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Abstract — «-casein plays an essential role in the formation, stabilisation and aggregation
of milk micelles. Control of x-casein expression reflects this essential role, although an
understanding of the mechanisms involved lags behind that of the other milk protein genes.
We determined the 5'-flanking sequences for the murine, rabbit and human «-casein genes and
compared them to the published ruminant sequences. The most conserved region was not the
proximal promoter region but an approximately 400 bp long region centred 800 bp upstream of
the TATA box. This region contained two highly conserved MGF/STATS sites with common
spacing relative to each other. In this region, six conserved short stretches of similarity were
also found which did not correspond to known transcription factor consensus sites. On the
contrary to ruminant and human 5’ regulatory sequences, the rabbit and murine 5’-flanking
regions did not harbour any kind of repetitive elements. We generated a phylogenetic tree of
the six species based on multiple alignment of the x-casein sequences. This study identified
conserved candidate transcriptional regulatory elements within the k-casein gene promoter.

k-casein / 5’ regulatory region / transcription factor binding sites / repetitive elements

1. INTRODUCTION

Although milk casein composition varies considerably between livestock
species, k-casein seems to be ubiquitous in accordance with its biological
role [17]. The relative concentration of k-casein versus the Ca-sensitive
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caseins varies among species and is influenced by the casein allelic variants
within each species. The ratio of x-casein versus Ca-sensitive caseins has
a significant influence on casein micelle size [15], which in turn alters the
manufacturing properties and digestibility of milk [S]. In spite of the import-
ance of x-casein in the assembly and stability of casein micelles, a detailed
analysis of its regulation and comparison with the structural features of the
most studied B-casein promoter has not been performed. Specifically, although
the k-casein cDNA sequence is known for many species, the 5’ flanking
regions have only been analysed in three closely related ruminant species.
Identification of DNA sequences involved in the transcriptional control of this
gene will help the investigation of x-casein expression using gene transfer
methods.

As a first step to understanding how k-casein expression is regulated, we
compared six different k-casein gene promoters at the sequence level. The
presence of highly conserved, putative transcription factor binding sites in all
the known 5’ regulatory regions of the x-caseins might indicate that interactions
between these sites and the corresponding transcription factors contribute to
the regulation of mammary gland-specific gene expression. We sequenced
1.9 kb of the rabbit and murine x-casein 5’ flanking regions and the published
human «-casein promoter sequence [7] was extended further upstream and
compared to the corresponding regions in the ruminant x-casein 5 flanking
sequences.

2. MATERIALS AND METHODS

2.1. Origin of sequences

The murine sequence was generated from a subclone of BAC clone 555-N16
(Research Genetics Inc., USA), which contains 105 kb of the murine casein
locus [8]. The rabbit x-casein promoter was derived from the A 24 genomic
clone [2]. The human sequence [7] was extended further upstream using
overlapping, unfinished sequence contigs obtained from the Human Genome
Project (EMBL accession number M73628 and AC060228). The caprine,
ovine and bovine sequences have EMBL/GenBank accession numbers Z33882,
L.31372 and M75887 respectively.

2.2. Promoter sequencing and sequence analysis

Sequencing was performed on both strands by applying fluorescing dye-
labelled terminators and the cycling method (ABI PRISM™ Dye Terminator
Cycle Sequencing Ready Reaction Kit with AmpliTaq® DNA Polymerase, FS;
Perkin Elmer) in five steps.
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The following mouse primers:
KcasR: 5GGAGTCAATTCTTGCTTGGC3';
KcasX: 5TGGTCCATGTTGGTCATTGT3';
KcasZ: 5TATTCCTGCCTGTTTCTGGG3';
KcasW: 5’GAATTCTGGGACCCCTTCTC3';
KcasY: 5TGGGTCAACCACTCACTCAC3,

designed on the basis of the known cDNA (accession number M10114),
and the following rabbit primers:

