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Abstract
Given the high prevalence of artificial intelligence (AI) research in medicine, the development of deep learning (DL) algorithms

based on image recognition, such as the analysis of bone marrow aspirate (BMA) smears, is rapidly increasing in the field of

hematology and oncology. The models are trained to identify the optimal regions of the BMA smear for differential cell count and

subsequently detect and classify a number of cell types, which can ultimately be utilized for diagnostic purposes. Moreover, AI is

capable of identifying genetic mutations phenotypically. This pipeline has the potential to offer an accurate and rapid preliminary

analysis of the bone marrow in the clinical routine. However, the intrinsic complexity of hematological diseases presents several

challenges for the automatic morphological assessment. To ensure general applicability across multiple medical centers and to

deliver high accuracy on prospective clinical data, AI models would require highly heterogeneous training datasets. This review

presents a systematic analysis of models for cell classification and detection of hematological malignancies published in the last 5

years (2019–2024). It provides insight into the challenges and opportunities of these DL‐assisted tasks.

INTRODUCTION

The progress of artificial intelligence (AI) is an important milestone in
medicine. In particular, it has become an invaluable tool in radiology and
digital pathology due to its exceptional image recognition capabilities.1–3

Similarly, the evaluation of differential blood counts, one of the most
common diagnostic tests in medicine, is essentially based on image
recognition of typical physiological and pathological blood cells. This
process is now implemented in analyzers for daily clinical routine.4

In the diagnosis of bone marrow (BM) disorders, such as acute
myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic
myeloid leukemia (CML), and myelodysplastic syndrome (MDS), manual
microscopic analysis of BM morphology remains the primary diagnostic
tool. However, the quantitative and qualitative analysis of BM cells poses
a number of additional challenges. In contrast to peripheral blood (PB),
bone marrow aspirate (BMA) contains a significantly higher number of cell
classes that are not distributed in their physiological, spatially fixed en-
vironment as in histology. The selection of representative areas in the
context of smear preparation has a significant impact on the result.

Cellular trails behind BM particles with well‐spread cells are considered
optimal for obtaining cytological detail.5 Furthermore, the cell maturation
process is continuous, with subtle morphological changes within lineages,
which can lead to subjectivity and high inter‐observer variability in cell
differentiation.6 Although the process of manually counting and classify-
ing several hundred nucleated cells is time‐consuming, it remains the
fastest means of obtaining a basis for determining the most appropriate
therapeutic approach. In emergency situations, such as acute promyelo-
cytic leukemia (APL), morphologic detection and correct classification of
abnormal promyelocytic blasts is essential for prompt therapeutic
decision‐making and initiation of treatment. As the availability of trained
medical personnel is becoming increasingly limited, this may lead to a
bottleneck in routine clinical care.

In recent years, highly sophisticated deep learning (DL) algorithms
have been developed and applied for the accurate detection and
classification of cells in both PB7,8 and BMA smears.9,10 A simplified
workflow is presented in Figure 1. In leukemia and MDS, where the
distinction between physiological and leukemic or dysplastic cells
is of paramount importance for risk stratification and therapeutic
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decision‐making, AI models show promising performance.11–13 In addi-
tion, automated end‐to‐end analysis systems, such as Morphogo and
Scopio Labs Full‐Field Bone Marrow Aspirate™ application, include
hardware and software components for digitization of BMA smears and
subsequent AI‐assisted detection and classification of nucleated cells.14–18

It is therefore important to gain a deeper understanding of its strengths
and limitations as a support mechanism for filtering urgent cases.

Medical devices with AI software must conform to challenging reg-
ulatory aspects to ensure the system's transparency and data protec-
tion.19 PB analyzers have set rigorous standards for clinical validation, with
an increased focus on the explainability of the implemented neural net-
works. Moreover, the real‐world performance of these devices demon-
strates accuracy and reliability in clinical settings. Recently, the Scopio
Labs Full‐Field Bone Marrow Aspirate™ application received clearance
from the Food and Drug Administration (FDA), thus marking an important
milestone as the first application for AI‐based analysis of BMA smears.

Consequently, the following review presents a systematic compila-
tion of individual steps required for the evaluation of BMA smears with
regard to the automatic classification of cells. The aim is to offer an
overview of the research that was carried out in the last 5 years
(2019–2024). The following terms and their combinations were used to
search relevant publications on PubMed: “artificial intelligence,” “machine
learning,” “deep learning,” “convolutional neural network,” “bone mar-
row,” “leukemia,” “myelodysplastic syndrome,” and “cell classification.”
Only models trained and used on digitized BMA smears were included.

