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Abstract
Current management of large carnivores is informed using a variety of parameters, 
methods, and metrics; however, these data are typically considered independently. 
Sharing information among data types based on the underlying ecological, and recog-
nizing observation biases, can improve estimation of individual and global parameters. 
We present a general integrated population model (IPM), specifically designed for 
brown bears (Ursus arctos), using three common data types for bear (U. spp.) popula-
tions: repeated counts, capture–mark–recapture, and litter size. We considered fac-
tors affecting ecological and observation processes for these data. We assessed the 
practicality of this approach on a simulated population and compared estimates from 
our model to values used for simulation and results from count data only. We then 
present a practical application of this general approach adapted to the constraints of a 
case study using historical data available for brown bears on Kodiak Island, Alaska, 
USA. The IPM provided more accurate and precise estimates than models accounting 
for repeated count data only, with credible intervals including the true population 94% 
and 5% of the time, respectively. For the Kodiak population, we estimated annual 
average litter size (within one year after birth) to vary between 0.45 [95% credible 
interval: 0.43; 0.55] and 1.59 [1.55; 1.82]. We detected a positive relationship between 
salmon availability and adult survival, with survival probabilities greater for females 
than males. Survival probabilities increased from cubs to yearlings to dependent young 
≥2 years old and decreased with litter size. Linking multiple information sources based 
on ecological and observation mechanisms can provide more accurate and precise 
estimates, to better inform management. IPMs can also reduce data collection efforts 
by sharing information among agencies and management units. Our approach responds 
to an increasing need in bear populations’ management and can be readily adapted to 
other large carnivores.
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1  | INTRODUCTION

Large carnivores have great ecological, cultural, and economic value 
(Kellert, Black, Rush, & Bath, 1996; Ray, Redford, Steneck, & Berger, 
2013). These species help maintain ecosystem function and stabilize 
interactions between species at lower trophic levels through predation 
and scavenging (Miller et al., 2001; Ripple et al., 2014). Large carni-
vores also represent a valuable resource for ecotourism and hunting 
(Sillero-Zubiri & Laurenson, 2001). However, interactions between 
wild animals and the public can also result in negative outcomes for 
involved humans, animals, and financial institutions (Treves & Karanth, 
2003). Maximizing positive aspects of human–large carnivore inter-
actions, while minimizing human–wildlife conflicts, relies on effective 
management policies.

Population monitoring is an integral part of management, provid-
ing valuable information to assess management actions and devise 
new strategies. It relies on various metrics, sampling designs, and data 
types. Metrics commonly used for large carnivore management in-
clude density, abundance, and distribution (Taylor & Lee, 1995; Apps, 
McLellan, Woods, & Proctor, 2004; Gardner, Royle, Wegan, Rainbolt, 
& Curtis, 2010) with associated policies targeting the improvement or 
control of population parameters such as survival, persistence or colo-
nization, reproductive rates, or connectivity (Noss, Quigley, Hornocker, 
Merrill, & Paquet, 1996; Ferreras, Gaona, Palomares, & Delibes, 2001). 
To assess these metrics, counts, detections, and reproductive success 
can be recorded using multiple sampling designs (e.g., repeated sur-
veys, distance sampling, and capture–mark–recapture) (Gese, 2001; 
Hansen, Frair, Underwood, & Gibbs, 2015). As large carnivore popula-
tions often cross jurisdictional boundaries, populations of conservation 
interest are often studied simultaneously by different organizations 
using varying approaches. Count data (repeated or not) are common, 
logistically simple to collect, and are cost-effective for investigating 
population statuses and trajectories. In contrast, mark-recapture data 
are effective for providing information regarding demographic rates, 
but are less cost-effective and resource-intensive. Consequently, 
depending on the objectives of different studies and the resources 
available to different organizations or agencies, separate data sam-
pling designs might be implemented on the same area or population. 
These different approaches and data sources are often considered 
independently and can result in underutilization of information and 
resources, with weaker estimates than if considered jointly.

Recently developed integrated population models (IPM) offer 
a framework to jointly analyze multiple demographic data and pro-
vide a unified approach incorporating population count data (i.e., data 
on population size) and demographic data (i.e., data on demographic 
rates) (Schaub & Abadi, 2011). In their most basic form, IPMs combine 
abundance analysis of count data (e.g., through state-space models) 
with estimation of demographic parameters from capture–recapture 
models and marked individuals (Chandler & Clark, 2014). Advantages 
of these models include the estimation of more demographic param-
eters with greater precision and improved consideration of sources of 
uncertainty related to ecological and observation processes of each 
data type (Besbeas, Freeman, Morgan, & Catchpole, 2002; Gauthier, 

Besbeas, Lebreton, & Morgan, 2007; Abadi, Gimenez, Arlettaz, & 
Schaub, 2010). They also offer a framework to combine data from dif-
ferent surveys carried out on large areas or with temporally varying 
resources (conditions for which low-intensity surveys are often more 
convenient). The integrated population modeling approach provides 
a meaningful description of ecological processes and a powerful tool 
to better understand demographic changes in large carnivore popula-
tions, while integrating multiple data sources.