KcasVo: 5TACAACTACTGTCCC3';
KcasX1: 5’GCTACTCTATTCTCCTCC3';
KcasCli: 5CATCTGTATGCTCATGG3?',
KcasRL: 5GTATCACGAGGCCCT?,

based on the known rabbit « casein sequence (Genbank Acc. No. U44054-58)
and pPolylll vector sequences [11], were used.
Running and analysis of the sequencing reactions was done on an automated
DNA sequencing apparatus (ABI 373 DNA Sequencer, Applied Biosystem).
All sequence analysis was carried out using European Molecular Bio-
logy Open Software Suite programs (EMBOSS'), CLUSTALW, and PHILIP
sequence analysis packages.

3. RESULTS

3.1. Characterisation of murine and rabbit 5’ sequences

The mouse sequence was generated (acc. No. AJ309571) from the BAC clone
555-N16 (Research Genetics Inc., USA), which contains 105 kb of the murine
casein locus [8]. A ~ 24-kb BamHI fragment from this clone, containing
the complete k-casein gene, was subcloned into pPolylll [11] and sequenced.
Rabbit DNA was subcloned into the pPolyllI-I vector from the A24 genomic
clone [2] and sequenced (acc. No. AJ309572). The rabbit x-casein promoter
sequence corresponds to the “A” allele in the two variants described [10].

We were able to generate 1962 bp of murine and 1908 bp rabbit 5’
flanking sequences, respectively. The murine and rabbit sequences include
the putative TATA box that has been described for the bovine sequence [1].
When comparing these overlapping 5’ flanking sequences, excluding regions
containing repetitive elements, the rabbit sequence shows 63% similarity to
human, 58.6% to murine and 58% to ruminant x-casein. The TATA box in
the murine and the rabbit is different from this consensus sequence by one

! http://www.uk.embnet.org/Software/EMBOSS/
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and two mismatches, respectively. Both sequences were analysed for the
presence of all transcriptional factor consensus sites, which have already been
described in the 5’ regulatory regions of casein genes. Table I shows that the
rabbit has 6 AP-1 (activator protein 1), 11 C/EBP (CCAAT/enhancer binding
protein), 1 CTF/NF1 (nuclear factor 1), 2 GR half sites (delayed secondary
glucocorticoid response element), 2 MGF/STATS5 (signal transduction and
activator of transcription 5), 6 PMF (pregnancy specific nuclear factor) and
8 YY1 (yin and yang factor 1) consensus sequences. A comparison to the
mouse sequence showed that a similar situation exists, except that in addition
the mouse sequence had a single Oct-1 (octamer binding protein 1) site. The
murine sequence harbours 7 AP1, 9 C/EBP, 2 CTF/NF1, 4 GR, 2 MGF/STATS,
1 PMF, 1 OCT1 and 3 YY1 consensus sequences.

Three of the sites (C/EBP, CTF/NF1 and MGF) found in the murine and
rabbit promoters were identified as common motifs in 28 milk protein gene
promoters [16]. Of the 30 consensus sequences found in the murine compared
to the 36 found in the rabbit, only three sites were spatially conserved (< 20 bp
difference) between the murine and the rabbit; the C/EBP site at —1200
(approx.) and both MGF/STATS sites at —1020 and —940 (approx.). This
spatial conservation, with respect to the transcriptional start site and relative to
each other, may imply functional importance.

