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The relationship between genotype mutations and phenotype variations determines health in the short term and
evolution over the long term, and it hinges on the action of mutations on fitness. A fundamental difficulty in de-
termining this action, however, is that it depends on the unique context of each mutation, which is complex and often
cryptic. As a result, the effect of most genome variations on molecular function and overall fitness remains unknown
and stands apart from population genetics theories linking fitness effect to polymorphism frequency. Here, we hy-
pothesize that evolution is a continuous and differentiable physical process coupling genotype to phenotype. This leads
to a formal equation for the action of coding mutations on fitness that can be interpreted as a product of the evo-
lutionary importance of the mutated site with the difference in amino acid similarity. Approximations for these terms
are readily computable from phylogenetic sequence analysis, and we show mutational, clinical, and population genetic
evidence that this action equation predicts the effect of point mutations in vivo and in vitro in diverse proteins,
correlates disease-causing gene mutations with morbidity, and determines the frequency of human coding poly-
morphisms, respectively. Thus, elementary calculus and phylogenetics can be integrated into a perturbation analysis of
the evolutionary relationship between genotype and phenotype that quantitatively links point mutations to function
and fitness and that opens a new analytic framework for equations of biology. In practice, this work explicitly bridges
molecular evolution with population genetics with applications from protein redesign to the clinical assessment of
human genetic variations.

[Supplemental material is available for this article.]

Each birth introduces about 70 new human genetic mutations

(Keightley 2012) that have led, over generations, to the current four

million DNA differences among randomly chosen individuals.

Besides insertions, deletions, copy number variations, and chro-

mosomal rearrangements, genetic alterations include single nu-

cleotide substitutions that translate into nearly 10,000 amino acid

substitutions per human exome (Ng et al. 2008; Lupski et al. 2010).

These protein-coding variants can affect fitness (Eyre-Walker and

Keightley 2007), account for 85% of known disease mutations

(Choi et al. 2009), and are associated with more than 2500 ail-

ments (Botstein and Risch 2003; Bodmer and Bonilla 2008). Nev-

ertheless, association studies explain only a fraction of disease

susceptibility (McCarthy and Hirschhorn 2008), and the role of

both private and common mutations remains unclear (Ng et al.

2008). Computational approaches therefore aim to identify which

coding variations cause disease (Ng and Henikoff 2001; Stone and

Sidow 2005; Adzhubei et al. 2010) within the limitations of bio-

physical, statistical, and machine-learning models of protein

function (Chun and Fay 2009; Hicks et al. 2011). In parallel, a large

body of theory models the spread and fixation of mutations (Orr

2005), their distribution for various population sizes and fitness

effects (Eyre-Walker and Keightley 2007), and whether selection or

drift dominates their fate (Nei 2007). However, without a practical

measure of the action of mutations on fitness, the theory cannot

be applied to the massive inflow of genetic information (Orr 2005;

Losos et al. 2013).

Here, we follow the perspective that evolution proceeds in

infinitesimal mutational steps (Fisher 1930; Orr 2005) to propose

an equation for the Evolutionary Action of amutation on fitness.

This action equation is derived from a model of the genotype-

phenotype relationship that is simpler than current models

(Choi et al. 2008; Kleinman et al. 2010; Grahnen et al. 2011) and

that is compatible with the theory of nearly neutral evolution

(Ohta 1992) and with fundamental variational principles of

physics describing how physical systems evolve to follow paths

of least action. The computed Evolutionary Action consistently

topped the most sophisticated, homology-based or machine-

learning methods that predict the impact of mutations in both

retrospective and prospective assessments. Retrospective vali-

dation included large data sets of (1) experimental assays of

molecular function; (2) human disease association; and (3) pop-

ulation-wide polymorphisms. Prospective validation involved the

CAGI (Critical Assessment of Genome Interpretation) community

contest, which challenged predictors to estimate the impact of

84 mutations on enzymatic activity of the cystathionine beta-

synthase.
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Results

A genotype-phenotype perturbation equation

To assess mutations, we treat each one as a small genotype per-

turbation that may disturb the phenotype. For a protein P, the

genotype g is the sequence of n residues (r1, r2, . . ., rn)P, and the

global fitness phenotype is a scalar quantity u that integrates all

the structural, dynamic, and other functional attributes of P that

affect the survival and reproduction of the organism in its milieu

(Wright 1932; Smith 1970). As species drift or adapt over time, g

and u vary, coupled to each other by a multivariate evolutionary

fitness function f, such that f(g) = u, where time and natural selec-

tion constraints are implicit. Our central hypothesis is that f exists

and is differentiable. If so, a small genotype perturbation dg will

trigger a global fitness phenotype variation du given by

du==f •dg; ð1Þ

where =f is the gradient of f and • denotes the scalar product.

