from research on both lung cancer and ILD
are significant and there is a clear translatability to the COVID-19
studies.

CNNs for visual recognition. Convolutional Neural Network (CNN)
has been widely used in the medical diagnosis system [3,21,22].
Recently, plenty of COVID-19 recognition algorithms have been
proposed, which have adopted artificial intelligence algorithms
especially using the CNN. A comprehensive review of artificial
intelligence assisted COVID-19 detection and diagnosis can be
found elsewhere [23–27], and here we only provided a summary
for the most relevant studies.

Jin et al. [28] developed a combined segmentation-classific-
ation model for COVID-19 diagnosis. A few pre-trained models
were tested, e.g., fully convolutional network (FCN-8s), U-Net, V-
Net, and 3D U-Net++, as well as classification models like dual
path network (DPN-92), Inception-v3, residual network (ResNet-
50), and attention ResNet-50, from which the 3D U-Net++ and
ResNet-50 combination achieved the best performance. However,
it was unclear which layers were pre-trained and re-trained, the
reproducibility of this study is uncertain. Wang andWong [3] pro-
posed COVID-Net, which stacked multiple convolutional blocks
with dilated convolution to recognize chest X-ray images. Li
et al. [2] explored the patient label and used max-pooling strat-
egy over features extracted by the CNN from a set of slices to
make the prediction. In addition, Ouyang et al. [4] deployed a
3D CNN and used the residual learning mechanism to build the
network, which incorporated the depth information of the CT
volumes. Shan et al. [29] proposed a human-in-the-loop strategy
for infection region quantification, in which a modified V-Net
was developed incorporating bottleneck building blocks to reduce
training costs. The human-in-the-loop training procedure output
a segmentation for subsequent manual corrections performed by
radiologists, and then these corrected data were input to re-train
the network iteratively. More recently, Hu et al. [30] proposed a
weakly supervised multi-scale learning framework for COVID-19
classification and lesions detection, which demonstrated promis-
ing results but its performance may be hindered by using the
patient-level labels that contain noise labeling.
3

For automatic prognostication of COVID-19 patients, Huang
et al. [31] developed a two-step segmentation model that ex-
tracted lung and lobes region followed by pneumonia segmenta-
tion. Both steps used separated U-Net and at least two follow-up
scans for each patient were analyzed. The authors found signif-
icant differences in lung opacification percentage between the
initial and the first follow-up scans, but not between the first
and the second follow-up scans. Although the study findings are
intriguing, there are critiques on lacking important information
essential to the reproducibility [32].

Although the aforementioned studies and many others have
shown promising results [1,33–43], two major issues can prevent
the widespread deployment of these methods: (1) most previ-
ously proposed approaches relied on heavily annotated ground
truth, e.g., for the infectious areas and slice-based labeling and (2)
domain-shift failure for multi-center and multi-scanned datasets
and therefore, poor reproducibility was always a concern.

Multiple instance learning. The multiple instance learning (MIL) is
a weakly supervised learning problem that has been attempted
in several studies including weakly supervised object localiza-
tion [7], video anomaly detection [44], weakly supervised image
segmentation [45] and others. In the MIL framework, a bag can
be defined as a set of instances or image slices. Positive bags
are assumed to contain at least one instance from a certain
category and negative bags do not contain any instances from
that category. It is intuitive to consider the classification of CT
volumes that contain multiple CT slices as a MIL problem. A
few methods have been proposed to solve the MIL problem.
For example, Oquab et al. [46] trained a CNN using the max-
pooling MIL strategy to classify the object. However, some of the
MIL pooling strategies, such as max-pooling and mean-pooling,
very often lead to insufficient and unstable training because of
gradient vanishing. To fix this problem, Ilse et al. [47] combined
the gated attention mechanism with the MIL strategy to solve the
medical image classification problem, but it could not predict the
instance label accurately. Chen et al. [48] developed a stylized
generative method to transfer the knowledge from MRI to CT
within unsupervised manner. Xia et al. [49] utilized uncertainties
along different volume angles to measure the importance of pre-
dicted labels. Chen et al. [50] modeled intra-consistency between
two domains to align the feature distributions. However, these
methods requires to train the model using both source domain
and target domain, which cannot handle the unseen domain
scenarios. Our method will provide solutions to these limitations.

