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Abstract
Current	management	of	 large	carnivores	 is	 informed	using	a	variety	of	parameters,	
methods,	 and	metrics;	 however,	 these	data	are	 typically	 considered	 independently.	
Sharing	information	among	data	types	based	on	the	underlying	ecological,	and	recog-
nizing	observation	biases,	can	improve	estimation	of	individual	and	global	parameters.	
We	 present	 a	 general	 integrated	 population	model	 (IPM),	 specifically	 designed	 for	
brown	bears	(Ursus arctos),	using	three	common	data	types	for	bear	(U.	spp.)	popula-
tions:	repeated	counts,	capture–mark–recapture,	and	litter	size.	We	considered	fac-
tors	affecting	ecological	and	observation	processes	for	these	data.	We	assessed	the	
practicality	of	this	approach	on	a	simulated	population	and	compared	estimates	from	
our	model	to	values	used	for	simulation	and	results	from	count	data	only.	We	then	
present	a	practical	application	of	this	general	approach	adapted	to	the	constraints	of	a	
case	study	using	historical	data	available	 for	brown	bears	on	Kodiak	 Island,	Alaska,	
USA.	The	IPM	provided	more	accurate	and	precise	estimates	than	models	accounting	
for	repeated	count	data	only,	with	credible	intervals	including	the	true	population	94%	
and	 5%	of	 the	 time,	 respectively.	 For	 the	Kodiak	 population,	we	 estimated	 annual	
average	 litter	size	 (within	one	year	after	birth)	 to	vary	between	0.45	 [95%	credible	
	interval:	0.43;	0.55]	and	1.59	[1.55;	1.82].	We	detected	a	positive	relationship		between	
salmon	availability	and	adult	 survival,	with	survival	probabilities	greater	 for	 females	
than	males.	Survival	probabilities	increased	from	cubs	to	yearlings	to	dependent	young	
≥2	years	old	and	decreased	with	litter	size.	Linking	multiple	information	sources	based	
on	 ecological	 and	 observation	mechanisms	 can	 provide	more	 accurate	 and	 precise	
estimates,	to	better	inform	management.	IPMs	can	also	reduce	data	collection	efforts	
by	sharing	information	among	agencies	and	management	units.	Our	approach		responds	
to	an	increasing	need	in	bear	populations’	management	and	can	be	readily	adapted	to	
other	large	carnivores.
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1  | INTRODUCTION

Large	carnivores	have	great	ecological,	cultural,	and	economic	value	
(Kellert,	Black,	Rush,	&	Bath,	1996;	Ray,	Redford,	Steneck,	&	Berger,	
2013).	These	species	help	maintain	ecosystem	function	and	stabilize	
interactions	between	species	at	lower	trophic	levels	through	predation	
and	 scavenging	 (Miller	et	al.,	 2001;	Ripple	et	al.,	 2014).	 Large	carni-
vores	also	represent	a	valuable	resource	for	ecotourism	and	hunting	
(Sillero-	Zubiri	 &	 Laurenson,	 2001).	 However,	 interactions	 between	
wild	animals	and	the	public	can	also	result	 in	negative	outcomes	for	
involved	humans,	animals,	and	financial	institutions	(Treves	&	Karanth,	
2003).	Maximizing	 positive	 aspects	 of	 human–large	 carnivore	 inter-
actions,	while	minimizing	human–wildlife	conflicts,	relies	on	effective	
management	policies.

Population	monitoring	is	an	integral	part	of	management,	provid-
ing	 valuable	 information	 to	 assess	 management	 actions	 and	 devise	
new	strategies.	It	relies	on	various	metrics,	sampling	designs,	and	data	
types.	 Metrics	 commonly	 used	 for	 large	 carnivore	 management	 in-
clude	density,	abundance,	and	distribution	(Taylor	&	Lee,	1995;	Apps,	
McLellan,	Woods,	&	Proctor,	2004;	Gardner,	Royle,	Wegan,	Rainbolt,	
&	Curtis,	2010)	with	associated	policies	targeting	the	improvement	or	
control	of	population	parameters	such	as	survival,	persistence	or	colo-
nization,	reproductive	rates,	or	connectivity	(Noss,	Quigley,	Hornocker,	
Merrill,	&	Paquet,	1996;	Ferreras,	Gaona,	Palomares,	&	Delibes,	2001).	
To	assess	these	metrics,	counts,	detections,	and	reproductive		success	
can	be	 recorded	using	multiple	 sampling	designs	 (e.g.,	repeated	sur-
veys,	 distance	 sampling,	 and	 capture–mark–recapture)	 (Gese,	 2001;	
Hansen,	Frair,	Underwood,	&	Gibbs,	2015).	As	large	carnivore	popula-
tions	often	cross	jurisdictional	boundaries,	populations	of	conservation	
interest	 are	 often	 studied	 simultaneously	 by	 different	 organizations	
using	varying	approaches.	Count	data	(repeated	or	not)	are	common,	
logistically	 simple	 to	 collect,	 and	 are	 cost-	effective	 for	 investigating	
population	statuses	and	trajectories.	In	contrast,	mark-	recapture	data	
are	effective	 for	providing	 information	regarding	demographic	 rates,	
but	 are	 less	 cost-	effective	 and	 resource-	intensive.	 Consequently,	
depending	 on	 the	 objectives	 of	 different	 studies	 and	 the	 resources	
available	 to	 different	 organizations	 or	 agencies,	 separate	 data	 sam-
pling	designs	might	be	implemented	on	the	same	area	or	population.	
These	 different	 approaches	 and	 data	 sources	 are	 often	 considered	
independently	 and	 can	 result	 in	 underutilization	 of	 information	 and	
resources,	with	weaker	estimates	than	if	considered	jointly.