In practice, we consider the phenotype variation for a single

missense mutation from amino acid X to any other amino acid Y

at sequence position i. Then, the genotype perturbation reduces

to the magnitude of that substitution, denoted Dri,X!Y, and the

gradient reduces to the partial derivative of the evolutionary fitness

function for its ith component, denoted @f/@ri. This last term is the

sensitivity of the global fitness phenotype to variations at posi-

tion i and implicitly accounts for part of the context-dependence

at i, that is, the structural and functional role of that position. The

remainder of the context-dependence should reside in higher

order terms that explicitly represent epistatic interactions with

other mutations (Breen et al. 2012). To simplify, we neglect these

terms so that the Evolutionary Action (EA, or action for short) of a

single substitution on the reference genotype of a species be-

comes, to a first order:

Du »
@f

@ri
•Dri; X! Y : ð2Þ

In this reduced form, the Evolutionary Action equation states

that a point mutation displaces fitness from its current state in pro-

portion to the magnitude of the mutation and to the evolutionary

fitness gradient at that site (Fig. 1A). This differential expres-

sion is useful because its termsmay be evaluated fromevolutionary

data.

To measure the evolutionary fitness gradient @f/@ri, we rank

the importance of every sequence position with the Evolutionary

Trace (ET) method (Lichtarge et al. 1996; Mihalek et al. 2004;

Wilkins et al. 2013). By definition, a gradient is the ratio of the

sensitivity of a function with respect to its coordinates. Here, @f/@ri
is the sensitivity of the global fitness phenotype with respect to

a mutational step, or simply the fitness difference observed upon

variation. This definition points to ET, which ranks every position

in a sequence alignment of a protein family as more (or less) im-

portant if it varies mostly among major (or minor) evolutionary

branches. Since evolutionary branch distances reflect fitness

(Coyne and Orr 1998), in effect ET and evolutionary gradient are

equivalent concepts and we may choose ET ranks to approximate

@f/@ri (Fig. 1B). A frequent and simpler measure of evolutionary

importance is residue conservation (Livingstone and Barton

1993; Pei and Grishin 2001; Valdar 2002; Mihalek et al. 2004),

but conservation is an average rather than a derivative and is less

accurate than ET in practice. In that light, prior ET studies have

already shown the broad applications of evolutionary gradients:

They identify functional sites and allosteric pathway residues

(Yao et al. 2003), guide mutations that block or reprogram

function (Rodriguez et al. 2010), and define structuralmotifs that

predict function on a large scale (Ward et al. 2009; Erdin et al.

2010), such as substrate specificity (Amin et al. 2013).

To measure the magnitude of a substitution Dri,X!Y, we use

the relative evolutionary odds of these substitutions (Henikoff and

Henikoff 1992; Overington et al. 1992; Koshi and Goldstein 1995).

For example, the amino acid alanine is substituted to serine more

often than to aspartate, in line with greater biophysical and chem-

ical similarities to the former. Although conceptually independent,

we find that the gradient of a position strongly biases its substitution

odds. For example, compared to standard, uniform substitution

values (Henikoff and Henikoff 1992), alanine positions with large

gradientsmostly tolerate substitutions to small neutral amino acids,

whereas alanine positions with small gradients strongly favor sub-

stitutions to large polar or charged amino acids (Fig. 1C). These

trends are specific to every amino acid pair: Alanine to valine

substitution odds form a bell-shaped distribution as the evolu-

tionary gradient at the mutated position varies from minimum to

maximum; those of alanine to threonine begin flat then tail off,

whereas those of alanine to aspartate decay steadily (Fig. 1D).

These findings are also distinct and complementary to the de-

pendence of substitutions on structural features (Supplemental

Fig. 1; Overington et al. 1992; Koshi andGoldstein 1995) and show

that the evolutionary gradient at each sequence position is an

important factor in substitution bias. Accordingly, we approximate

Dri,X!Y by the evolutionary gradient-sensitive substitution odds.

The Evolutionary Action correlates with experimental loss
of protein function

For anymutation in a proteinwith a sufficiently large evolutionary

tree, typicallymore than 20 sequences from a variety of species, we

can now apply these approximations for @f/@ri and Dri,X!Y to

evaluate a normalized Evolutionary Action, from a neutral value of

0 to amaximum impact value of 100, and then compare this action

to the relative changes in function and fitness observed experi-

mentally. First, the Evolutionary Action correlates linearlywith the

average loss of DNA recombinationmeasured in vivo by P1 phage-

mediated transduction in 31 E. coli RecA point mutants relative to

wild type (Adikesavan et al. 2011), with a Pearson R2 correlation

coefficient of 0.87 (Fig. 2A). More broadly, in larger and in-

dependent data sets, correlations between the Evolutionary Action

and the fraction of dysfunctional mutants in vivo or the average

loss of activity in vitro range from 0.73 to 0.96 (Fig. 2B–E) in 4041

lac repressor mutations in E. coli assayed for their impact on

b-galactosidase repression (Markiewicz et al. 1994); 2015 lysozyme

mutations in bacteriophage T4 assayed for plaque formationdue to

degradation of the host cell walls by lysozyme (Rennell et al. 1991);