Domain adaptation. Domain adaptation refers to the techniques
aimed at improving the performance of machine learning tasks,
e.g., classification, detection, segmentation, when training the
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lassifier on the data only from the source domain, but testing
t using related samples from a shifted target domain. Some
pproaches also use domain adaptation to help learn the fea-
ure representation. Hoffman et al. [51] proposed a method that
earned the difference between classification and detection tasks,
nd transferred this knowledge from the classifier to detectors
sing weakly annotated data. In addition, MIL was incorporated
or learning feature representation and classifier [52]. Besides,
ahmood et al. [53] utilized transformations such as hue, sat-
ration, contrast, and brightness for RGB images to change the
olor and texture of the images in the source domain. Existing
omain adaptation methods tend to use strongly annotated data
n the source domain in order to improve the recognition per-
ormance, while our methods will focus on a weakly supervised
anner. In other words, our method will require no instance-

evel annotation or the auxiliary strongly annotated data for
ecognition.

. Proposed method

In this section, we introduce the proposed coronavirus infor-
ation fusion and diagnosis network (CIFD-Net) with their key
odules including an explainable classification module (ECM),
slice aggregation module (SAM), and a slice noisy correction
odule (SNCM), respectively as illustrated in Fig. 2.
The proposed ECM integrates the generation of class activation

apping into the forward propagation of the CIFD-Net, enabling
AMs generation during training and testing, which provides
xplainable results for the prediction of our model.
Besides, instead of training on image-level (slice-wise) labels,

hich requires a significant amount of labor for manual labeling,
e propose the SAM to train on patient-level labels. We model
he joint probability of slices for each patient by which slices
re divided into several consecutive sections with equal length.
e then compute the probability of each section by adopting
k-max selection strategy, which can ignore some slice with

arge uncertainty, thus reduce the noise during modeling the joint
robability at the patient level. With the help of modeling the
oint probability, our model pays more attention to modeling the
istribution of affected sections leading to better generalization
n multiple domains.
Moreover, in order to improve the accuracy on the image-

evel, we further proposed the SNCM, which models the transac-
ion between the true label and noisy label since the labels at the
atient-level are considered to be noisy with respect to slice-wise
abels.

.1. Problem formulation

The ultimate goal of our model is to diagnose whether a
atient is tested positive or negative given a 3D volumetric CT
ung scan. Let P = [I1, I2, . . . , In] denotes the lung CT volume
or a patient with n CT slices, where Ii is a 2D CT slice image. Let
Y ∈ R{0,1} denotes whether a patient is tested to be COVID-19
positive or not. Y = 1 when the patient gets COVID-19, while
Y = 0 stands for the patient is not COVID-19 infected. During the
training stage, we only have patient-level labels, and the number
of CT lung slices can vary significantly.

3.2. Explainable classification module

As the predicting process of CNN is in a black box. Several
techniques [54,55] have been proposed to shed light on how
CNN makes the prediction and obtains the remarkable localiza-
tion ability without any supervision of localization maps. As an
explainable auxiliary diagnosis tool for radiologists, we employ
4

the class activation mapping (CAM) [54], which can generate the
localization maps for the prediction from the output of the back-
bone networks, e.g., ResNet [9], VGG [56], GoogLeNet [57], etc.
However, the process of generating CAM is a two-step process,
in which the backbone network is trained on the dataset and
utilizes the weights of the final fully connected layer to compute
the weighted sum of feature maps of the last convolutional layer.
Suppose F k

∈ RH×W is the kth feature map with height H and
width W from the last convolutional layer, and W fc

∈ RK×C is the
eight of the last fully connected layer, where C is the number
f classes and K is the number of feature maps from the last
onvolutional layer. Therefore, the class score sc of the class c can
be calculated by

sc =
K∑

k=1

W fc
k,c

⎛⎝ 1
H ×W

H∑
i=1

W∑
j=1

F k
i,j

⎞⎠ . (1)

Therefore, the localization map for the class c proposed in [54]
is defined by

Afc
c =

K∑
k=1

W fc
k,cF

k, (2)

and we can visualize the object localization maps via Afc
c .