In addition, we provide an analysis of what is already available
and identify where further development is needed. Performance
metrics of the reviewed publications are not directly comparable, as
the majority of publications implemented their own methods on their
own datasets, and few were validated on external datasets. More-
over, the tasks (region selection, cell classification, diagnosis predic-
tion) and statistical methodology varied between publications. If
available, 95% confidence intervals (CI) were reported.

Bone marrow morphology in hematological
malignancies

While the use of advanced diagnostic tools such as flow cytometry and
cytogenetic analysis is increasing, traditional morphologic examination
remains the gold standard for diagnosing hematologic disorders.

Leukemia can occur in acute or chronic form. The acute form can be
characterized by the presence of ≥20% immature cells, called blasts, of
myeloid (AML)20 or lymphoid (ALL)21 lineage in the BM, which suppresses
normal hematopoiesis. In addition, acute leukemias present with a diverse
spectrum of immunophenotypes and aberrations in hematopoietic‐
associated genes, such as mutations in RUNX1 and KMT2A.22

CML is a myeloproliferative disorder characterized by clonal ex-
pansion of myelopoietic cells and the presence of the BCR::ABL1 on-
cogene.23,24 In contrast to AML, in which the myeloid lineage is typically
represented by myeloblasts and mature granulocytes (hiatus leucaemi-
cus), the BM morphology of a patient with CML in the chronic phase
shows hypercellularity (Figure 2), blast cells below 10%, and a complete
spectrum of granulocytic progenitors (left shift), with an increased
myeloid to erythroid ratio. CML may progress to a rapidly growing acute
leukemia (blast phase), which morphologically resembles ALL or AML, as
it presents with an increase (>20%) in lymphoblasts or myeloblasts,
respectively.25

MDS is a heterogeneous class of hematologic disorders that
affect the BM. With the exception of MDS with excess blasts
(MDS‐EB), which can present with up to 19% blasts, MDS typically
presents with <5% blasts in BM.20 Cells from erythropoietic, mega-
karyopoietic, or granulopoietic lineages exhibit morphologic ab-
normalities, including nuclear hypersegmentation, megaloblastic
changes, or asynchronous nuclear and cytoplasmic maturation. The
complexity of MDS and the subjective assessment of dysplastic fea-
tures imply a high inter‐observer variability.26,27 MDS can progress to
AML through the accumulation of myeloid blasts in PB and/or BM. In
addition, BM architecture, cellularity, or tissue composition may be
altered in patients with hematologic neoplasms. AI models were
successfully implemented to estimate cellularity28,29 and classify cell
lineages in BM biopsies, as well as to predict diagnosis, genetic
aberrations, and progression to AML in patients with myelodysplas-
tic/myeloproliferative disorders.30 These models, which can navigate
the complex BM morphologic landscape, may provide a valuable
complement to BMA smears for an inclusive BM analysis pipeline.

A deep dive into deep learning

AI has been integrated into a multitude of applications, including
healthcare and medicine. To facilitate the interpretation of results

F IGURE 1 Example of an end‐to‐end pipeline for deep learning‐based cell analysis and subsequent diagnosis on a digitized bone marrow aspirate smear from a

patient with chronic myeloid leukemia. Created with BioRender.com.
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addressed in the following chapters, we provide a short overview of
the terminology and definitions.

Machine learning (ML) is a specific branch of AI that specializes in
pattern recognition and the ability of a system to learn about data
through the application of supervised or unsupervised methods.
While supervised learning is used to predict outcomes using labeled
data, unsupervised learning can identify patterns or clusters in
unlabeled data. There are different task types in supervised learning
(regression, binary classification, multiclass classification, multi‐label
classification, object detection, segmentation), depending on the type
of outcome variable that is predicted. In our context, the most
relevant task types are segmentation for region selection, object
detection for identifying cells, and multiclass classification for both
cell classification and diagnosis prediction. Hereby, each observation
is classified into exactly one of multiple target classes (e.g., cell type or
disease diagnosis). Popular applicable learning algorithms for such a
task are (multinomial) logistic regression, decision trees, random for-
ests, support vector machines, and neural networks, among others.
Deep learning is a subset of ML that involves the training of neural
networks with multiple layers. The goal of deep neural networks
(DNNs) is to model complex patterns in data by optimizing the suc-
cess of the learning process and the network's self‐learning ability.31

Convolutional neural networks (CNNs) are a prominent example of
DL models that gained considerable traction in the field of image
classification and segmentation. Another type of supervised learning
is multiple instance learning (MIL), which presents an alternative
approach for diagnosis prediction in cases where patient‐level an-
notations are available instead of single‐cell annotations. Here, labels
are associated with sets of instances as opposed to single instance
label.32 Rather than instructing the model to identify all cells as X, we
train it to recognize a set of samples, at least one of which is labeled
X, and thus categorize the entire set as “positive.”