336 HIV-1 protease mutations assayed by the cleavage products

(Loeb et al. 1989); and 2314 TP53 mutants assayed for trans-

activation (see Methods) (Kato et al. 2003). The Spearman’s rank

correlation coefficient is at least 0.98. In lysozyme, two regimes

were apparent: Low action mutations minimally affect the phe-

notype (or the assay), and then there is a steep linear response

past some action threshold (Fig. 2C). This lag may be due to the

relative insensitivity of the lysozyme assay, which only classified

16% of mutations overall as being deleterious compared to 62%,

53%, and 30% in the lac repressor, HIV protease, and TP53 assays,

respectively. In TP53 there is also a lag, but it is small and may
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reflect the experimental error of averaging small differences in

transactivation. As a reference, the sensitivity and specificity of

common alternative measures of mutational impact (Ng and

Henikoff 2001; Stone and Sidow 2005; Adzhubei et al. 2010) are

lower on the same data sets (Fig. 3A). Moreover, blind predictions

assessed by independent judges also

showed that the action equation identi-

fied deleterious mutations better than

state-of-the-art predictions of muta-

tional effect (Fig. 3B). Together these

data span 8500 mutations in eukaryotic,

prokaryotic, and viral proteins, and they

show that the Evolutionary Action

equation quantifies the impact of muta-

tions on assays of function and fitness.

The Evolutionary Action correlates
with severity in inherited diseases

Since protein variations of unknown sig-

nificance (VUS) are a recurring problem

in exome interpretation, we asked

whether the Evolutionary Action could

be a biomarker for the impact of pro-

tein mutations on human diseases.

We first assembled a set of 218 genes

from the UniProt database that were

each annotated with both benign and

harmful coding polymorphisms (see

Methods). The Evolutionary Action

distribution was strikingly different be-

tween the mutations that were benign

and those that were harmful, with the

former strongly biased to low action and

the latter strongly biased to large action

(Wilcoxon rank-sum P-value < 10�16)

(Fig. 4A). As a result, the action separated

the two types of mutations with better

specificity and sensitivity than other

methods: The area under a receiver oper-

ating characteristic curve was 85% overall,

and it rose above 90% when only the

mutations with the greatest or the least

action were considered (Supplemental

Fig. 2A,B). A second test aimed to distin-

guish harmful mutations within a single

protein family. Starting from a collection

of 26,597 human tumors (Petitjean et al.

2007), we compared TP53mutations seen

in 10 or more different cases, and thus

more likely to play a role in pathogenesis,

to those seen in fewer cases. The Evolu-

tionary Action of the frequent mutations

was significantly larger (x2 P-value = 9 3

10�34), and these mutations were also

typically nonfunctional in vitro (Fig. 4B).

In contrast, the less frequent mutations

had no action bias (Fig. 4C). The subgroup

of less frequent mutations that impaired

function in vitro, however, was biased to

large action (x2 P-value = 2 3 10�47).

These data show that the action values of

clinically harmful and of benign poly-

morphisms are not random. In many disease-associated proteins,

low action polymorphisms are typically benign and thosewith high

action are typically harmful.

These distribution biases suggest that action may be prog-

nostic of morbidity in diseases that depend directly on a gene de-

Figure 1. Computation of the Evolutionary Action equation. (A) An illustration of computing the
Evolutionary Action of a mutation, such as the R175H in the TP53 gene, from the evolutionary impor-
tance of the residue R175 and the arginine-to-histidine substitution magnitude at that position. (B) A
sequence alignment and the associated evolutionary tree show that the evolutionary fitness gradient of
a protein residue, which is defined as the phenotypic fitness change due to an elementary genotypic
change, will be larger (in red), or smaller (in blue), depending on the phylogenetic distance between
evolutionary branches that differ at that position. Since the Evolutionary Trace ranks the functional
importance of sequence positions by correlating residue variations with phylogenetic branching
(Lichtarge et al. 1996; Mihalek et al. 2004), we can estimate the evolutionary fitness gradient with ET.
(C ) A color matrix, computed from nearly 67,000 protein sequence alignments, displays the relative
substitution odds from alanine to any other amino acids (in single-letter code) depending on the
evolutionary gradient decile at themutation site (most likely substitutions are green, least likely ones are
in red), and compared to the standard BLOSUM62. (D) The gradient-specific (gray bars), the nonspecific
(dashed lines), and the BLOSUM62 (solid lines) substitution odds are illustrated for alanine substitutions
to valine (V), threonine (T), and aspartate (D). The code is (A) alanine, (W) tryptophan, (F) phenylala-
nine, (Y) tyrosine, (L) leucine, (I) isoleucine, (V) valine, (M) methionine, (C) cysteine, (H) histidine, (T)
threonine, (G) glycine, (P) proline, (Q) glutamine, (N) asparagine, (S) serine, (D) aspartic acid, (E)
glutamic acid, (K) lysine, (R) arginine.
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fect. Therefore, we turned to two autosomal recessive monogenic