Although CAM is a useful way to locate the region, it requires
a post-processing procedure to generate. In our method, we plug
the generation of CAM into the network with only one forward
pass. Instead of directly applying global average pooling after
the last convolutional layer, we replace the fully connected layer
using a 1 × 1 convolutional layer with the stride of 1 before the
global average pooling operation. Suppose the weight of the con-
volutional layer is W conv

∈ RK×C which is the same mathematical
form as the weight of the fully connected layer, i.e.,W fc , we tweak
Eq. (1) as follows,

sc =
1

H ×W

H∑
i=1

W∑
j=1

(
K∑

k=1

W conv
k,c F k

i,j

)
, (3)

which results in the same output with Eq. (1). Thus, the modified
CAM for the class c is computed as

Aconv
c =

K∑
k=1

W conv
k,c F k. (4)

The modified activation mapping can accurately indicate the
importance of the activation from CT images and locate the
infected areas of the COVID-19 patients, providing the explain-
able and reliable results for prediction. The region with higher
activation score indicates more importance the activation con-
tributed to the prediction. The modified activation mapping can
also offer the auxiliary diagnostic information for radiologists. The
differences between the original CAM and our ECM strategy are
demonstrated in Fig. 3.

3.3. Slice aggregation module

In some mild COVID-19 cases, there might be only part of the
CT volume that has an infection, and very often the lesions are
quite small. If we simply treat all slices as COVID-19 positive and
train a classifier with the image-level label, it could lead to a noisy
learning and poor results as the consequence. To overcome this
problem, we propose the SAM and use the joint distribution to
model the probability of patient is COVID-19 positive or negative.
We assume that lesions are consecutive and only affect adjacent
slices, consequently, we use a section based strategy to tackle the
problem. The intuition of using the section based strategy is that
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t can be directly mapped to the problem of multiple instance
earning (MIL) [58]. In MIL, samples are divided into two bags
lassified as positive and negative bags. A positive bag contains
t least one positive instance and a negative bag only has the
egative instance. In the problem, only bag labels (patient anno-
ations) are provided, and sections can be treated as instances in
he corresponding bags.

Given a patient P = [I1, I2, . . . , In] with n CT slices, we
divide these slices into disjoint sections, which can be considered
as a set that contains an equal number of consecutive CT slices,
i.e., P = {Si}

|S|
i=1, where |S| is the amount of sections for patient P

s defined as follows,

S| = max
(
1,
⌊
n
ls

⌋)
, (5)

where ls is an empirically designed parameter named as section
length.

Then the probability of patient P belonging to the class c can
e represented as

(c | P) = 1−
|S|∏
i=1

(1− P(c | Si)) , (6)

here P(c | Si) is the probability of the ith section Si that belongs
o the class c. Instead of taking the average of each probability of
he slice in that section, we take the k-max probability for each
lass to compute the section probability. This is because some
lices may contain few infection regions which can confound
he prediction. To alleviate this problem, we adopt the k-max
election method which can be formulated as

P(c | Si) = σ

⎛⎝1
k
max
s(j)∈M

k∑
j=1

s(j)c

⎞⎠ ,

(7)

s.t. M⊂Si,|M|=k.