3.2. Comparison of six k-casein promoter sequences

A high level of homology and similar locations of most putative transcription
binding sites were reported among the published ovine, caprine and bovine
k-casein promoters [4]. Here we performed a comparative analysis, which
included the aforementioned sequences in addition to the human (EMBL
acc. No. M73628; Human Genome Project acc. No. AC022672.00009 and
AC060228.00059) and the newly sequenced murine and rabbit x-casein pro-
moters. The level of homology differs between compared sequences, e.g. the
ruminants are all well conserved at > 90% [4]; while the level of homology
between the rabbit, mouse and human was significantly lower at about 60%.
We found similarities with respect to transcription factor consensus sequences
within the proximal promoter region but they were not conserved in all analysed
sequence. In addition, this was not the most conserved region located by
sequence alignment. An approximately 400 bp region located about 800 bp
upstream of the proximal promoter was found to be the most conserved. This
region is aligned for the six kappa casein promoter sequences in Figure 1.
Notably, this conserved region contained the two conserved MGF/STATS sites,
but not the single conserved C/EBP site. In all x-casein promoters, the positions
of these two putative transcription factor-binding sites were the most highly
conserved. They also appeared to share a common spacing with respect to each.
In the ruminant they are 96 bp apart while in the mouse they are 97 bp apart.
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MGF
ovine  -1196 GAAGTCAAACCATTCTGAGAAATAGAAATTTTC AATTTACTCTGTACAAGCT
caprine -1194 GAAGTCAAACTATTCTGAGAAATAGAAATTTTC AATTTACTCTGTACAATCT
bovine -1203 GAAGTCAAACCATTCTGAGAARTAGAAATTTTIC AATTTACTCTGTACAAGCT
rabbit =-1025 GAAACCAA_ CTATTCTGAGAAATAGGAAC AACTTATTCCACATAGGTT
human  -1275 AAAACCAA_CTATTCTGAGAAACAGAAAATTTCATATTACTATTTTACTICTGTGTAATCC
mouse  —1037 GAAGCAAAC__[TTCTAAGAARTAGAAAGCCAGGGC, TTATTGTGGAGAAGCT
* % * * % % k* Kk kkpx Kkk KKk * Kk Kk *
MGF
ovine  -1144 GAATAAACATTTT_AGGATCATGACCATCACTCTGAACCTTCCAAGACATGAAATAC[ITC

caprine -1142 GAATAAACATTTT_AGGATCATGACCATCACTCTGAAGCTTCCAAGACATGAAATACTTC
bovine -1151 GAATAAACATTTIT_AGGGTCATGACCATCACTCTGAACATTCTAAGATATGAAATACTTC

rabbit -978 GAATAACTACTCT_AGCATTCATAATGTCA TC
human  -1216 AAATAAGTATTCT_AGGGTTTAGAATATTGTTCCTAACTTTCTAAGACATGCAATAC[ITC
mouse  -988 GCACAAGTATTCTCAGGATTCAGAACAATGTTCCCTGCTTTCTAAGACGTGTAATGGIITC
* kK * k k K%k * * X * %

_ CBL
ovine  -1085 TAAGAARAAGA GGAAT_C_AACACAATGCTGTTATTAATTCTTGTTTGTAT
caprine -1083 TAAGAARAAG GGAATAC?AAFACAATGCTGTTATTAATTCTTGTTTG#AT
bovine -1092 TAAGAARAAGA, GGAATAC_AMCACAATGCTGTTATTAATTCTTGTTTGTAT
rabbit -946 CAAGAARCAAACAGGAACACAGAAATA_ACTACAATGCCAATATTATCTCCTGTTTICTCT
human ~ -1157 TAAGAARCAGACAGGAATATAGACATA ACTACAATGCTGATATTATTTCTTIGITIGLGT
mouse  -928 CCAGAAACAGGCAGGAATACATAAAAATTAEACAATGCTGACATTATTTCTGCTCTGQAT
I wrkkkk k| _wkxx _xx kx| %

CEQ

ovine  ~1036 CCTGGCAGTCCTACATCGATTCCTGIAMATACCACAATCTGATCAGGACTTCATAGATAA

caprine -1033 CCTGGCAGTCCTACATCGATTCCTGT ATACCACAATCTGATCAGGACTTCACAGATAA
bovine -1042 CCTGGCAGTCCTACATCNATTCCTGTA&TCCACA TTGGGTGAGGACTTCATAGAAAA
rabbit -887 TCAGGAAGTCTTACATTqATTCTTGTANGTACCTCAATCTTGCCAAGCCTTCACAGCCAA

human —1098 TCTGGCAGTCCTACATTAATTCCTIGT (GTTCCTCAATCTGGTCAGGTCTTCACAGCCAA
mouse -868 TCTGGCTGCTCTGCAGGGATTCCAGTAHATACC TCTGATGAGGTTTTCACA A
* kx ok * ok [ * * ok kkkx *