Brown bears (Ursus arctos) present a management challenge 
as they are a long-lived species with considerable individual vari-
ation (e.g., habitat, diet, and reproduction traits; Gillies et al., 2006; 
Edwards, Derocher, Hobson, Branigan, & Nagy, 2011; Lafferty, Belant, 
& Phillips, 2015). Brown bears also traverse large areas and commonly 
cross jurisdictional boundaries of agencies with different missions and 
mandates. Consequently, understanding the relationships between 
temporal, spatial, and environmental factors and brown bear demo-
graphics (abundance, distribution, and dynamics) is essential for effec-
tive management. Unfortunately, decisions can be constrained due to 
a lack of integrated data that would allow managers to more feasibly 
and robustly assess the status of brown bear populations. Integrated 
population models allow the estimation of parameters and identifica-
tion of factors important for management that a single data source 
cannot estimate.

Factors affecting bear populations can broadly be categorized as 
biological, environmental, and anthropogenic, and to a lesser extent, 
genetic and random. These factors directly influence population dy-
namics by impacting different parameters such as reproductive suc-
cess or survival of adults and young (Schwartz, Haroldson, & Cherry, 
2006; Schwartz, Haroldson, & White, 2006b). For example, biologi-
cal factors affecting survival probabilities of brown bears include age 
and sex (McLellan et al., 1999; Schwartz, Miller, & Haroldson, 2003; 
Schwartz et al., 2006b), as well as mother’s age and litter size for 
young (McLaughlin, Matula, & O’Connor, 1994; Craighead, Sumner, 
& Mitchell, 1995; Mattson, 2000; Schwartz et al., 2006, 2006b). One 
of the most important ecological factors affecting brown bear pop-
ulations is food quality and availability, which directly affects home 
range size, habitat use, and population density through survival and 
reproductive success (Hilderbrand et al.,1999). One of the most direct 
and visible ways humans impact bear populations is through harvest 
(Pease & Mattson, 1999; Boyce, Blanchard, Knight, & Servheen, 2001; 
Haroldson, Schwartz, & White, 2006). The impact of these factors (bi-
ological, environmental, anthropogenic, genetic, and random) can be 
detected in different, but complementary, data types. Because they 
impact reproductive success, effects of age or food availability can be 
estimated through repeated population counts (e.g., yearly counts with 
multiple replicates per year) and litter information. Similarly, as harvest 
and sex affect individual survival probabilities, these factors can be 
studied using repeated counts and capture–recapture data. Biological, 
ecological, and observational linkages among data types can then be 
exploited to better assess the importance of these factors.

We present a general Integrated Population Model, specifically 
targeted for management of brown bears, explicitly connecting re-
peated counts, capture–mark–recapture, and litter information using 
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biological, ecological, and observational relationships. We expected 
this approach to improve precision and accuracy of population esti-
mates. We tested these assumptions using a simulated population. 
We then present an application of this general approach adapted to 
the constraints of a case study using historical long-term demographic 
data for Kodiak brown bears (U. a. middendorffi, Figure 1) on Kodiak 
Island, Alaska, USA. We compared results from our model to the ex-
tensive literature on this population to evaluate the practical applica-
tion of our model.

2  | MATERIALS AND METHODS

The hierarchical Bayesian framework allows for a joint modeling of 
different data types suitable for integrated population models, using 
an explicit description of the mechanisms responsible for these data. It 
also allows integration of information from literature or expert opinion 
with the inclusion of informative priors for relevant parameters.

In the general modeling approach for large carnivores populations, 
and brown bears in particular, the most commonly available data are 
repeated counts (including harvest data, defined as anthropogenic 
mortality), capture–mark–recapture (CMR) data, litter size, and radio 
telemetry data (e.g., Miller et al., 1997; Barnes & Smith, 1998; Solberg, 
Bellemain, Drageset, Taberlet, & Swenson, 2006). Counts can be used 
to assess the size of a target population, potentially differentiating be-
tween different age and sex classes, to better understand the compo-
sition and dynamics of said population. CMR data can provide more 
detailed information about individual survival and reproductive suc-
cess. Information on litters can often be collected at the same time as 
capture–recapture data to estimate survival of young and adult repro-
ductive success. In this context, these distinct data types can be linked 
through ecological and observation components. Ecological process 
refers to the underlying true state of the population, and the factors 
and mechanisms affecting this state; the observation processes will 
reflect the partial access we have to the underlying ecological process 
due to limitations emerging from “imperfect” observation methods. 

We developed a conceptual model to explicitly link these three com-
mon data types, specifically targeted for brown bears (Figure 2). This 
model offers a general framework for managers and can be used with 
modifications to fit their specific needs and available data. As an illus-
tration of how this could be practically implemented, we also present a 
subset model for a case study where not all data are available.

2.1 | General model description: Counts

N-mixture models provide a convenient framework to analyze re-
peated counts while accounting for imperfect detection (Kery, Royle, 
& Schmid, 2005; Royle, 2004). Following this approach, we assumed 
repeated count data collected across years (i.e., yearly counts with 
within-year replicates). For any given sex–age class X during replicate 
k in year t, we can define the set of repeated counts CXt ,k following a 

binomial distribution:

where NXt
 corresponds to the actual population size for the sex–age 

class X during year t, and p represents the individual detection prob-
ability (i.e., probability that an individual available for detection is ac-
tually detected). For simplicity, we set p as constant over time and 
classes, but this assumption can trivially be removed.