5

here s(j)c is the top jth class score of the slice in the ith section
or the class c , and σ (x) = 1/(1 + e−x) is the sigmoid function.
hen we use the patient-level annotations y as the ground-truth
uring the training. The classification loss can be formulated as

cls =

1∑
c=0

[yc log P(c | P)+ (1− yc) log(1− P(c | P))] . (8)

.4. Slice noisy correction module

To further alleviate the negative impact of the image-level
oises, we propose the SNCM, which is loosely inspired by [59],
o model the hidden distribution P(zc = i | yc = j, I) between
he noisy label and the true label. Let P(yc | I) denotes the true
osterior distribution, given an image I. The distribution of noisy
abel, P(zc | I), can be modeled as

(zc = i | I) =
∑

j

P(zc = i | yc = j, I)P(yc = j | I). (9)

We estimate the noise transaction Q c
ij = P(zc = i | yc = j, I)

or the class c as follows

c
ij = P(zc = i | yc = j, I) =

exp(wc
ijφ(I)+ bcij)∑

i exp(w
c
ijφ(I)+ bcij)

, (10)

where i, j ∈ {0, 1}; φ(·) is a nonlinear mapping function; wc
ij and

bcij are trainable parameters for the class c between the status i
and j. Transaction score T c

ij = wc
ijφ(I)+ bcij can be regarded as the

score of the transaction from the true label i to the noisy label j
with respect to the class c . As a result, the estimated probability
of noisy label for the class c is represented as

P(zc = i | I) =
∑

Q c
ij P(yc = j | I). (11)
j
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Algorithm 1 Training procedure of CIFD-Net

Input:
Set of M CT volumes P = {P1,P2, · · · ,PM}.
Learning rate: η.

utput:
Learned model parameters of CIFD-Net: Θ .

1: Initialize all parameters denoted Θ using Xavier.
2: repeat
3: for m = 1 to M do
4: Use the backbone network to compute slice features for

CT volume Pm with its slices {Ii}
n
i=1.

5: Calculate class scores sc ∈ R using Eq. (3).
6: Compute the probability of patient P(c | Pm) via SAM

in Eqs. (6) and (7), and obtain classification loss Lcls via
Eq. (8).

7: Formulate the noise transaction Q c
ij between the proba-

bility of noise label and that of the true label by Eqs. (9)
and (10).

8: Obtain the estimated probability of noisy label P(zc = i|I)
by Eq. (11), and calculate noisy classification loss Lnoisy
using Eq. (12).

9: Compute the final loss L with Eq. (13).
0: Update parameters: Θ ← Θ − η ▽Θ L(Θ).
1: end for
2: until convergence
3: return Θ .

Table 1
The number of CT samples used for training for each class collected by four
different hospitals A, B, C, and D. Besides, details of the CC-CCII dataset are also
listed, which was used in the independent testing stage. The ratio of positive
and negative samples in training set is approximately 1:1, and 2:1 in test dataset
Dataset Number of patients Number of CT images Subset

Total Positive Negative Total Positive Negative

Hospital A 424 0 424 24,670 0 24,670 Train
Hospital B 58 58 0 5,512 5,512 0 Train
Hospital C 17 17 0 2,611 2,611 0 Train
Hospital D 305 305 0 12,374 12,374 0 Train

CC-CCII [8] 2,034 1,320 714 130,511 84,629 45,882 Test

Finally, with the help of the estimated noisy probability, for
he patient P , the noisy classification loss is computed by

noisy =
1
N

N∑
i=1

1∑
c=0

[yc log P(zc = 1 | I)

+ (1− yc) log P(zc = 0 | I)]. (12)

By combining Eqs. (8) and (12), we can obtain the total loss
function that we need to optimize for our model that is calculated
as follows,

L = Lcls + λLnoisy, (13)

where λ is a hyper-parameter to balance the loss terms.
During the model training, the above loss functions are opti-

mized iteratively. By incorporating the SAM, we can build a uni-
fied end-to-end deep neural network architecture for the COVID-
19 diagnosis. The whole training procedure is summarized in
Algorithm 1.