CB____
ovine -976 AATGAAATCACAGTTAACATTﬂTTTTGTGGAGAAATGTAAGCGAAAG AGATATTCTTTC

caprine —-973 AATGAAATCACAGTTAACATTITTTTTIGTGGAGAAATGTAAGCAAAAGCAGATAGTCTTTC
bovine -985 TG AATCACAGTTAACATT%TT;ﬁGTGGAGAAATGTAACGAAAACGAGATATTCTTTC

rabbit -827 GGTAAAGTTGCAGTTAACATT&T TC
human -1038 AAT_AAGTCAC TTAACATTRTTTCTTT ' AGAAAAGCAAGTAAAAGAAAATATGCTTTC
mouse -816 AGCAAAGTCATTGTTAGCATTﬁCCCTGGGGTGGGGGGAGGGACAGGTAAAGCAGGATATC
: BTG ©

“Bocm w
ovine -917 CTTAATTATCTAGG?AAAATTATTTGGTTAGTGGTATTTTACpAAAATACCCpCCATATT

caprine -913 CTTAATTACCTAGG?AAAATTATTTGGTTAGTGGTATTTTACpAAAATACCCECCATATT
bovine -930 CTTAATTATGTAGG?AAAATTATTTGGTTACGAGTATTTTACTAAAATACCC%CCATTTT
rabbit -802 CCAAGAAATTCAAGTAAAAGGATTTGTTCAACTATﬁTTTTACbAAAATATCCﬁTCATATC
human -980 CTGAATTATCTAAGCAAAAT TTTGTTTAGCTATITTTTGCEAAAATATTCUCAATGTC
mouse -756 ATT TAGGCAAAAT ACATGTTTGGCTTCHTTTTACTAAAATTTTTPCAGCATT

Kok kKKK *k K ok KKKk

Vv
GRhat rev B
ovine -858 GGTGGCTTTAAGATATATATTTTGTAAGTCAGGATAAGCCGTCTTTGAAACAGAHCAATT
caprine -854 GGTGGCTTTAAGATATATATTTTGTAAGTCAGGATAAGCCATCTTTGAAACAGAAbAATT

bovine -871 GGIGGCTTTAAGATATATATITIGTAAGTCAG_ATAAGCCGTCTTTGAAACAGAACAATT
§I§§CA

rabbit =743 AGTIGATTITTATAAAGTGTGATCT__AAATCACAATCTGATGTCTITTGAAAC ATT
human —-922 AGTGGGTTTGTGATTTATGCTCT__AAGTCAAAATGA_CTTTCCTTAAAACAGAACAATT
mouse -704 GGCAGTTTTGCAATCCATGCGCT__AAATCAGAATGATCTGACTCTAAAATAGAAbAATG
* * kK * * * * Kk ok kk * % * * kkkx |k **'*fft7
YY1 rev
ovine -798 AETCTGAATTTAGTTA TTAATTTTGTACAGCCAGAATGGTTCA

caprine -794 ATTCTGAATTTAGTTATTTAATTTTGTACAGCCAGAATGGTTCA
bovine -812 ATTCTGAATTTAGTTATTTAATTTTGTACATCCAGAATGATTCA

rabbit -685 AFCTCTGATTCAAGAATTTAAC__TATACATCCTAAATGGTT_A
human -865 ATCTCCAATTCAATAATTTAATAATITTTTITTCARAATGGTTCA
mouse -646 ATTCCTAACTCAGTTACTTAATATTGGGCATCCARAATGGGACA

_x * ok % * KKK * * |k Ekxx *

Figure 1. Multiple alignment of the most conserved region of six k-casein promoters.
Positions are relative to the TATA boxes. Putative transcription factor sites, which are
in conserved positions, are boxed, as are the conserved blocks which do not correspond
to known transcription factor consensus sites (CB1-4, B3 and B6). Asterisks indicate
positions where the homology is 100% among the six sequences.
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The spacing is slightly greater between the human MGF/STATS, which are
separated by 104 bp, and less in the rabbit, where 65 bp separate the MGF sites.