Subsequent definition of the corresponding sex–age class popula-
tions is done using a simple population model where each class size is 
defined based on the structure of the general population. We used five 
age classes (cub [<1 year old], yearling [1 year old], dependent young 
[>1 year old but with adult female], subadult [3-4 years old], and adult 
[>4 years old]). Because we know that survival probabilities differ 
between sexes (McLellan et al., 1999; Schwartz et al., 2003, 2006b), 
we further divided each age class into male and female classes. In the 
following equations, these age classes are referred to as subscripts 
C, Y, D, S and A, respectively. For brevity, only equations for females 
are presented, and male age class population size is defined similarly. 
Global cub population size NCtBH

 in year t, before harvest (BH), can be 
defined as following a Poisson distribution such as:

where the Poisson mean is the product of total adult female abun-
dance in year t−1NA♀t−1

, that survived and reproduced from year 
t-1 to year t with probabilities ΦA♀t−1

 and Pt−1, respectively, and the 
average litter size Lt−1 at den exit between years t−1 and t. This rep-
resents cubs born between years t−1 and t surviving until den exit. 
Consequently, male and female cub abundance during year t before 
harvest (NC♂tBH

 and NC♀tBH

, respectively) is defined based on the global 
cub population size, and the corresponding litter sex ratio following

from which, we can define the total abundances for male and fe-
male cubs NC♂t

 and NC♀t
 in year t, after harvest. For example, for 

females:

CXt ,k
∼Binomial

(

NXt
,p
)

NCt
BH

∼Poisson(NA♀t−1
ΦA♀t−1

Pt−1Lt−1)

NC♂tBH

∼Binomial(NCtBH

,♂:♀t−1)

NC♀tBH

=NCtBH

−NC♂tBH
F IGURE  1 Kodiak brown bear (Ursus arctos middendorffi). This 
induced sow has been collared before release. Green ink was used to 
tattoo lips and spread on the head and shoulders to allow for quick 
identification of recently captured animals and prevent unnecessary 
early recapture
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� (1)

with HC♀t
 the number of female cubs harvested in year t (typically equal 

to 0). We assume here that information about harvest is available and 
observed without error. If not, a separate modeling effort should be 
carried out to account for incomplete harvest reporting, or interpreta-
tion about survival probabilities should acknowledge that they include 
in part anthropic mortality.

Male and female yearling populations in year t, before harvest (BH) 
(NY♂tBH

 and NY♀tBH

, respectively), are defined based on the correspond-
ing cubs population and sex-specific survival probabilities in year t-1 
(ΦC♂t−1

 and ΦC♀t−1
). Actual male and female yearling populations in year 

t, after harvest (NY♂t
 and NY♀t

), are then computed by accounting for 
their respective harvest results (HY♂t

 and HY♀t
) following equation 1. 

For example, for females

Dependent young abundances ND♂tBH

 and ND♀tBH

 at year t, before 
harvest, can be defined in terms of yearlings that survived in year t−1 
to become dependent young and dependent young that survived in 
year t-1 but did not wean. For example, for females:

with ΦY♀t−1
 yearling survival probabilities, and ΦD♀t−1

 dependent young 
survival probabilities for females. Transition rates from dependent young 
to subadults, indicating successful weaning, correspond to γD♀t−1

. It should 
be noted that the above notation does not refer to a mixture distribu-
tion, but rather indicates that dependent abundance before harvest is 
the sum of two independent binomial random variables: abundance of 
yearlings that survived and became dependent young and abundance of 
dependent young that survived but did not yet reach independence. This 
notation has been adopted in the rest of the article for brevity. The actual 

abundances of dependent young (ND♂t
 and ND♀t−1

) at year t, once harvest 
has been taken into account (reported as HD♂t

 for males, and HD♀t
 for fe-

males), are then derived following equation 1.
Similarly, the subadult population is the result of subadults sur-

viving between year t-1 and year t not transitioning to adult, of the 
surviving dependent young that actually weaned to become subadults, 
and of yearly harvest (HS♂t

andHS♀t
) (following Equation 1). For exam-

ple, for females, this can be described as:

where NS♀tBH

 and NS♀t
 are female subadult abundance before and after 

harvest during year t, ΦS♀t−1
 is the subadult survival probability be-

tween year t-1 and year t, and  γS♀t−1
 the probability that surviving sub-

adults will transition to adult. The corresponding counterparts for male 
subadults are NS♂tBH

, NS♂t
, ΦS♂t−1

, and γS♂t−1
, respectively.

Adult populations before harvest (NA♂tBH

 and NA♀tBH

) on year t are 
based on adult and subadult populations the previous year (after harvest), 
taking into account adult survival probabilities (ΦA♂t−1

 and ΦA♀t−1
) and sub-

adult survival and transition probabilities. For example, for females

Final adult populations at year t (NA♂t
 and NA♀t

) are then obtained 
after taking into account harvest number for both males and females 
(HA♂t

 and HA♀t
) following equation 1.

A detailed diagram of the general population model is presented 
in Appendix S1.