Model evaluation can be based on a variety of different metrics.
Commonly used metrics include sensitivity, specificity, accuracy,
precision, and F1 score. In the case of multiclass classification, these

metrics can and should be estimated and reported per class, but could
also be further aggregated (e.g., mean sensitivity over all classes). The
precision of a model is defined as the proportion of positive predic-
tions that are correct. In contrast, the recall of a model is the pro-
portion of positives that a model is able to identify. The F1 score is a
metric that represents the harmonic mean of precision and recall and
indicates the percentage of correct predictions made by the model. It
is thus one possibility to find a balance between precision and recall.
Another metric to evaluate the performance of a classification model
is the AUC (area under the receiver operator characteristic curve;
sometimes also abbreviated as AUROC), as it shows how well the
model can distinguish between a healthy person and a patient with
leukemia, for example. In contrast to previously mentioned metrics,
AUC evaluates a model's performance across multiple thresholds.
Therefore, it can only be calculated for prediction models that output
a continuous value for class membership. In circumstances where the
performance of all classes is of equal importance, it is preferable to
employ macro‐averaging of the AUC, as opposed to micro‐average,
which is a global average.

To improve the generalizability of a model and to minimize bias in
performance estimates, available data should be split up into train,
validation, and test datasets for the different purposes of model
training, selection, and testing, respectively. Typically, it is necessary
to utilize a large number of training images to achieve a high level of
prediction performance. This depends on the task difficulty and in
some cases, tens of training images may already yield a satisfactory
performance.33 The advancement of image processing algorithms has
led to the development of increasingly sophisticated architectures for
the multiclass classification of cell types. In a comparative study,
VGG, ResNet, RegNet, and Transformer architectures were tested
against the original ResNeXt‐50 model proposed by Matek et al.,9

using the same dataset of BM cell images. The models performed
equally good or better than ResNeXt‐50. However, there is no evi-
dence to suggest that complex architectures with a high number of
parameters are associated with superior accuracy. In this instance, the

F IGURE 2 Overview of high‐level morphology (×400 magnification) observed in bone marrow aspirate smears from healthy individuals and patients with acute

lymphoblastic leukemia, acute myeloid leukemia, chronic myeloid leukemia, and myelodysplastic syndrome.
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ResNet model with the lowest number of parameters demonstrated
the second highest level of accuracy.34

Saliency maps, class activation mapping (CAM), and gradient‐
weighted CAM (Grad‐CAM) are methods that facilitate the inter-
pretation of model predictions and the identification of potential
shortcomings, by highlighting which pixels (features) are most re-
levant for the respective classification. In this way, misclassifications
of dysplastic granulocytes can be traced back to a feature focus on
cytoplasmic pixels instead of the nucleus, as in correct predictions.35

To enlarge the training image dataset and to prevent overfitting,
data augmentation can be implemented.36 Data augmentation in-
volves modifying, for example, the orientation, brightness, or contrast
of the training images to create slight variations and thus enhance the
variability of the dataset. In contrast, synthetic data involves the ar-
tificial creation of new images. These methods are especially im-
portant when dealing with high variability between center‐dependent
staining or scanning methods.

As the capabilities of DL models have steadily increased over the
past years, the digitization of tissue samples using whole slide scan-
ners has become increasingly common.37 Nevertheless, the resulting
whole slide images (WSIs) may exhibit considerable technical varia-
bility between different scanners.38 This, in addition to variations in
tissue preparation and staining protocols, can pose a challenge to the
general implementation of DL models across multiple datasets.

PIPELINE FOR THE DIGITAL ANALYSIS OF
BONE MARROW

Selection of optimal areas in bone marrow aspirate
smears

In order to automatically analyze cells in BMA smears, single cells
must be detected. Comprehensive reviews of cell detection and/or
segmentation models used in PB and BMA smears have already been
published,39,40 therefore this review focuses on models for region
detection and cell classification. Due to the heterogeneous cell den-
sity in BMA, selecting the right region for cell classification is im-
perative. Several studies used DL algorithms to automatically identify
optimal regions for cell classification in WSIs of BMA smears.