4. Experiments and discussions

In this section, the effectiveness of our method is validated and
the results are quantified. First, we provide some statistics of the
datasets and describe the implementation details as well as the
 r

6

experimental settings, which are followed by the reported results,
the ablation studies, and further discussions on the qualitative
and quantitative results.

4.1. Datasets

In order to verify the effectiveness of proposed model on the
data from an independent hospital, we use data from several
hospital, then test the model on an independent dataset. The
datasets used in our study are summarized in Table 1. We collect
CT datasets from four different local hospitals and anonymize the
data by removing all the patient identity information. In total,
there are 804 CT scan volumes with 45,167 CT images, 380 of
which are COVID-19 positive and the other 424 are negative
cases. All COVID-19 positive cases are confirmed by the RT-PCR
tests. We train on the cross-domain datasets collected from hos-
pitals A, B, C, and D and test on an open public CC-CCII dataset [8].
CC-CCII dataset consists of 2034 3D CT volumes with 130,511
CT images, which have been acquired by the CT scanner from a
different manufacturer representing another image domain.

4.2. Data standardization, pre-processing

Following the protocol used in [8], we first normalized images
with z-score normalization, then we used the U-Net segmentation
network [60] to segment the CT images. After that, we randomly
cropped a rectangular region whose aspect ratio is randomly
sample in [3/4, 4/3] and area randomly sampled in [90%, 100%],
then resized the region into 224 × 224 shape. Meanwhile, we
randomly flipped the input volumes horizontally with 0.5 prob-
ability. The input data would be a set of CT volumes which are
composed by consecutive CT slice images.

4.3. Implementation details

We use ResNet-50 [9] as the backbone network pre-trained on
ImageNet [61]. For data augmentation, we use random horizontal
flipping for the input CT volume in the spatial dimension. Each
image in a CT volume is randomly horizontal flipped with a prob-
ability of 0.5. Then, we resize them into the size of 224 × 224. In
addition, brightness and contrast are randomly changed within
the range [0.9, 1.1]. The dropout rate is set to 0.7, λ is set to
0.0001, and the L2 weight decay coefficient is set to 10−5. During
he training and testing stage, we set ls = 16 and k = 8 to
ompute the patient probability. We train our model using the
dam optimizer [62] with the initial learning rate η = 1× 10−3,
nd training is terminated after 4000 iterations with a batch size
0. All experiments have been conducted on a workstation with
NVIDIA Tesla V100 GPUs using PyTorch.

.4. Quantitative results

We reproduce and compare with four state-of-the-art meth-
ds [2–4,9] on the COVID-19 CT classification. The results are
hown in Table 2. For image-level supervision, COVID-Net [3]
nd ResNet-50 [9] employ the patient-level annotations as image
nnotations. Different to the methods proposed by Wang and
ong [3] and He et al. and [9], VBNet [4] adopts a 3D residual

onvolutional neural network (3D-ResNet) to train on CT vol-
mes with patient labels. Moreover, COVNet [2] also trains on
he patient-level label that they feed a patient-specific set of CT
mages into a 2D ResNet and simply aggregate the image-level
eature descriptors with a max-pooling operator.

From Table 2, several interesting observations can be summa-
ized as follows.
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Fig. 4. Receiver Operating Characteristic (ROC) curves and area under ROC curves (AUC) of different models trained using patient-level annotation (a) and image-level
annotation (b) on the CC-CCII dataset.
Table 2
Comparison results of our CIFD-Net method vs. state-of-the-art architectures on the CC-CCII dataset.
Annotation Method Patient Acc. (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) AUC (%)