Among the other consensus sequences searched for, only two YY1 and one
GR-half sites were found in this region, however they were not conserved
in all six promoters. Conversely, six conserved short stretches of sequence
similarity were found in this most conserved region, where the homology
between the six sequences is greater than the average; B3 and B6 have
already been described in the B-casein gene promoter [16] while conserved
box CB1-4 were novel sequences (Fig. 1). These conserved box regions did
not correspond to known transcription factor consensus sites. The CB4 box
overlapped with the B6 block, while the other conserved 8-casein-specific motif
(B3) overlaped the conserved GR-half site at position —654 in the mouse. A
further 5 conserved blocks (CB5-9) were detected throughout the completed
aligned promoter region. At these boxes the homology is either absolute
between the sequences, or there are only two types of nucleotides occurring
in a given position. The consensus sequences of these novel conserved
blocks (CB1-9) are as follows, where the positions indicated in parentheses
are relative to the murine TATA box: YACAATGCYRWYATTAWYTCYK-
STYTSY (—897), ATTCYWGTAA (—849), GTTARCATT (—803), TTTRCY-
AAAATWYYY (—727), AAACAHTTRAAATRTRAAA (—347), TTYAAM-
TAGRRAT (—279), AATRCAATKA (—250), GTARRAGGRRRATR (—47),
ACTAAYACCCT (—18); where YisCor T,RisAorG,WisAorT,Kis G
orT,SisGorTand His A, T or C.

As identified by Coll et al. [4], the ruminant k-casein 5'-flanking region
contains repetitive elements. We located the repetitive elements and their
relative positions in all six sequences analysed. The caprine and bovine
k-casein sequences contain two repetitive elements. The first sequence is the
same 114 bp long interspersed nuclear element (LINE), which belongs to the
L1MASA mammalian-specific sequence [24] and the second is a 206 bp short
interspersed nuclear element (SINE), which belongs to the Bov-tA Bovidae
family [4]. The LINE element is also conserved in the ovine gene, but it is
unknown whether the adjacent SINE region is also conserved, as it has not
been sequenced. In the human «-casein promoter, a 206 bp LINE element
just 100 bp upstream from the TATA box was identified. This insertion is a
classical 5 truncated sequence that contains only the 3’ untranslated region of
the original L1 sequence, which belongs to the L1PA2 primate subfamily [24].
The sequence of this repetitive element was not identified in an earlier analysis
of the human «-casein sequence, where only a single Alu element in the
second intron was described [7]. LINE-related-sequences have been described
in the first and fourth introns of the rabbit x-casein gene [10]. Therefore,
the lack of the two ruminant repetitive elements in the other three species
and the lack of the L1PA2 insertion in the five other promoters indicates that
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human
L1PA2

Bov-tA L1MA5SA

o_vine rabbit
caprine
bovine
mouse

Figure 2. Unrooted phylogenetic tree of the six species. For best result, exactly the
same region e.g. an approximately 400 bp long region located about 800 bp upstream
of the proximal promoter which was the most conserved (Fig. 1) were compared.
Possible insertion points of the three repetitive elements mentioned in the text are
marked by arrows.

the insertion of the LIMASA and the Bov-tA elements happened after the
divergence of the ruminants, while the insertion of the L1PA2 element could
be considered as a recent evolutionary event, which happened well after the
diversification of primates. Figure 2 describes a phylogenetic tree of the six
species based on the multiple alignment of the x-casein promoter sequences.
Possible insertion points of the three repetitive elements LIMASA, Bov-tA and
L1PA2 are indicated.