The three‐component ROI‐BMC‐DNNet framework estab-
lished by Su et al. works by segmenting the BM particle region
and sampling the periphery for optimal patches with good cell
distribution. The segmentation model achieved recall and precision

of 0.858 and 0.885, respectively.41 Similarly, Tayebi et al. built a
pipeline to identify appropriate or inappropriate region of interest
(ROI) tiles for cell classification in BMA smears from patients with a
wide range of hematologic disorders, including carcinoma, MDS,
and hypo‐ and hypercellular slides. Using a DenseNet‐121 archi-
tecture for binary classification between ROI tiles, the model
achieved cross‐validation accuracy and precision of 0.97 and 0.90,
respectively.42

Wang et al. proposed a model where the first layer CNN model
detects BM particles and cellular trails at low resolution, and the
second layer CW‐Net performs cell detection and classification at
high resolution. With this particular architecture, BM particles and cell
traces were detected with a precision of 1.00 and an accuracy of
>0.930.43 Similarly, Lewis et al. implemented a preliminary slide re-
gion CNN model classifier to distinguish between optimal regions
near BM particles and regions without cells. The model discriminated
between four region classes, including “optimal,” “particle,” “hemo-
diluted,” and “outside,” with an AUC of >0.999.44

Distinguishing which areas of the BMA smear are appropriate for
differential cell counting is an important step (Figure 3), as it allows
for effective cytologic and morphologic analyses. It also limits the
potential for diagnostic inconsistencies.5 In this context, the models
presented here provide a practical and efficient basis for subsequent
cell classification.

Challenges and opportunities in DL‐assisted cell
classification

Due to the higher cell density and presence of different cells at dif-
ferent stages of maturation, automated examination of BM samples is
more challenging compared to PB. Nevertheless, several DL models
have been successfully implemented for this purpose (Table 1 and
Supporting Information S1: Table 1). Figure 4 provides an overview of
the most frequently classified cell types in the reviewed publications.

Detection and classification of blast cells is of paramount im-
portance for rapid diagnosis of leukemia. In 2020, Chandradevan
et al. used cell images from non‐neoplastic BM smears to train a
VGG16 cell classification algorithm that was implemented to
recognize blast cells in samples from three patients with AML, with a
resulting AUC of 0.893. As expected, a subset of blast cells was
incorrectly predicted as promyelocytes, highlighting the subtle intra‐
lineage maturation process.48 The same misclassification was also
observed by Lewis et al.44 and Wang et al.63

F IGURE 3 Workflow of a hematologist: quality check and establishment of specimen's representativity with ×10 objective (bone marrow particles, cellularity

assessment); search of optimal areas for cell classification with ×20–60 objective; differential cell count with ×100 objective.
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By providing a large publicly available image dataset and the
classification of 21 cell types, including immature lymphocytes and
erythroid progenitor cells, the work of Matek et al. represents a
significant advance in the field of automated cell classification in BMA
smears. Using the proposed ResNeXt‐50 cell classification model,
blast cells were correctly identified with a precision and recall of 0.75
and 0.65, respectively.9

Several studies were conducted using the dataset from Matek
et al. for model training34,53,57,62 or evaluation.63 In 2022, a Siamese
classification network was proposed; it differs from ResNeXt‐50 in
that it does not extract features from individual images. Instead, it
prioritizes similarity and dissimilarity between images of the same and
different classes, respectively. This approach achieved classification
precision and recall of blast cells of 0.89.53 Unlike other models, the
DAGDNet (Dual attention gates denseNet) architecture proposed
by Peng et al. suppresses background signals in single‐cell images
to minimize their impact on network features. While the model
achieved a mean precision of 0.881 on the Matek et al.
dataset, the performance of the blast cell classification was lower
than that of the Siamese network (precision and recall of 0.852 and
0.834, respectively).62 Another DenseNet121 model, fine‐tuned with
an attention mechanism, achieved an accuracy of 0.97 in classifying
cells from the same dataset. However, only seven cell classes were
selected, none of which included blast cells.57T
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F IGURE 4 Distribution of classifications across cell lineages in the