2.2 | General model description: CMR

Capture–mark–recapture data (e.g., Jolly-Seber, Cormack-Jolly-
Seber, robust designs, Williams, Nichols, & Conroy, 2002) are often 
collected for large carnivores, including brown bears, to monitor 

NC♀t
=NC♀t

BH

−HC♀t

NY♀tBH

∼Binomial(NC♀t−1
,ΦC♀t−1

)

ND♀tBH

∼Binomial(ND♀t−1
,ΦD♀t−1

(1−γD♀t−1
))+Binomial(NY♀t−1

,ΦY♀t−1
)

NS♀t
BH

∼Binomial(NS♀t−1
,ΦS♀t−1

(1−γS♀t−1
))+Binomial(ND♀t−1

,ΦD♀t−1
γD♀t−1

)

NA♀tBH

∼Binomial(NS♀t−1
,ΦS♀t−1

γS♀t−1
)

F IGURE  2 Links among three data 
types (dashed boxes) used for the 
integrated population model for brown 
bears, based on available data (boxes), and 
derived parameters (circles). With Surv: 
survival probabilities, preprod: reproduction 
probability, N: abundance, and pdetect: 
detection probability
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population size, growth rate, and/or vital rates responsible for 
changes in this state variable. We present here a modeling approach 
similar to a CJS model including dead recovery, but this could eas-
ily be modified to accommodate different designs. For a general 
IPM where CMR data for brown bears are available over several 
years, we define detection yi,t for bear i, during year t conditionally 
on the individual actual alive status zi,t. We can detect an individual 
as recovered/seen alive (zi,t = 1) or dead (zi,t = 0). If the individual is 
detected alive, yi,t is equal to 1, and to 0 otherwise. Because of how 
records are typically kept, we included a third variable ri,t where 
ri,t = 1 indicates that the individual has been recovered dead (while 
ri,t = 0 corresponds to an individual that is still alive, or dead but not 
recovered). Once an individual has been recovered dead, its recap-
ture history ends, effectively restricting the recapture vectors yi,t 
and ri,t. up to the year of detected death. In practice, this allows us 
to consider two separate detection probabilities p and p′, for indi-
viduals alive or dead, respectively. We note that if CMR and count 
data are collected using the same general protocol, it would be pos-
sible to assume that their detection probability is the same. We then 
formally defined survival status, detection, and dead recovery, using 
Bernoulli distribution such as:

where detectability and dead recovery are defined conditionally on the 
survival status in year t. Survival of individual i in year t is conditional on 
its status during the previous year, and its specific survival probability 
ϕi,t−1 between year t−1 and t. Subsequently, the survival probability can 
be expressed as a linear combination on the logit scale of an intercept 
βz, some relevant covariates xz (time-individual dependent or not) and 
their associated slopes αz, and optionally a random effect εzi,t.

Supplementary information about the detected reproductive status Ri,t 
of female individual i during year t can be recorded (with Ri,t = 1 if in-
dividual i successfully reproduced in year t, 0 otherwise) and modeled 
following a Bernoulli distribution:

with ρi,t being the probability that individual i successfully reproduced 
in year t (i.e., is accompanied by cubs), and pr the specific detectability 
of the reproductive status. This effectively conditions the detection 
of the reproductive status on reproductive rates, detectability, and 
survival of the individual. As for the individual survival probability, we 
can express the successful reproduction probability as a linear combi-
nation on the logit scale of an intercept βr, any relevant covariates xr 
(time-individual dependent or not) and their associated slopes αr, and 
optionally a random effect εri,t:

2.3 | General model description: Litter

Information about the reproductive success of individuals is often 
obtained simultaneously to population counts or CMR data. We can 
distinguish two essential elements of information: initial litter size 
ℓk,1 for a litter k, and changes in litter size over time (due to mor-
tality). Females will often care for their young for periods of 1.4 
to 2.5 years before reproducing again (Hensel, Troyer, & Erickson, 
1969; Dahle & Swenson, 2003). Weaning age can be recorded and 
provide useful information about the structure of the population 
(e.g., ratio of dependent young to subadults, parental investment). 
Initial litter size at den exit can be modeled following a Poisson 
distribution with mean λk; the Poisson mean can then be defined 
on the log scale as a linear combination of an intercept βL, any rel-
evant factor xL, and their corresponding slopes αL, and if necessary 
a random effect εLk.

The litter size in subsequent years can be described dynamically using 
a binomial distribution with litter size the previous year as sample size, 
and young survival probabilities between year t − 1 and t (�youngk,t−1

) as 
success probability, such as:

where the survival probability is defined on the logit scale as a lin-
ear combination of an intercept βyoung, any relevant factor xyoung, and 
their corresponding slopes αyoung, and if necessary a random effect 
εyoungk:

The probability that a litter weans (i.e., Wk = 1, 0 otherwise) is de-
fined conditionally on the age of the litter. Following what is available 
in literature (e.g., Hensel et al., 1969; Dahle & Swenson, 2003), we 
assumed that weaning does not occur if young are less than 2 years 
old, and that litters 4 years old or greater have weaned. Litters 2 and 
3 years old will have a probability of weaning pwk,t

:

As described previously, we can further our description of the 
weaning probability using a linear combination on the logit scale of 
an intercept (βw), covariates (xw), and corresponding slopes (αw) if 
relevant and sufficient data are available, and if useful a random 
effect (εwk

).