disorders. First, a curated and well-characterized study of 103

mutations of the CFTR gene linked them to cystic fibrosis (44

cases); CFTR related disease (53 cases); or benign presentations (six

cases) (Dorfman et al. 2010). The median action between these

groups was significantly different (Wilcoxon rank-sum P-value =

1.6 3 10�3) (Fig. 4D), such that high, intermediate, and low action

values separated them. Second, Pompe’s disease is a clinically het-

erogeneous disorder, caused by adeficiencyof acid alpha-glucosidase,

Figure 2. Mutational action correlates with experimental impact. Each
panel shows along the x-axis the action predicted from Equation (2) and
along the y-axis the fractional activity or fitness measured experimentally
as (A) the average loss of recombination activity in 31 point mutants of E.
coli RecA protein; (B) the nonfunctional fraction of 4041 pointmutants in E.
coli lac repressor in a b-galactosidase repression assay (Markiewicz et al.
1994); (C ) the nonfunctional fraction of 2015 point mutants in bacte-
riophage T4 lysozyme in a plaque formation assay (Rennell et al. 1991);
(D) the nonfunctional fraction of 336 HIV-1 protease point mutants in
substrate cleavage (Loeb et al. 1989); and (E) the average transactivation
activity of 2314 human TP53 point mutants assayed in yeast over eight
response-elements (Petitjean et al. 2007). The data are binned into action
deciles, the R2 values indicate Pearson product-moment correlation co-
efficients following linear fitting, and the standard error of the mean is
shown with error bars.

Figure 3. The performance of the Evolutionary Action method was
compared to state-of-the-art methods. (A) The area under the receiver
operating characteristic curve (AUC) of the relative sensitivity and speci-
ficity to separate harmful from harmless mutations for the Evolutionary
Action, PolyPhen-2, SIFT, and MAPP was calculated for each of the data
sets: 2015 bacteriophage T4 lysozymemutants to break the host cell walls;
4041 E. coli lac repressor mutants to repress b-galactosidase more than
20-fold; 336 HIV-1 protease mutants to cleave the Gag and Gag-Pol
precursor proteins (PolyPhen-2 returned no predictions for the HIV-1
protease mutations); and 2314 human TP53 mutants to transactivate
eight TP53 response-elements in yeast. (B) The average rank of current
methods (bars), from different groups (letters), to predict the activity
of cystathionine beta-synthase (CBS) mutants was assessed by the
Critical Assessment of Genome Interpretation (CAGI) of 2011. The CBS
activity was assayed for the ability of each mutant to restore growth in
yeast cells lacking the normal CYS4 ortholog under two different
growth conditions (high and low concentrations of pyridoxine co-
factor) (Mayfield et al. 2012). Twenty methods from nine groups were
assessed over nine criteria (precision, recall, accuracy, harmonic mean
f1, Spearman’s rank correlation coefficient, Student’s t-test P-value,
root mean square deviation [RMSD], RMSD over Z-scores, and the
AUC) for each cofactor concentration, and then their rank was aver-
aged. Evolutionary Action is shown in red, and a taller bar is a better
rank. Raw data and assessment details are available at the CAGI website
(https://genomeinterpretation.org/) and from the CAGI organizers
Susanna Repo, John Moult, and Steven E. Brenner. The Evolutionary
Action analysis files are available at http://mammoth.bcm.tmc.edu/
KatsonisLichtargeGR.
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an enzyme encoded by the GAA gene. Knownmissense mutations

of GAAwere classified by order of decreasing severity into types B,

C, D, and E, ending with nonpathogenic type F (Kroos et al. 2008).

The median action of GAA mutations rose significantly with

clinical severity (Wilcoxon rank-sum P-value = 53 10�6), being in

the top half for pathogenic types B–E, but in the bottom half for

nonpathogenic type F (Fig. 4E). These data show that in two dif-

ferent diseases the Evolutionary Action of mutations in causative

genes is related to morbidity.