reviewed publications.
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Automatic differentiation of blasts of different cell lineages, such as
myeloblast, monoblast, and lymphoblast, is a valuable tool for distin-
guishing acute lymphoid and myelocytic leukemia, as well as certain
subtypes like myelomonocytic or monoblastic/monocytic leukemia.
Wang et al. proposed MLFL‐Net, a model comprising a ResNet‐50
backbone and supplementary branches designed for the precise classi-
fication of 19 BM cell types. For myeloblast and immature lymphocyte,
this model achieved precision of 0.893 and 0.949, respectively, and
recall of 0.903 and 0.968, respectively. In contrast, precision for the
monocytic lineage (monoblast, promonocyte, monocyte) ranged be-
tween 0.756 and 0.891, while recall was between 0.694 and 0.733.
With the exception of acute myelomonocytic leukemia (one correct vs.
four false predictions), the entities were accurately predicted based on
the percentual cell distribution. However, the sample size is limited
(three cases of acute monoblastic/monocytic leukemia).63

The French‐American‐British (FAB) classification indicates that a
high percentage of erythroid precursors, proerythroblasts, is char-
acteristic of acute erythroid leukemia (FAB AML M6), while mega-
karyoblasts are characteristic of acute megakaryoblastic leukemia
(FAB AML M7).20 Of the reviewed publications, the classification of
megakaryoblasts and promegakaryocytes has only been included in
the model proposed by Zhou et al. The researchers combined three
ResNet architectures into an ensemble model and achieved accuracy,
AUC, and F1 scores of 0.829, 0.987, and 0.829, respectively, across
20 types of cells. Average precision for the classification of lympho-
blasts, megakaryoblasts, promegakaryocytes, and proerythroblasts
ranged from 0.8 to 0.9, indicating that the model may be successfully
applied in predicting certain subtypes of leukemia. However, 12%
of myeloblasts were incorrectly identified as lymphoblasts, which
could have implications for the following diagnosis.10 Notably, the
Morphogo system also classifies promegakaryocytes and several
forms of megakaryocytes.17

While some studies group all erythroid maturation stages
together as one cell type classification,41,50,54 others automate the
distinction between multiple stages of erythroblasts (basophilic,
polychromatic, orthochromatic).10,54,60 Similarly, the eosinophilic
granulocyte is predominantly classified as a merged class,9,42,63,66 or
as an immature versus mature cell,60 which is the standard approach
in most clinical situations. However, the differentiation of all pre-
cursor forms appears to be possible with the assistance of DL‐based
classification.16,59

An increase in basophils is observed in myeloproliferative dis-
eases and has been identified as a key indicator of CML progres-
sion.67,68 In this regard, fast and accurate classification of basophils,
as reported in several publications,48,55,60 may be beneficial in clinical
risk assessment.

An important study that paved the way for image feature re-
cognition in BMA smears from patients with MDS was conducted by
Mori et al. The study proposed labeling cells according to the degree
of neutrophil dysplasia. A Faster R‐CNN architecture was trained
to distinguish between cells with the following attributes: normal,
intermediate, dysplasia, and severe dysplasia using single‐cell images
of BMA smears from patients with MDS and patients with non‐MDS
diseases. The model achieved an AUC of 0.944 and an accuracy of
0.972.49

In comparison, Lee et al. expanded the feature range and
included dysplasia from all three cell lineages (dysgranulopoiesis,
dyserythropoiesis, and dysmegakaryopoiesis). The algorithm shows
promising results for distinguishing between normal and dysplastic
cells in BMA smears, with AUC ranging from 0.945 to 0.996, and F1
score between 0.643 and 0.938.35

The application of DL enables rapid identification of an elevated
blast percentage in BM, which may assist in the early detection of

disease progression, such as from MDS to AML or CML in the chronic
phase to CML in the blast phase.

Disease prediction models

The diagnostic process for hematological diseases is complex and
time‐consuming, requiring a significant investment of resources.
Nevertheless, the performance of recently employed DL models
shows potential for automating a part of this process, specifically with
regard to both MDS and leukemia. The relatively monotonous blast
cell morphology observed in ALL (Figure 2) allows for accurate pre-
diction of diagnosis based on BMA smears by DL models.69,70

Notably, Zhou et al. developed a system for the diagnosis of leukemia,
which first identifies and excludes cells that are crushed or un-
countable, and then subsequently classifies the remaining leukocytes.
The system was able to predict the diagnosis of ALL with a sensitivity
of 0.86 and specificity of 0.95.10 A summary of the publications that
have implemented DL for disease recognition without single‐cell
classifications is presented in Table 2 and Supporting Information S1:
Table 2.