Patient-level

ResNet-50 [9] 53.70∗∗
±0.02 61.42∗∗

±0.08 77.13∗∗
±0.10 10.37∗∗

±0.17 68.38∗∗
±0.05 46.30∗∗

±0.10
COVID-Net [3] 53.62∗∗

±0.03 61.35∗∗
±0.01 77.18∗∗

±0.05 10.06∗
±0.25 68.36∗∗

±0.02 44.53∗
±0.18

COVNet [2] 67.64∗∗
±0.04 76.03∗

±0.08 73.17∗∗
±0.07 57.34∗

±0.18 74.57∗∗
±0.04 66.13∗

±0.15
VB-Net [4] 76.75∗

±0.04 85.25∗∗
±0.10 77.61∗∗

±0.07 75.22∗
±0.19 81.25∗∗

±0.05 89.48∗
±0.16

CIFD-Net (Ours) 89.25∗∗
±0.02 89.98∗

±0.13 93.86∗∗
±0.06 80.67∗

±0.13 91.91∗∗
±0.07 93.22∗∗

±0.06

Image-level

ResNet-50 [9] 67.29∗∗
±0.04 68.23∗∗

±0.06 92.95∗∗
±0.05 20.40∗∗

±0.16 78.71∗∗
±0.02 53.43∗∗

±0.11
COVID-Net [3] 64.83∗

±0.08 66.28∗
±0.07 93.18∗∗

±0.02 12.48∗∗
±0.04 77.46∗∗

±0.03 51.47∗∗
±0.09

COVNet [2] 70.79∗∗
±0.03 83.09∗

±0.07 68.95∗∗
±0.11 74.10∗∗

±0.08 75.37∗∗
±0.05 73.08∗∗

±0.07
CIFD-Net (Ours) 84.83∗∗

±0.02 91.19∗∗
±0.03 84.74∗∗

±0.07 84.99∗∗
±0.11 87.86∗∗

±0.04 89.63∗∗
±0.08

* indicates the p-value < 0.05, and ** represents the p-value < 0.01.
7
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Fig. 5. Variations in classification results by changing the hyper-parameter λ. The light dash line represents the case when λ = 0. It shows that our model achieves
he best performance with λ = 1× 10−3 .
Fig. 6. Variations in classification results by changing the hyper-parameter k. Our model achieves the best performance with k = 8 with section size ls = 16.
t
F
i
r
t
w
p
b

• The CIFD-Net outperforms most of the competing mod-
els by a large margin on the independent testing dataset,
which can be attributed to the successful multi-domain shift
problem proffered by our model. For the patient-level classi-
fication, our model is performed better than other compared
methods by at least 12.5% on accuracy. Moreover, our model
yields also the best performance on the image-level classifi-
cation, which outperforms COVNet [2] by 14.1%. In addition,
receiver operating characteristic (ROC) analysis and area
under curves (AUC) results are obtained to quantify the
classification performance. Our CIFD-Net achieves higher
AUC value at both patient-level and image-level annotation
compared to other state-of-the-art methods. Meanwhile, it
is worth noticing that at the patient-level our method sig-
nificantly outperforms other methods by at least 16.3% with
respect to the sensitivity, which is an important indication
for diagnosing COVID-19 positive cases.
• Models trained on patient-level, such as [2,4] and ours,

achieve significant performance improvement than those
trained on the image-level, i.e., [3,9], especially on the
patient-level accuracy. This reflects that the image-level
noise is non-trivial and can have a negative impact that
these models can be overfitted because of the noise. More-
over, the models trained on the image-level may rely on
learning the image textures [63], which are highly discrimi-
native between domains. As a consequence, the models are
prone to be overfitted and biased toward different textures
while predicting, which may explain why these methods,
e.g., methods proposed in [3,9], are poorly generalized to

the unseen domains. s

8

• Although methods proposed by Li et al. and Ouyang et al. [2,
4] also trained on the patient-level labels, our proposed
CIFD-Net is superior to these methods, especially on the
patient-level classification. The method proposed by Li et al.
[2] performed the worst and this may because it has been
trained on randomly selected CT images extracted from each
3D volume that may impede the encoding of lesions (often
appearing adjacently between slices). In contrast, Ouyang
et al. [4] preserved the sequential information among the
CT slices because their method was trained on the whole
CT volumes. In contrast, we take the full 3D volume into
account and preserve the sequential information by dividing
the volume into sections [2,4]. Besides, VB-Net achieves
better performance than COVNet because VB-Net is trained
with stronger supervision that is additional to the image
level classifier. It also employs an auxiliary pixel-wise clas-
sifier trained with pixel-level infection annotation (i.e., in-
fection segmentation mask). In comparison, our proposed
model achieves better overall classification performance
than VB-Net with weak supervision only.