Action reflects the fitness effect of population-wide
polymorphisms

If action is a general biomarker of morbidity or fitness effect, then

we would expect the population to carry fewer coding poly-

morphisms with larger action. Indeed, long-standing population

genetics models suggest that the probability of polymorphisms to

remain in a population decreases nearly exponentially with their

fitness effects (Fisher 1930), although without a practical measure

for the size of the phenotypic effect, validation in genomic data

has been lacking (Orr 2005). Thus, to test the generality of the

action equation, we tallied the frequency of coding poly-

morphisms from the 1000 Genomes Project (The 1000 Genomes

Project Consortium 2012) as a function of their action. The

261,899 unique coding variations were divided into common

mutations (36,379 SNPswith allele frequencies above 1%) and into

rare mutations (225,520 SNVs, with allele frequencies below 1%).

Without special regard for zygosity, dominance, genetic back-

ground, or trait associations, and in contrast to other measures of

deleterious impact (Supplemental Fig. 3A,B), we found that the

action distribution was nearly exponential in both groups (R2 =

0.98 and 0.95, respectively) (Fig. 5A), but the decay or loss rate,

denoted by l, was larger for common than for rare mutations. To

investigate these different loss rates, the variations were grouped

more finely by their allele frequency, denoted by n (Fig. 5B). This

revealed a family of exponential distributions with loss rates that

were log-linear in n:

l=a+b � lnðvÞ; ð3Þ

where a = 4.53 10�2 and b = 3.23 10�3 fit these distributionswith

correlation coefficient R2 = 0.92 (Fig. 5C). These data support the

Evolutionary Action as a generalmeasure of fitness effect and show

that the human coding variations from the 1000 Genomes Project

are distributed as a nearly exponential function of the action

modulated by a power law function of allele frequency:

N =N0 � e�l�Action =N0 � e�a�Action � v�b�Action; ð4Þ

whereN is the fraction ofmutations of a given allele frequency,N0 =

0.2, and the loss rate l is a scaling factor for the selective constraints

on mutations with different actions (Hartl and Taubes 1996).

Coding variations found in single cells, in individuals, and in

populations are ensembles of variants that span a wide range of

different allele frequencies. The overall action distribution of these

different ensembles, however, is also nearly exponential with a loss

rate l unique to each one (Supplemental Fig. 3C). For example, l is

largest in an individual’s exome, but it decreases by 40% over

a group of individuals, such as the entire set of variations from

Figure 4. Mutational action correlates with morbidity. (A) The action distributions of coding polymorphisms from 218 genes for the 8553 cases that are
disease-associated (in black) compared to the 794 that are benign (in gray). Each of these genes, obtained from the UniProt database, is linked to at least
one disease. (B) The action distribution of 343 somatic TP53mutations found frequently in tumor samples (at least ten times in 26,597 cases tallied in the
IARC database), compared to (C ) the remaining 1026 sporadic TP53 mutations. The fraction with less (more) than 50% of the wild-type transactivation
activity in yeast assays is black (white), and those for which these data are unknown is gray. (D) The action distribution of 103 mutations in the CFTR gene
binned by the severity of clinical presentation: full-blown cystic fibrosis (top), CFTR-related disorders (middle), and no symptoms (bottom) (Dorfman et al.
2010). Vertical bars indicate median action; numbers refer to the total mutations in each group; box sizes match the quartiles of the distributions, and the
error bars indicate the spread of variation. (E) The action distribution of 135 Pompe disease mutations in the GAA gene binned into decreasing severity
classes from Class B, the most severe, to Class F, which contains the asymptomatic patients.
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1092 individuals sequenced in the 1000 Genomes Project, and it

decreases by 73% over the set of all somatic cancer mutations de-

scribed in The Cancer Genome Atlas (TCGA) (The Cancer Genome

Atlas ResearchNetwork et al. 2013). These data show that ensemble-

specific loss rates are dominated by common polymorphisms

for an individual’s exome, by rare variants over a population

such as the group of the 1000 Genomes Project exomes, and

by random nucleotide changes in somatic cancer tissue from

TCGA (Fig. 5C).

Discussion
A fundamental problem in evolution is to quantify how genotype

variations drive phenotype variations. This work therefore applied

elementary mathematical concepts from differential analysis to

formulate an equation of evolution. The result is a computable first

order Evolutionary Action equation for the effect of genotype

perturbations on fitness. At the molecular level, the action esti-

mates the deleterious impact of substitutions in proteins from vi-

ruses, bacteria, and eukaryotes. In individuals, this deleterious

impact measured by the Evolutionary Action correlates with the

pathogenicity and clinical course of mutations in disease-causing

genes, and it separates genes with harmful versus neutral muta-

tions by their different action distributions. The action threshold

for clinical consequences may differ depending on the essentiality,

allelic dominance, and external factors specific to each protein.