The application of AI to distinguish between various morpholo-
gical subtypes of ALL represents a promising area of research. For
example, FAB classification ALL‐L1, ‐L2, and ‐L3 can be accurately
identified in PB smear images.73,74 Furthermore, the classification of
B‐cell or T‐cell ALL, which is currently distinguished using flow cy-
tometry and cytogenetic analyses, may be more beneficial in clinical
settings, as they are usually linked to different outcomes.75

It is crucial to promptly diagnose APL as it is considered a hema-
tological emergency. The unequivocal diagnosis of APL is based on
the distinctive morphology of promyelocytic blasts and the presence
of Auer rods, in combination with the cytogenetic characteristics of
chromosomal translocation t(15;17) and the fusion gene PML::RARA.76

To the best of our knowledge, Ouyang et al. were the first to apply
CNNs for APL detection in BM with an average precision of 0.625.71

Eckardt et al. demonstrated the ability of DL to distinguish between
APL, non‐APL AML, and healthy BM in a small dataset using only
BMA smear images. The implemented model consisted of a multi‐
step ML workflow with individual DL models for different binary
tasks. Mean AUC for APL versus healthy BM was 0.959 (95% CI,
0.933–0.984), while the mean AUC for APL versus non‐APL AML
cases was 0.858 (95% CI, 0.783–0.932).12 Although this method
necessitates the use of cell class labels, the detection of APL can
also be achieved through the application of annotation‐free DL. In a
study by Manescu et al., MILLIE (Multiple Instance Learning for
Leukocyte Identification) was trained with patient diagnosis‐level
labels alone, resulting in an average AUC of 0.99 in distinguishing
between the same entities.61

CML is rather a rarity in the field of DL‐based disease predic-
tion.77 In the study by Huang et al., the diagnosis of three types of
leukemia, including AML, ALL, and CML, achieved a prediction ac-
curacy of over 0.95 by incorporating three different frameworks to
construct classification models.70 The model was trained and tested
using a preselected set of images of BMA smears containing multiple
cells. Alternatively, CML could be diagnosed in the future using
single‐cell classification models that can accurately differentiate be-
tween multiple maturation stages of myeloid and erythroid
cells,10,43,56,60 whose ratio is increased in the BM of patients with
CML.25

The characteristics of dysplasia in MDS are often subject to in-
terpretation, which can lead to diagnostic difficulty. In comparison to
hematologists, the AI model proposed by Wu et al. demonstrated
superior performance in cases of MDS with <5% blasts (AUC of
0.929 and 0.948, respectively), but inferior to that of pathologists
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(AUC of 0.985). Nevertheless, when the blast percentage exceeds
20%, a slight decline in performance was observed (AUC of 0.981 and
0.942, respectively).50 A comparable performance was demonstrated
by the CNN model proposed by Wang et al., which is capable of
recognizing MDS based on images obtained from BMA smears. The
model achieved an accuracy of 0.914, AUC of 0.985, and sensitivity
of 0.992 in a binary classification to determine whether the patient
had MDS or not. A three‐way classification model was successfully
employed to differentiate between three disorders (aplastic anemia,
MDS, or AML) with AUC of 0.968, accuracy of 0.929, and sensitivity
of 0.857 (95% CI in Table 2).11

It is crucial to acknowledge that DL models are trained on retro-
spective data and necessitate a higher degree of generalizability, de-
monstrated in (prospective) external validation studies, before being
employed in the fast‐paced clinical setting. Furthermore, cytomorphol-
ogy represents only one diagnostically relevant aspect, which must often
be integrated with molecular and cytogenetic classification.

STREAMLINING GENETIC PROFILING

Although cytomorphological findings may reflect genetic abnormal-
ities, such as AML with t(8;21) presenting with blast cells with an
indented nucleus,78 genetic profiling in AML is crucial for risk strati-
fication and therapeutic decision‐making. However, conventional
methods can require days or weeks to acquire, which may result in
delays in the implementation of targeted therapeutic strategies.
Kockwelp et al. developed a pipeline to predict favorable or high‐risk
(HR) genetic abnormalities in AML based solely on morphological
characteristics derived from BM samples obtained at the time of
diagnosis. This approach markedly accelerates the genetic analysis
process. The five profiles included “ELN 2017 favorable risk,” “MRC
cytogenetic,” “NPM1 mutations,” “FLT3‐ITD mutations,” and
“CBFB::MYH11,” and could be predicted with AUC of 0.64, 0.68, 0.70,
0.72, and 0.91, respectively (95% CI in Table 1).64