We carried out the ROC analysis and the AUC results were used
o quantify the classification performances as shown in Fig. 4.
rom Fig. 4(a), we can observe that the models trained only on
mage-level annotations (i.e., ResNet-50 and COVID-Net) are not
eliable since their AUCs are less than 50%. In addition, we found
hat overall our CIFD-Net remains the best performed algorithm
ith an AUC of 93.22%. It is of note that the overall results at the
atient-level are higher than those at the image-level. This could
e correlated with our findings in the classification that some CT

lices with few lesion parts are hard to diagnose and classify.
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Fig. 7. Visualization of the CAMs and bounding boxes generated by different methods on the CC-CCII dataset. The region with a deeper red color indicates
discriminative regions for the prediction by the model. pc is the probability for being predicted as COVID-19 positive.
able 3
ccuracy (%) of all the cases where each proposed component is applied.
Exp. ResNet-50 Lcls Lnoisy Patient Acc. (%) Image Acc. (%)

1
√

53.72 67.31
2

√ √
83.97 78.60

3
√ √

35.10 35.16
4

√ √ √
89.23 84.83

To examine the influence of different loss terms, we con-
uct ablation studies on the proposed model and the results are
eported in Table 3. As seen in the table, the model with the
NCM slightly outperforms the model without the SNCM on the
atient-level. However, the SNCM advances the prediction at the
mage-level with significant improvement by 6.2% for the image
ccuracy. However, when only use the SNCM, the model would
till be biased to predicting CT images tested negative because
e only require our model to correct those CT images wrongly

abeled as COVID-19 positive providing strong prior information
o the training procedure.

Furthermore, we have examined the sensitivity of the choice
f the hyper-parameters λ and k for our model. Fig. 5 shows the
ffect of the patient-level accuracy and the image-level accuracy
hile tuning the hyper-parameter λ. We can see that if λ is too

arge, the model would be biased and the performance would
rop significantly since it acts as the regularization terms in the
odel training. The best results are obtained when λ = 1×10−3.
9

In addition, for the selection of the hyper-parameter k, we can
observe that when k is too large or too small, the performance
degrades dramatically. This is because that if k is too large, the
uncertainty of the section would increase and cause the noisy
prediction. On the contrary, if k is too small (e.g., k = 1), some
important slice information would be neglected, which leads to
inaccurate results (see Fig. 6).

4.5. Qualitative results

For qualitative studies, we use the trained models (e.g., ResNet-
50, COVNet, and others) to visualize the CAMs and bounding
boxes on the test set. Fig. 7 presents the visualization of CAMs
using our ECM. We can clearly see that the model trained on
the slice-level (ResNet-50) tend to discard the lesions and focus
on non-infected regions, and this also explains why it makes
inaccurate and unreliable diagnosis decision causing trouble for
radiologist use. On the contrary, models trained on patient-level,
COVNet for instance, are able to detect some of the lesions
occasionally but mostly failed in estimating the extent of the
lesions reliably. In contrast, our model is not only precise in terms
of lesion localization but also precise in estimating the extent of
the infectious areas.