Finally, over a population, the greater clinical harm associated

with larger Evolutionary Action governs the purifying selection of

coding polymorphisms, notably recovering the distribution of

fitness effect anticipated by Fisher in 1930 and consistent with

population genetics models (Fisher 1930; Orr 2005). Thus, the

Evolutionary Action equation quantitatively bridges the pheno-

typic fitness effects of mutations across molecular, clinical, and

population genetics data.

This Evolutionary Action equation rests on the fact that

=f(x)�dx = dy for any differentiable function f(x) = y and on the

postulate that the genotype g and the fitness phenotype u can stand

for x and y, respectively, andbe relatedby adifferentiable evolutionary

function f. For missense mutations, the genotype variation dg is the

difference in amino acid similarity, estimated by substitution odds,

and the partial derivative components of the gradient =f

is the sensitivity of fitness to mutations, estimated by the evolu-

tionary importance of each sequence residue. Although evolutionary

importance is often conflated with conservation, in the context of

differential analysis, an average, such as conservation, is less accu-

rate than ET, which directly uses phylogenetic analysis to couple

variations in sequence to variations in fitness, as a derivative

should, since by definition derivatives are ratios of variations. The

fact that ET measures a fundamental evolutionary quantity, =f, is

consistent with its accuracy and versatility to predict, selectively

block, redesign, or mimic protein function by pinpointing the

amino acid determinants of specificity (Yao et al. 2003; Rodriguez

et al. 2010; Amin et al. 2013). To improve substitution odds, we

likewise used phylogenetic analysis by considering the evolutionary

gradient of the substituted site. Both terms, =f and dg, contribute

to the impact of a mutation since each one separates deleterious

from neutral mutations if the other is held nearly constant (Sup-

plemental Fig. 4).

It is noteworthy that the evolutionary fitness function f be-

tween genotype and phenotype is never solved for. It suffices to

evaluate =f because the perturbation approach treats mutations as

infinitesimal displacements from the current fitness state of a spe-

cies. This shifts the focus from discovering global evolutionary

paths in the fitness landscape, tantamount to solving f and pre-

dicting protein structure and function from sequence, to evaluat-

ing the path divergences du as a sequence mutates and ‘‘jumps’’ in

the fitness landscape. Computing these jumps requires solving

Eq. (2), which is simpler because the phylogenetic divergence tree

provides an integrative summary of the impact of mutations over

all past relevant molecular, cellular, systemic, and environmental

interactions even if the details of these features remain unknown.

Figure 5. Nearly exponential action distributions of human coding
polymorphisms. (A) Coding polymorphisms from the 1000 Genomes
Project (including 1092 individuals) were separated into 225,751 rare
variants (left) and 36,354 common mutations (right), based on an allele
frequency (n) threshold of 1%. Both groups fit exponential distributions
with Pearson coefficients R2 of 0.95 and 0.98 and decay rates of 2.18 3
10�2 and 3.383 10�2, respectively, when binned into action deciles. The
insets show equivalent log-linear plots. (B) These groups were further
fractionated by allele count or frequency. The action distribution of
polymorphisms in the same tranche of allele count, or frequency, also fit
an exponential with R2 values from 0.87 to 0.99. The colors represent
different Evolutionary Action (green for low and red for high). (C ) The
action decay rate for these exponentials varies linearly with the logarithm
of their allele frequency (R2 value of 0.92). Arrows indicate the observed
decay rates for all nonsynonymous coding mutations from a single in-
dividual’s exome; for the rare and the common mutations of the 1000
Genomes Project; for somatic cancer mutations retrieved from TCGA
(http://tcga-data.nci.nih.gov); and for nonsynonymous mutations obtained
by the translation of random nucleotide changes following the standard ge-
netic code (random nucleotides).
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In the future, it may be possible to improve accuracy with addi-

tional higher-order perturbation terms that account for epistatic

effects. Another source for improvements is that, although =f and

dg are computed over the past evolutionary record, their product

informs on the Evolutionary Action of mutations du at any point in

time, including today. In other words, the fitness metric and the

action of a mutation are assumed to be time-invariant. This is an

approximation since divergent proteins can develop new func-

tional sites, a phenomena that leads to branch-specific evolu-

tionary gradient variations and accounted for by differential ET

(Lichtarge et al. 1997), for example, to identify ligand-specific sites

(Madabushi et al. 2004; Rodriguez et al. 2010).