NPM1 mutated AML cases have been associated with cup‐like
nuclei in blast cells,79 but it is noteworthy that the proposed DL
model from Eckardt et al. focused on novel distinct morphological
features for mutation prediction. A multi‐step workflow incorporating
several DL models was employed to accurately predict the NPM1
mutation status based on BM cytomorphology, with an accuracy of
0.86 (AUC 0.92; 95% CI, 0.877–0.963). Furthermore, mutated NPM1
was identified based on condensed chromatin and perinuclear light-
ening zones in myeloblasts, while wild‐type NPM1 was associated
with prominent nucleoli.72

Application of AI‐based prediction models for identifying genetic
abnormalities associated with AML could facilitate faster diagnosis and
risk assessment, thereby offering a promising direction for future in-
vestigations and applications in other forms of leukemia with yet uni-
dentified cytological characteristics, such as AML with RUNX1mutation,78

which is associated with poor prognosis and short overall survival.80

THE FUTURE OF AI‐ASSISTED
HEMATOPATHOLOGY

The utilization of AI in the diagnosis of leukemia based on morpho-
logical analysis of BMA smears offers a multitude of advantages over
traditional methods. First, the rapid analysis of thousands of cells
surpasses the quantity of manually counted cells, thereby reducing
statistical uncertainty regarding the diagnosis. Recently, DeepHeme
was developed as a cell classification model that was trained using
single‐cell images from both pediatric and adult patients with normal
BM morphology. The model achieved a mean AUC of 0.99 (precision

0.98; recall 0.89) across 23 distinct cell classes. In competition with
hematopathologists, DeepHeme classified 25 images per cell class in
0.36 s with a mean precision and recall of 0.9, while the same number
of cells were classified in three hours by the hematopathologists with
lower performance (mean precision 0.78; mean recall 0.76).60 In this
format, the diagnostic process may be streamlined by providing rapid
preliminary assessments.

Second, ML models are capable of identifying patterns in vast
amounts of data that may be difficult for clinicians to detect. A
comprehensive study of 1,079 patients with myelodysplastic and
myeloproliferative neoplasms, conducted by Nagata et al., revealed
correlations between morphological profiles and genetic abnormal-
ities. The large cohort was clustered into five distinct morphological
profiles, including both HR and low‐risk (LR) MDS. In addition, six and
eight specific genetic profiles were identified for HR and LR,
respectively. Interestingly, 77% of patients with HR MDS were
classified in one morphological profile, while all LR patients were
distributed among the remaining four groups. In addition, a total of
52 associations between morphology and genotype were identified,
some of which were novel associations. For instance, the correlation
between mutated STAG2 and SRSF2 with myeloid dysplasia, and
mutated ASXL1 with megakaryocytic dysplasia, were identified.81

This study could pave the way for the discovery of additional
potential pathognomonic relationships in other disease entities
through the use of AI, such as a transition from CML to blast phase, or
further elucidate the genetic abnormalities associated with leukemic
predisposition.

Furthermore, ML models can predict remission and overall survival in
patients with AML82,83 and MDS84 using clinical parameters alone. The
models proposed by Eckardt et al. demonstrated the ability to predict
complete remission with AUC ranging from 0.77 to 0.86. Additionally, the
models exhibited AUC between 0.63 and 0.74 for the 2‐year overall
survival.82 Although the selected predictive features were already known
from previous studies, the utilization of ML represents a significant ad-
vancement in the discovery of new biomarkers for the prediction of re-
mission and survival. Similarly, Didi et al. trained neural networks with 52
diagnostic variables and achieved an accuracy of over 0.62 for predicting
the overall survival of patients with AML.83 Furthermore, MDS could be
predicted one year prior to diagnosis with an AUC of 0.87 without cy-
togenetics or blast cell percentage as input data. This demonstrated that
AI can identify individuals at risk without the need for information from
invasive procedures such as BM biopsies.84 Using image markers from
BMA smears, ML predicts the risk of relapse in patients who have un-
dergone hematopoietic cell transplantation.85 The models could be em-
ployed as a decision‐support system for risk stratification in routine clinical
settings. While automatic cell classification can be a valuable tool, there
are some limitations regarding the input data. When the model is trained
on images previously annotated by experts, the subjective assessment of
cell morphology may be easily transferred to the model as a biased in-
terpretation. In addition, it is inevitable that certain cells will be manually
categorized into the “all‐inclusive” class of unknown or unidentifiable cells.
This may be attributed to technical factors, such as the use of unfocused
images or contrast that is too high, or to morphological considerations,
including the difficulty in distinguishing between different maturation
stages. These cells present a challenge to the model due to the high
degree of heterogeneity within the class, and it is therefore expected that
they will be predicted with low accuracy.9,44