⎧

⎪

⎨

⎪

⎩

zi,t∼Bernoulli
�

zi,t−1�i,t−1

�

yi,t∼Bernoulli
�

pzi,t+p�
�

1−zi,t
��

ri,t∼Bernoulli
�

p�
�

1−zi,t
��

logit(�i,t)=βz+
∑

αzxz+εzi,t

Ri,t=Bernoulli
(

ρi,tprzi,t
)

logit(ρi,t)=βr+
∑

αrxr+εri,t

�k,1∼Poisson
(

λk
)

log
(

λk
)

=βL+
∑

αLxL+εLk

�k,t∼Binomial
(

�k,t−1,�youngk,t−1

)

,

logit
(

�youngk,t−1

)

=βyoung+
∑

αyoungxyoung+εyoungk

Wk=

⎧

⎪

⎨

⎪

⎩

0 if age <2

Bernoulli
�

pwk,t

�

if 2⩽age⩽3

1 if age⩾4

logit(pwk,t
)=βw+

∑

αwxw+εwk
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2.4 | General model description: Links

Once the model used to describe each individual data type has been 
set, we can establish links allowing for information sharing between 
datasets (Figure 2; Schaub & Abadi, 2011). While data collected at 
the individual level through CMR reflect individual histories and ac-
count for individual variation (e.g., age or location), this information 
needs to be summarized among multiple individuals to reflect global 
processes at the population scale. This approach assumes that the 
CMR data represent an accurate sample of the entire population and 
the general range of factors that affect it. This assumption is neces-
sary to consider that the average of the demographic parameters 
over the individual scale (individual survival and reproduction prob-
abilities) provides an accurate estimate of the survival and reproduc-
tion probabilities at the scale of the whole population. The global 
female reproduction probability Pt for counts can be informed by the 
average individual reproduction probability of females during year t 
(n

ρt : total number of adult female alive during year t
), using CMR data, 

such as:

Following the same approach, CMR data can also be used to inform 
count modeling through refining the global yearly survival probabilities 
of adults and subadults by averaging the survival probability of individ-
uals alive the previous year in function of age-sex classes:

Litter information can be used similarly to provide more detailed 
information about young survival. As with the above formulation, we 
can average the individual survival probabilities in litters as a function 
of their age and sex to model the global yearly survival probability of 
cubs, yearlings, and dependent young (ΦC♂t

 and ΦC♀t
, ΦY♂t

 and ΦY♀t
, 

ΦD♂t
 and ΦD♀t

, respectively, for males and females). We assume that 
information on sex of young is not available during dependence; this 
assumption could easily be removed if this information is available.

Similarly, the global yearly litter size Lt for counts can be expressed 
as the average size of all the individual litters born in year t.

2.5 | Priors

When additional information from which parameters can be derived is 
unavailable, as shown above, we can use informative or noninforma-
tive priors. For the general count model, we included transition rates 
(from dependent young to subadults γS♂t

 and γS♀t
, and from subadults 

to adults γA♂t
 and γA♀t

) with noninformative priors, such as for example:

It can be beneficial to use information from the literature or 
expert opinion to develop informative priors. For example, the 
sex ratio could be provided with a noninformative prior and be es-
timated from count and litter information. However, as abundant 
literature is available for brown bears, we used an informative Beta 
prior, such as:

with

where μ♂:♀ and σ2♂:♀ correspond to estimated mean and variance for 
the sex ratio, from the literature. This is derived from the relation-
ship between the beta distribution’s mean and variance with its shape 
parameters:

For Kodiak island, we set μ♂:♀=0.5238 and μ♂:♀=0.0771, using in-
formation from Troyer and Hensel (1964).

Finally, if we assume the individual detection probability is 
the same between data collected during the count survey and the 
CMR data, we can set a noninformation prior and use information 
from count and CMR data to determine the parameter’s posterior 
distribution.

If we assume that detectabilities for CMR and count data differ, 
separate priors for each detection probability should be used.

We also set a noninformative prior for the recovery probability (p’) 
and reproduction detectability (pr).

2.6 | Simulations

To demonstrate the advantages of jointly using multiple data sources, 
we compared population estimates from the general integrated popu-
lation model described above with population estimates from the 
counts section only of this model for increasing, decreasing, and stable 
populations. Randomly drawing sets of values for demographic param-
eters using intervals commonly estimated in the literature specific to 
coastal brown bears (e.g., Schwartz et al., 2006; Schwartz, Haroldson, 
& White, 2006a,b), we simulated populations following these differ-
ent dynamics and created several datasets (counts, CMR, and litter 
information) reflecting ecologically realistic conditions allowing us to 
assess the accuracy of our model.

We simulated counts over 20 time units (years), with four repli-
cates per year. Over the same time period, we simulated CMR data for 
1,000 individuals, and data for 200 litters corresponding to a total of 
30 reproducing females. Reproduction parameters were set to allow 
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the average litter size to vary in an interval that matched what is avail-
able in the literature for brown bears, between one and four cubs per 
litter (McLellan, 1994). We used the same approach for survival pa-
rameters. We set the detection probability to 0.7, the reproduction 
detectability to 0.8, and the recovery probability to 0.9.

3  | CASE STUDY: KODIAK BROWN 
BEAR POPULATION

Although theoretical datasets provide a good basis to assess the ef-
ficiency of the integrated population model approach, it is essential to 
also consider its practicality by applying this method to a less optimal 
situation such as what can be encountered in real-life surveys where 
not all data are available.