4. DISCUSSION

The temporal and tissue-specific expression of milk protein genes is con-
trolled by a distinct class of co-operating and antagonistic transcription factors
which associate with multiple, sometimes clustered, binding sites. The number
and position of potential binding sites can play a decisive role in the outcome of
these synergistic and antagonistic interactions [6]. We compared the k-casein
5’-flanking sequences from six different species. The general theme is that
common consensus sequences are present in all but that different spatial
arrangements exist in the promoters from different species.

Three consensus sequences, previously deemed to be common to all milk
protein genes [16], were found (C/EBP, CTF/NF1 and MGF). In addition, some
similarities with other milk protein promoters were identified. For example,
the frequently studied S-casein gene promoter harbours two lactogenic hor-
mone response regions (LHRR), which are characterised by the presence of
multiple C/EBP sites with at least one binding site for MGF/STATS [6]. Close
to the highly conserved MGF/STATS sites, three and two C/EBP binding
sites were identified in the mouse and rabbit x-casein promoters, respectively
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(Tab. I). The corresponding regions therefore fulfil the structural criteria for
a potentially active LHRR. In addition, an insulin response element (IRE) is
present within the rabbit x-casein promoter. This sequence contains a one-base
mismatch compared to the consensus sequences found in other milk protein
gene promoters [16], as does the IRE in both the bovine and caprine x-casein
promoters. Perhaps this may reflect earlier in vitro data, in which neither
insulin nor glucocorticoids noticeably amplified the action of prolactin on
rabbit k-casein gene expression [3].

The differences between the newly characterised «-casein sequences and
other milk protein gene promoters were more noticeable. First, a common
feature of several milk protein genes is the presence of a “milk box”, e.g.
YY1 motifs associated with two MGF binding sites [16]. Associations of
MGF and YY1 sites in the human, rabbit and murine in contrast to ruminant
k-casein promoters were not identified. Secondly, clusters of sequence motifs
related to the delayed secondary glucocorticoid response elements have been
identified in bovine, ovine and caprine x-casein promoters along with other
milk protein genes [4]. Notably, a GR-half site consensus (at position —654
in the mouse promoter) belongs to this cluster and it is conserved in all the
examined species except the rabbit, where a single base-pair difference has
occurred (Fig. 1). Thirdly, overlapping OCT-1 C/EBP sites, located 25 bp
upstream of the TATA box, have been described in the bovine as2-, B-casein
genes and in the ruminant k-casein genes [9,23]. However, although the C/EBP
site is conserved, the OCT-1 consensus sequence is absent in the human, rabbit
and murine k-casein promoters. Remarkably, and in contrast to the ruminant
k-casein promoter, none of these features were found to be associated with
either the murine nor the rabbit or human promoters.

Alignment analysis indicated that the proximal promoter was not the most
conserved region. Rather a 400 bp region residing approximately 800 bp
upstream from the transcriptional start site was highly conserved in all six
species. Notably this region is characterised by the two MGF sites. These sites
were the only two sites found to be spatially conserved in all six x-casein 5’
promoter regions. The importance of this region in regulating x-casein gene
expression has not been evaluated, except that it is present in all transgenic
studies performed todate [2,20,22].

Several studies have tried to use k-casein sequences to drive transgene
expression in mice. Both the bovine and the caprine k-casein genomic clones
were not or were poorly expressed in transgenic mouse lines under their own
regulatory regions [22,20]. The rabbit k-casein genomic clone, which includes
the 2.1 kb 5’ regulatory region, directed low level, but tissue specific expression
in transgenic mice [2]. The presence of the repetitive LINE and SINE elements
in the 5'-flanking region of the ruminants and human x-caseins may alter
transcriptional efficiency [19]. It is tempting to speculate that the impaired
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expression levels of ruminant k-casein transgenes could reflect the presence
of repetitive elements in these genomic sequences. Further experiments are
necessary to evaluate the importance of the most conserved region, the con-
served lactogenic hormone response region, and to reveal the significance of
the differences compared with other milk protein genes.
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