Moreover, based on the results of the CAMs, we extracted
the bounding boxes using each method. It can be found that our
CIFD-Net is able to yield more accurate bounding boxes on the
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Fig. 8. Visualizations of infected/non-infected probabilities of each section for
the patients. The x-axis of the plot is the section index of the patient. The right
ub-figures of the probability plot are the picture sampled from the section
isted above. (a) The first few sections are recognized as COVID-19 positive with
igh probability and when approaching the last few sections, no obvious lesions
re found thus the positive probability drops drastically. (b) It shows that the
robabilities of the first three sections are close to 0.5 indicating uncertainty for
hese sections. (c) For the last few sections, the lesions are gradually showing
p in the left and right lower lobes together with increased infected probability.

alient part of the CAMs (Fig. 7) comparing to other methods,
hich indicates that our methods can be more applicable to
erform auxiliary diagnosis. For instance, in diffusive cases (Fig. 7
ows 1 to 4), our CIFD-Net method has produced more accurate
aliency maps compared to ResNet-50 and COVNet with less false
ositives and false negatives. Therefore, more precise localization
bounding boxes) have been generated. For the lesions distributed
eripherally and subpleurally, both our CIFD-Net and COVNet
pproaches have performed better than the ResNet-50 (Fig. 7
ows 5 and 6). However, our CIFD-Net is more sensitive to the
nfectious regions that are not obvious in the images (Fig. 7
ow 7).

In addition, we visualize the infection probability of lung sec-
ions for patients and sample the CT slices from corresponding
ections. As illustrated in Fig. 8, the red curve depicts the infection
robability varying along different lung sections, and the blue
urve, on the opposite, depicts the non-infection probability for
ach section. Overall, it can be seen that the infected lung sections
re distributed adjacently and the transition between the sections
s smooth. Besides, we found our model is capable and robust of
10
localizing where the infected lung sections are, regardless of the
scale and the types of lesions. For example, for patient A Section 2,
despite there is a very small lesion (GGO) peripherally, our model
is still quite sensitive and is able to identify the infected section.
Our model reaches around a saddle point, i.e., 0.5, when there are
no apparent lesions detected, for instance, Section 1 for patient B
and Section 2 for patient C.

4.6. Discussions

Our proposed CIFD-Net sequentially aggregates image-level
features within a CT volume to alleviate the multi-domain shift
problems, which turns out to be very effective and we have
demonstrated that our CIFD-Net can be better generalized to
unseen data domain compared to other state-of-the-art works.
This may be attributed to (1) the k-max selection strategy: when
optimizing the joint probability, only top-k probabilities within
each section have been considered. Besides, those confounded
images are not considered, which can result in a robust pre-
diction; (2) our loss function is designed for modeling the joint
probability of the patient instead of the individual image slice.
Compared with the naive models, e.g., plain ResNet-50 trained
on single image slice, our model is less likely to overfit on varied
image styles and appearance, e.g., due to assorted textures and
contrasts of the images, because our model takes into account
the relationship between sections and the correlation between
images in each section.

In addition, we integrated a novel slice noise correction mod-
ule, i.e., SNCM, in the proposed CIFD-Net, which adds additional
regularization to the optimization. Besides, we argue that this
not only contributes to boosting the classification performance
on the image-level prediction but also leads to more precise
localization of lesions. However, since we trained the CIFD-Net
under the assumption that CT slices are consecutive and lung
segments (sections) are ordered, it may be difficult to handle
disordered CT slices by using the slice aggregation, i.e., SAM and
as a consequence, it may result in less accurate classification.

5. Conclusion

In this study, we have proposed a robust COVID-19 recognition
model named CIFD-Net, which exploits the ECM to assist radiol-
ogists for auxiliary diagnosis. To handle the volume information,
the model adopts the SAM to combine different sections for the
sake of modeling the joint probability of the patient is COVID-19
positive or not. In addition, we extend our CIFD-Net incorporating
the SNCM to predict a single CT slice without any image-level
annotations. To investigate the prediction performance of the
proposed model, we conducted comprehensive experiments on
publicly available CT datasets. Experimental results have veri-
fied the superiority of our model, which can solve the multi-
domain shift problem efficiently and effectively, compared to
other state-of-the-art methods.
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