A high quantity of data is typically associated with enhanced
classification accuracy, particularly in the case of rare or morpholo-
gically heterogeneous cells, such as reactive lymphocytes. The pre-
sence of a class imbalance in BM specimens is a persistent
challenge in the training of cell classification models, given that cer-
tain cell classes are physiologically unevenly distributed, and can lead
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to poor performance on minority classes. In such cases, it is re-
commended that metrics for each cell class be reported. Furthermore,
macro averages may be used instead of micro averages, as the macro
average treats all classes as equally weighted. Guo et al. proposed a
solution that harmonizes data within 15 cell classes using a three‐
component class balance classification method (CBCM) and improves
overall accuracy (0.895 vs. 0.909). This method includes data pre-
processing, fine‐tuning with pre‐trained models, and class‐balanced
focal loss. The model achieved a precision of 0.845 and a specificity
of 0.993.54 An alternative approach to addressing the issue of low
numbers of cell images was proposed by Hazra et al., who combined
different databases and generated synthetic single‐cell images. A
total of 12 cell classes were classified with an accuracy of 0.97 using
the WGAN‐GP with an additional classifier. Compared to the per-
formance on the original dataset, the model achieved higher accuracy,
specificity, and sensitivity on the balanced dataset (>0.84 vs. >0.95).55

To facilitate the prospective clinical integration of AI models, quality
control steps, which may be second nature to medical personnel during
the microscopic evaluation of a BMA smear, must be integrated into
model development. These checkpoints include the detection of BM
particles as indicative of a representative sample,43 estimations of cellu-
larity,29 and detection and correction of unfocused images.86 It should be
noted that CNNmodels are not always universally deployable, as samples
must be uniformly preprocessed and analyzed. Semi‐automated staining
devices, like CellaVision RAL® StainBox, reduce staining variability and
may improve model performance. Variations in aspirate thickness and the
presence of BM particles may change the sample focus point in the
scanning process, resulting in unfocused areas during the scanning pro-
cess. These areas can be automatically detected86 and re‐scanned at
varying focal planes along the vertical (z)‐axis to combine into a single
composite image. Translating these quality control steps into quantifiable
metrics not only increases the robustness of the model but also offers
clinicians a more transparent pipeline.

The initial deployment of AI models in clinical settings would be
as a preliminary tool, to be verified by clinicians, with the final ob-
jective of establishing a fully automated end‐to‐end pipeline, such as
that exemplified by automated PB analyzers. In a modular interface,
the user is presented with preselected areas of the sample, images of
labeled single cells, a report including absolute and relative numbers
of cell types, as well as a predicted diagnosis based on the distribution
of cell types. Moreover, the user has the option to validate or correct
the cell label. For experienced users, a module with saliency or oc-
clusion maps offers insight into the classification decision.

Hematological diseases are inherently variable. This could provide
an opportunity for national and international cooperation among mul-
tiple medical institutions to establish a centralized database of BMA
smears from diverse malignancies, which could be employed to train
generalized DL models for future clinical support. The concept of fed-
erated learning makes this possible with decentralized data processing,
effectively eliminating the potential for data leakage or unauthorized
access. Another significant advancement toward this goal was achieved
recently with foundation models for cell classification that were trained
on 380,000 publicly available cell images from PB and BM.87 These
complex models rely on self‐supervised learning and are rapidly be-
coming the preferred model choice due to their capacity to be trained on
a diverse range of data types, as opposed to task‐specific data, and be
adapted for a multitude of downstream applications. Furthermore, they
can be implemented effectively on previously unseen data88 and applied
in the development of interactive AI assistants for pathology ques-
tions.89 Such systems could potentially be adapted for use in hematol-
ogy applications in the future.

In conclusion, it is becoming more and more realistic to expect
the implementation of DL models in clinical practice. The

successful application of AI in predicting genetic abnormalities
from morphological characteristics64,72 provides compelling evi-
dence of the transformative impact of AI in hematopathology. The
strengths of AI may be employed in a complementary manner to
the expertise of hematologists as an auxiliary diagnostic tool in
clinical routine, offering time‐saving assistance for the assessment
of BMA smears. Moreover, the availability of readily accessible
end‐to‐end systems for the automatic classification of cells16

could prove invaluable in the education and training of future
medical professionals.
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