Despite its simplicity and these limitations, the Evolutionary

Action equation matches experimental data as well as or better

than the most sophisticated current machine-learning and statis-

tical methods, and when applied to the 1000 Genomes Project

data, it brings to light fine details and new parameters for the

distribution of polymorphisms. First, the strength of selective

constraints against mutations with large fitness effects is specified

by l, the exponential loss rate constant of the Evolutionary Action

distribution. This loss rate is greatest in individuals, consistent

with selective pressure to carry few detrimental mutations. It is

smaller in a population, where rare variations may accumulate in

unrelated individuals for better overall adaptive potential. And l is

least and reaches the lower limit set by the codon bias itself in

diverse cancer cells, in which the large background of random

passenger mutations obscures the rare cancer driving mutations.

Second, as polymorphisms spread in a population the loss rate l

grows linearly at a rate of b until it peaks, at fixation, with lmax = a,

when n = 1. Thus, a and b are basic parameters of evolutionary drift

and adaptation. For the same value of a, species with larger b ex-

perience less selective forces against new, larger deviations from

neutral alleles, which may increase the pool of variations un-

derlying genetic drift and possible adaptation. Reciprocally, for the

same value of b, species with larger a have relatively greater se-

lective forces against larger deviations from neutral alleles, lower-

ing possibilities for drift and adaptation. Since the mutation rate is

subject to molecular and selection factors (Shee et al. 2012), one

may speculate whether similar factors might modulate a and b,

and underlie shifts between evolutionary quiescence and bursts.

More certain is that mutations with greater action are at in-

creasing selective disadvantage and that fixation should mostly

favor polymorphisms with least action (Fig. 5A,B), consistent with

the nearly neutral theory of molecular evolution (Ohta 1992). This

is also true when comparing the Evolutionary Action differences

among pairs of homologous proteins as they diverge further apart.

Indeed, homologs that are evolutionarily closer, based on sequence

identity, consistently exhibit lower overall, as well as average, action

differences (Supplemental Fig. 5). Therefore the genotype-phenotype

trajectory should follow a path of nearly least Evolutionary Action,

with the frequency of larger deviations from least action attenuating

exponentially as dictated by the loss rate l. The emergence of least

action as a fundamental evolutionary constraint is intriguing and

suggests a convergence between evolution in biological systems and

familiar variational principles in physics.

For now, starting with elementary calculus and a reductive

view of biology that u = f(g), we show a first principle perturbation

equation for the Evolutionary Action of genotype variations on

functional fitness phenotype that robustly matches data across

biological scales and clades. This opens new directions for the

formal analysis of evolution and, in practice, sheds light on the

analysis of coding variations, with applications to biological en-

gineering, to genome interpretation, and to disease surveillance

and personalized therapy based on individual and comparative

mutational action profiles.

Methods

Calculation of action
The action Du was calculated by the product of the evolutionary
gradient @f/@ri and the perturbationmagnitude of the substitution,
Dri,X!Y. These two terms, @f/@ri and Dri,X!Y, were measured by
importance ranks of the Evolutionary Trace method and by amino
acid substitution odds, respectively, as described below. We nor-
malized both terms and their product to become percentile scores
for each protein. Therefore, high or low action indicated deleteri-
ous or neutral assessment, respectively, such that, for example, an
action of 68 implied that the impact was higher than 68% of all
possible amino acid substitutions in a protein.

To compute the evolutionary gradient for position i of protein
P, we retrieved its homologs in three databases (NCBI nr, the
UniRef100, and the UniRef90 [Suzek et al. 2007]) with blastall
2.2.15. Up to 5000 homologous sequences were selected each time
with an e-value cutoff set to 10�5, theminimum sequence identity
set to 30%, and all other parameters set to default values. Se-
quences were aligned with MUSCLE (Edgar 2004) (http://drive5.
com/muscle/), and the columns with gap in the query sequence
were removed. Then, we ran the rvET method (Mihalek et al.
2004), which optimizes sequence selection by maximizing the
spatial clustering among top-ranked residues (Madabushi et al.
2002) and their rank information (Yao et al. 2006), and we aver-
aged the ET scores produced on each of these three alignments.We
computed substitution log-odds following the BLOSUM meth-
odology (Henikoff and Henikoff 1992), with the difference that
the odds were computed separately depending on the evolu-
tionary gradient of the substituted position. For this, we assembled
as above over 67,000 multiple sequence alignments for proteins
available in the PDB database (http://www.rcsb.org/pdb/), and we
computed an evolutionary gradient for each position of each
alignment. These positions were divided into 10 groups (gradient
deciles), and the substitution odds were computed for each group,
as described below. An additional structure-dependent set of substitu-
tion matrices further divided each gradient decile into nine groups:
into low (< 10 Å2), medium (10–50 Å2), and high solvent accessibility
(> 50 Å2), and also into helical, stranded, and coiled secondary struc-
ture elements. Finer bins of substitution odds may better distinguish
the selection constraints that are less common in protein evolution,
such as for transmembrane patches (Soyer et al. 2003).