We used data from 1983 to 1998 provided by the US Fish and 
Wildlife Service and Alaska Department of Fish and Game to model 
the dynamics of the Kodiak brown bear population. Kodiak island 
(9293 km2, Meiri, Simberloff, & Dayan, 2005) is located in the western 
Gulf of Alaska (56°45′–58°00′N, 152°09′–154°47′W) and supports 
approximately 3,500 brown bears (Van Daele 2007). Kodiak Island 
has a subarctic maritime climate, with variable weather due to topo-
graphic relief (Van Daele, Barnes, & Smith, 1990). A detailed descrip-
tion of Kodiak Island vegetation can be found in Fleming and Spencer 

(2004). Despite this population being well-studied, only partial data 
were available. CMR surveys and concomitant collection of litter in-
formation were regularly collected (Van Daele & Barnes, 2010), but 
not enough yearly count data were available for proper modeling. To 
demonstrate the versatility and adaptability of our IPM approach, we 
fitted a reduced version of our general model to these data, taking ad-
vantage of the connection between CMR reproduction data and litter 
information.

There were bear research projects on four primary study areas 
across Kodiak Island from 1982 to 1997, all of which included radio 
telemetry (Van Daele & Barnes, 2010). We used comparable capture, 
handling, and processing techniques in all investigations. For each 
captured bear, we noted gender, reproductive status, and extracted 
a first premolar for age determination (Matson et al., 1993). We de-
ployed conventional VHF radio collar transmitters (Telonics Inc., Mesa, 
AZ, USA) on a sample of subadult and adult bears in each study area. 
The sample was purposefully biased toward adult females because they 
would provide the most information on productivity and cub survival, 
and because of concerns about neck injuries the collars could cause to 
subadults and males. Collared bears were typically radiotracked from a 
fixed-winged aircraft (Piper PA-18 or equivalent) weekly by experienced 
pilot/observer teams. We reduced the flight schedule to twice monthly 
during the winter months. Tracking flight frequency was increased 
during spring emergence to ascertain cub production and survival. 

TABLE  1 Potential factors influencing brown bear population dynamics

Category Factors

Survival
Reproductive 
successCubs/yearlings/subadults Adult males Adult females

Biological Age + +/- +/- +/-

Sex ♀ > ♂ − + na

Litter size + na na +

Mother’s age + na na na

Presence of dependent young na na na −

Age of first reproduction na na na −

Perinatal mortality − na na na

Interbirth interval na na na +

Disease − − − na

Intraspecific predation − na na −

Ecological Food availability/Salmon 
stream density

+ + + +

Habitat type/Forest cover + + + +

Density − − − −

Climate change − − − −

Extreme weather +/− − − na

Anthropogenic Harvest/Hunting +/− − − − na

Management policies +/− +/− +/− +/−

Human presence − − − −

Cells in dark gray with bold text correspond to essential interactions that should be considered. Cells with bold text only correspond to factors that should 
secondarily be explored. A “+”sign indicates an expected positive correlation between the population parameter and the factor; a “−”indicates an expected 
negative correlation; and “na” indicates there is either no relationship or that it is not relevant to our study.
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CMR data consisted of yearly detections (i.e., whether or not a bear 
was successfully detected at least once during radiotracking in a given 
year) of a total of 241 marked bears (55 males and 186 females) during 
1983–1998, representing 977 total detections. We recorded age, sex, 
and reproductive status (presence and age of dependent young) for 
each individual. Litter data were composed of an initial assessment of 
the litter size of the reproductive females resighted every year before 
den entrance. We also recorded a yearly follow-up to determine if any 
young died and when weaning occurred. We were unable to collect 
information on sex ratios of litters. We collected data on 519 litters, 
representing 910 litter-years (mean ± SD = 1.75 year per litter ±1.11).

We conducted a literature review of factors potentially impacting 
brown bear populations (Table 1) and selected a subset of parameters 
for which we had data. We retained eight covariates: age, sex, salmon 
availability (annual estimates of salmon biomass, Alaska Department 
for Fish and Game data, Van Daele, Barnes, & Belant, 2012), age of 
first reproduction, litter size, mother’s age, presence of dependent 
young, and subadult status. Specifically, we modeled adult survival as 
a function of age (including a quadratic term), sex, and food availabil-
ity (more specifically salmon availability). We also included a separate 
effect for subadults and a random effect. We expressed individual re-
production probability as a linear function on the logit scale of age, 
food availability, age of first reproduction, presence of dependent 
young, and included a random effect. Initial litter size was modeled as 
a function of the mother’s age, its age of first reproduction, food avail-
ability (through salmon production), and a random effect. Covariates 

considered to potentially impact young survival probability were the 
young’s age (including a quadratic effect), litter size, mother’s age, 
food availability, and a random effect. Finally, we considered weaning 
probability to be solely dependent on the young’s age and a random 
effect.

4  | IMPLEMENTATION

We implemented our models for both simulated and Kodiak Island 
datasets using program JAGS (Plummer, 2003), called from R (v.3.0.1, 
R Core Team, 2014) with the package rjags (Plummer, 2014; Appendix 
S2). We ran three chains using noninformative priors, for 50,000 it-
erations after a 50,000 iteration burn-in (to insure convergence) with 
a thinning of 4. We monitored convergence by visual inspection of 
the MCMC chains and using the Gelman–Rubin convergence statistic 
(Gelman, Carlin, Stern, & Rubin, 2014). All results are presented with 
mean and 95% credible intervals.

5  | RESULTS

5.1 | Simulated datasets

Using simulated datasets, our integrated population model pro-
duced estimates extremely close to the actual simulated abundance 
of our theoretical populations, with estimates more accurate and 

F IGURE  3 Comparison of estimates of a simulated population size over time using integrated population model (IPM) and replicated counts 
only. The left and right panels correspond to results for simulated adult male and subadult female subpopulations, respectively. Simulated 
abundances are indicated by a black circle, estimated abundances with corresponding 95% credible intervals are represented as black points for 
the IPM and gray triangles for the replicated counts only
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precise than obtained using the count-only component of the model 
(Figure 3). Credible intervals from the IPM included the true simulated 
population abundance 94% of the time whereas the count-only model 
included the true population only 5% of the time. Considering that 
the underlying structure of the simulated dataset was similar to the 
one used by both models, the simple count model performance was 
less than expected. Population estimates from the count model were 
biased and imprecise (Figure 3).

5.2 | Kodiak brown bear case study

Adult survival probability differed between sexes (female having a 
higher survival probability, coefficient = 3.11 [1.72; 4.53]) and was 
correlated with food availability (slope = 0.68 [0.19; 1.21]). There 
was also a quadratic relationship between adult survival probability 
and age (quadratic slope = −0.03 [−0.04; −0.01], linear slope = 0.61 
[0.18; 1.05]; Figure 4). We did not detect a subadult effect (coeffi-
cient = 0.25 [−2.18; 2.73]). Young survival probability increased with 
age: survival probability for cubs, yearlings, and dependent young 
were estimated as 0.89 [0.85; 0.92], 0.96 [0.94; 0.98], and 0.98 [0.96; 
0.99], respectively. Young survival was negatively correlated with 
litter size (slope = −0.89 [−1.65; −0.24]). While we detected no cor-
relation between reproduction probability and food availability (as 
expressed through salmon biomass, slope = −0.24 [−0.76; 0.21]), this 
probability was negatively correlated with age (slope = −0.43 [−0.69; 
−0.21]). The presence of dependent young ensured that a female had 
an effective reproduction probability of 0, with a coefficient on the 
logit scale of −89.01 [−230.32; −15.92]. This result suggests to fix 
the reproduction probability to 0 when dependent young are present 
for Kodiak brown bears. Estimated annual average litter size (within 
1 year of birth) ranged from 0.45 [0.43; 0.55] to 1.59 [1.55; 1.82].

6  | DISCUSSION

Our integrated population model provided estimates close to the 
simulated datasets, providing greatly improved accuracy and preci-
sion over population count model estimates. When applied to the 
Kodiak Island brown bear population dataset, the subset model pro-
vided results that were overall consistent with what is reported in the 
literature. The Integrated Population Model we present is not a Rube-
Goldberg machine or a black box, but an ecologically based approach 
to populations and communities that can be used to bridge the gap 
between ecology and management. Improving estimation with data 
that are often collected simultaneously, and therefore with minimal 
increase in cost, responds to a need for efficient and economical 
methods in wildlife management (Field, Tyre, & Possingham, 2005). 
The mechanistic description of ecological processes allows for a con-
ceptual approach that can be adapted to different species in diverse 
ecosystems, and with different datasets, depending on objectives. The 
lack of some data can be compensated for using external available in-
formation (e.g., related scientific publications, external datasets). The 
Bayesian framework allows for easy integration of this information 

(Clark, 2005; Dupuis & Joachim, 2006; Morris, Vesk, & McCarthy, 
2013).

Developing an IPM for brown bears required specific ecologi-
cal model structures. Brown bears are solitary carnivores, with an 
omnivorous diet (Mowat & Heard, 2006; Bojarska & Selva, 2012). 
Reproducing females will often care for their young for several years 
before reproducing again (Dahle & Swenson, 2003). Males and fe-
males have different survival probabilities, and males are usually 
subject to more intense harvest pressure (McLellan et al., 1999; 
Bischof, Swenson, Yoccoz, Mysterud, & Gimenez, 2009; Van Daele & 
Barnes, 2010). Moreover, because bears are harvested in some juris-
dictions, we need to explicitly incorporate harvest rates. Bear data, 
with populations being monitored using a large variety of sampling 
designs, methods, and metrics, will provide different information of 
varying quality. Information sharing among data types was largely 
responsible for the observed improvements in accuracy and preci-
sion of this IPM. We can improve the development of mechanistic 
models by considering how population trajectories are connected to 
individual histories.

Due to the particular history and geography of the region, the 
relationship between bears and humans in Kodiak is an especially 
interesting and challenging system to model. Interactions between 
Kodiak brown bears and the local communities have been complex 
and changing under the different pressures of human–bear conflicts, 
trophy hunting, and conservation efforts (Van Daele, 2003). We em-
phasized three of five broad categories of factors known to affect bear 
populations (biological, environmental, anthropogenic, genetic, and 
random). Our results regarding biological factors were overall con-
sistent with previous studies, such as female survival being greater 
than that of males in North America (McLellan et al., 1999; Schwartz 
et al., 2003, 2006b) and survival of dependent young increasing with 
mother’s age (McLaughlin et al., 1994; Mattson, 2000; Schwartz et al., 