Calculation of the substitution log-odds

Let fijc be the total number of matches between amino acid i (1# i#
20) to any amino acid j (1# j# 20)when i is themost frequent amino
acid ina columnof class c (1# c# 10or 1# c# 90). Then theobserved
frequency, qijc, for substituting the amino acid i by j in class c is

qijc =
fijc
+
j

fijc
:

The probability of occurrence of the amino acid j in the data
set is

ej =

+
i

+
c

fijc

+
i

+
j

+
c

fijc
:
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The log-odds for the substitution of i is then calculated with
entries

sijc = log2

�
qijc
ej

�
:

Unlike the BLOSUM methodology, log-odds were not
rounded to the nearest integer.

Current predictors of mutation impact

SIFT predictions were obtained using ‘‘SIFT BLink’’ (http://sift.jcvi.
org/). MAPP predictions were obtained after installing the software
(http://mendel.stanford.edu/SidowLab/downloads/MAPP/) using
sequence alignments from the UniRef90 database as input. The
‘‘P-value interpretations of theMAPP scores’’ were used as the impact.
PolyPhen-2 predictions were obtained using the default parameters
of the batch query tab at http://genetics.bwh.harvard.edu/pph2/.

Statistics

The x2 test was used to calculate the P-value of the overlap between
action and clinical association or yeast assay activity of TP53 mu-
tations. The Wilcoxon rank-sum test was used to compare the
distributions of disease and benign polymorphisms for the data set
of UniProt mutations and of the TP53, CFTR, and GAA genes.

Experimental data sets

The set of 31 E. coli RecAmutations was assayed in Adikesavan et al.
(2011) for its recombination activity as a percent of the wild-type
activity. The mutations were binned in 10 action groups and the
average recombination was calculated. The set of 2015 bacterio-
phage T4 lysozymemutations was assayed in Rennell et al. (1991)
by the amount of formed plaque, due to lysozyme’s break-up of
the host cell walls. Mutants with no (�) and difficult to discern
(�/+) plaque formation were considered as deleterious, while
mutants with normal (+) and small plaque formation (+/�) were
considered as neutral. The set of 4041 E. coli lac repressor muta-
tions were assayed in Markiewicz et al. (1994) by the protein’s
repression activity. Mutations with phenotypes less than 20-fold
(� and �/+) repression activity were considered as deleterious,
while mutants with more than 20-fold (+ and +/�) repression
activity were considered as neutral. The set of 336 HIV-1 protease
mutations were assayed in Loeb et al. (1989) by the amount of
cleavage products of Gag and Gag-Pol precursor proteins. Mu-
tants with no (�) and some (�/+) product were considered as
deleterious, while mutants with normal (+) function were con-
sidered as neutral. The set of 2314 TP53 mutations were assayed
in yeast for transactivation on eight TP53 response-elements
(Kato et al. 2003). Values > 100% in any assay were treated as
equal to 100%. Then, we calculated the average transactivation,
and we grouped the mutants with < 50% of wild-type activity as
deleterious and the rest as neutral.

The 26,597 TP53 tumor mutations were obtained from the
IARC TP53 database (version R14) (Petitjean et al. 2007), and they
were divided into 342 recurrent mutations (at least 10 times) and
1023 nonrecurrent mutations (nine times or less). The 9347 hu-
man mutations on disease-associated genes were obtained from
the UniProt database (http://www.uniprot.org/) after we roughly
classified each as neutral if it was annotated by the keywords
‘‘dbSNP,’’ ‘‘polymorphism,’’ and ‘‘VAR_’’ or as disease-associated
otherwise. From 20,343 human genes, 70% (11,995) had at least
one SNP entry and only 15% (3023) had at least one disease-

association entry. We selected genes with at least 10 mutations
associated with the same disease, which had at most 10 mutations
marked as ‘‘Uncertain pathogenicity.’’ For the resulting 218 genes,
we inspected and corrected the rough classification and removed
mutations associated with uncertain pathogenicity and sporadic
cancers. The GAA missense mutations and their Pompe’s dis-
ease severity classification were obtained from http://cluster15.
erasmusmc.nl/klgn/pompe/mutations.html. The 278,179 human
polymorphisms were obtained from the phase 1 analysis of the
1000 Genomes Project, at http://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/phase1/analysis_results/input_call_sets/. The somatic cancer
mutations were obtained from The Cancer Genome Atlas (TCGA)
at http://cancergenome.nih.gov/.

The output files of the Evolutionary Action analysis for the
above proteins may be found at http://mammoth.bcm.tmc.edu/
KatsonisLichtargeGR.

An Evolutionary Action server is accessible at http://
mammoth.bcm.tmc.edu/EvolutionaryAction.
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