F IGURE  4 Survival probability as a function of age and sex for 
brown bears on Kodiak Island, Alaska, USA, 1983–1998. Mean (solid 
line) and 95% credible interval (dashed lines) are presented for adult 
males (gray) and females (black)
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2006, 2006b). We also confirmed the importance of accounting for 
age to understand the drivers of population dynamics. We note that 
survival probability was overall high, especially for dependent young 
and adult females. Abundant high-quality food, such as salmon in the 
Kodiak system, reduces competition for resources and facilitates im-
proved condition and survival of these cohorts. The lower adult male 
survival could also be related to the fact that large males are more 
valuable hunting trophies (McLellan et al., 1999; Bischof et al., 2009). 
Reproduction probability on the other hand was negatively correlated 
with age, and a female would not reproduce if she were caring for 
dependent young. Interestingly, opposite to what we observed, cub 
and yearling survival have been shown to increase with litter size 
(Craighead et al., 1995; Schwartz et al., 2006b). Our litter size esti-
mates and cub survival were respectively lower and higher than typi-
cally reported (Hensel et al., 1969; McLellan, 1994; Frković, Huber, & 
Kusak, 2001; Schwartz et al., 2003; Van Daele et al., 2012), possibly a 
consequence of cub mortality before we estimated litter size just be-
fore den entrance (about 4–6 months post den emergence), instead of 
at den emergence at the beginning of the season which is more typical.

Food availability can strongly influence aspects of brown bear 
ecology. Observed variation in home range and habitat use of brown 
bears on Kodiak Island largely reflected quality and availability of 
food, and bears had a demonstrated ability to successfully use a va-
riety of food sources, with two of the most important being salmon 
and berries (Van Daele et al., 2012). Bears in southwest Kodiak Island 
used streams with spawning salmon as fish arrived, then moved to 
other streams as salmon abundance and quality decreased (Barnes, 
1990; Deacy, Leacock, Armstrong, & Stanford, 2016). Food short-
ages can also affect young survival directly and indirectly by affecting 
their mother (Schwartz et al., 2006b). Our results demonstrate the 
importance of food availability and quality for understanding young 
and adult survival. Although reproduction probability appeared unre-
lated with salmon availability (as indexed by biomass), salmon avail-
ability appeared to impact reproductive success by influencing young 
survival.

Further considerations for Integrated Population Model used for 
brown bears could include important abiotic factors for coastal brown 
bear populations such as weather and climate change (Mattson, 2000; 
Schwartz et al., 2006a; Bojarska and Selva 2012). Genetic factors in-
cluding population viability, heterogeneity and plasticity, or connec-
tivity among populations can also represent long-term and large-scale 
challenges for brown bear populations (and other mid-to-large-size 
predators; Kamath et al., 2015). However, these have a lesser effect in 
the timescale that managers typically use when considering basic pop-
ulation models. Population variability due to stochastic and uncaptured 
effects can often be obtained through integration of random effects 
such as random year effects or spatially structured random effects; 
further development of our IPM would benefit from including these 
effects. Finally, data on annual population counts would be beneficial 
by providing a means to evaluate status of a population(s) throughout 
its range, useful for assessing management actions.

Our explicit IPM is an ecologically relevant and integrative ap-
proach to estimate animal abundance, can make other parameters 

identifiable, or improve their estimation. We incorporated generic 
and specific elements impacting population dynamics and ac-
counted for varying sampling designs, surveys, historical datasets, 
and external information. Our approach can be fitted to other spe-
cies or to a combination of historical data, and therefore, presents 
numerous applications and benefits for science and management. 
When looking at particular conservation objectives occurring at the 
interface between multiple key species or geographical areas, this 
approach provides a natural and intuitive framework to bring var-
ious agencies and their data together and achieve simultaneously 
their individual goals. The inclusion of historical data responds to 
the need for evaluating cultural and natural causes of variability 
and characterizing the overall dynamical properties of ecosystems 
(Swetnam, Allen, & Betancourt, 1999). The combined use of current 
and historical data in integrated population models can facilitate 
reconstruction of ecosystems or populations histories to inform 
management decisions.

While integrated population models are one of the most power-
ful methods newly added to the toolbox of managers and wildlife re-
searchers, it is important to recognize their limitations. Namely, they 
require considerable data for each process modeled. Related to this 
issue, before modeling response variables—such as survival or detec-
tion probabilities—in function of a set of explanatory covariates, users 
should assess whether data sources contain enough information to 
statistically identify these relationships. Moreover, computation time 
can be long, depending on model complexity. Model selection to de-
termine the importance of each variable should also be considered. 
Finally, initial modeling needs to be carefully completed to take full 
advantage of each dataset and correctly link all processes. Regarding 
the general approach we present here to provide a framework tailored 
to brown bears, some complementary analyses would be useful to 
identify its limitations. In particular, it would be useful to determine 
what components and data are most important. It would be useful to 
compare the full IPM to counts only, CMR only, litter only, and com-
binations of these components. Such analyses could be conducted 
by removing one element at a time and could provide additional in-
formation regarding which combination of components allows for 
the estimation of additional parameters. Because these components 
(counts, CMR, and litter) are not always available (or are only partially 
available), as in our case study, this would provide key information for 
managers as to which data sources are most important for their spe-
cific objectives.

The versatility of our approach would prove useful for other 
species. Minimal adaptations would be required for solitary large 
carnivores and would mostly include modifying age class and global 
population structures. In contrast, adaptations for social species would 
require accounting for density-dependent processes, social interac-
tions, and dependencies in detections. Further, the general population 
model could be modified for more or less structured systems. We rec-
ommend that spatially explicit data and components be included (such 
as a conditional autoregressive component to the count model, or the 
inclusion of an adapted spatially explicit capture–recapture model) 
when available. Provided data are available, and the structure of the 
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underlying ecological models for each dataset are well understood; a 
wide range of species and ecosystems could be studied using varia-
tions of our modeling approach.
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