Recently	 developed	 integrated	 population	 models	 (IPM)	 offer	
a	 framework	 to	 jointly	 analyze	multiple	 demographic	 data	 and	 pro-
vide	a	unified	approach	incorporating	population	count	data	(i.e.,	data	
on	population	size)	and	demographic	data	(i.e.,	data	on	demographic	
rates)	(Schaub	&	Abadi,	2011).	In	their	most	basic	form,	IPMs	combine	
abundance	analysis	of	 count	data	 (e.g.,	 through	state-	space	models)	
with	estimation	of	demographic	parameters	from	capture–recapture	
models	and	marked	individuals	(Chandler	&	Clark,	2014).	Advantages	
of	these	models	include	the	estimation	of	more	demographic	param-
eters	with	greater	precision	and	improved	consideration	of	sources	of	
uncertainty	 related	 to	ecological	 and	observation	processes	of	each	
data	type	(Besbeas,	Freeman,	Morgan,	&	Catchpole,	2002;	Gauthier,	

Besbeas,	 Lebreton,	 &	 Morgan,	 2007;	 Abadi,	 Gimenez,	 Arlettaz,	 &	
Schaub,	2010).	They	also	offer	a	framework	to	combine	data	from	dif-
ferent	surveys	carried	out	on	 large	areas	or	with	 temporally	varying	
resources	(conditions	for	which	low-	intensity	surveys	are	often	more	
convenient).	The	 integrated	population	modeling	 approach	provides	
a	meaningful	description	of	ecological	processes	and	a	powerful	tool	
to	better	understand	demographic	changes	in	large	carnivore	popula-
tions,	while	integrating	multiple	data	sources.

Brown	 bears	 (Ursus arctos)	 present	 a	 management	 challenge	
as	 they	 are	 a	 long-	lived	 species	 with	 considerable	 individual	 vari-
ation	 (e.g.,	 habitat,	 diet,	 and	 reproduction	 traits;	Gillies	 et	al.,	 2006;	
Edwards,	Derocher,	Hobson,	Branigan,	&	Nagy,	2011;	Lafferty,	Belant,	
&	Phillips,	2015).	Brown	bears	also	traverse	large	areas	and	commonly	
cross	jurisdictional	boundaries	of	agencies	with	different	missions	and	
mandates.	 Consequently,	 understanding	 the	 relationships	 between	
temporal,	 spatial,	 and	environmental	 factors	and	brown	bear	demo-
graphics	(abundance,	distribution,	and	dynamics)	is	essential	for	effec-
tive	management.	Unfortunately,	decisions	can	be	constrained	due	to	
a	lack	of	integrated	data	that	would	allow	managers	to	more	feasibly	
and	robustly	assess	the	status	of	brown	bear	populations.	Integrated	
population	models	allow	the	estimation	of	parameters	and	identifica-
tion	of	 factors	 important	 for	management	 that	 a	 single	data	 source	
cannot	estimate.

Factors	affecting	bear	populations	can	broadly	be	categorized	as	
biological,	environmental,	and	anthropogenic,	and	to	a	 lesser	extent,	
genetic	and	random.	These	 factors	directly	 influence	population	dy-
namics	by	 impacting	different	parameters	such	as	 reproductive	suc-
cess	or	survival	of	adults	and	young	(Schwartz,	Haroldson,	&	Cherry,	
2006;	 Schwartz,	Haroldson,	&	White,	 2006b).	 For	 example,	 biologi-
cal	factors	affecting	survival	probabilities	of	brown	bears	include	age	
and	sex	 (McLellan	et	al.,	1999;	Schwartz,	Miller,	&	Haroldson,	2003;	
Schwartz	 et	al.,	 2006b),	 as	 well	 as	 mother’s	 age	 and	 litter	 size	 for	
young	 (McLaughlin,	Matula,	 &	O’Connor,	 1994;	 Craighead,	 Sumner,	
&	Mitchell,	1995;	Mattson,	2000;	Schwartz	et	al.,	2006,	2006b).	One	
of	 the	most	 important	 ecological	 factors	 affecting	brown	bear	pop-
ulations	 is	 food	quality	 and	 availability,	which	 directly	 affects	 home	
range	size,	habitat	use,	and	population	density	 through	survival	and	
reproductive	success	(Hilderbrand	et	al.,1999).	One	of	the	most	direct	
and	visible	ways	humans	impact	bear	populations	is	through	harvest	
(Pease	&	Mattson,	1999;	Boyce,	Blanchard,	Knight,	&	Servheen,	2001;	
Haroldson,	Schwartz,	&	White,	2006).	The	impact	of	these	factors	(bi-
ological,	environmental,	anthropogenic,	genetic,	and	random)	can	be	
detected	 in	different,	but	 complementary,	data	 types.	Because	 they	
impact	reproductive	success,	effects	of	age	or	food	availability	can	be	
estimated	through	repeated	population	counts	(e.g.,	yearly	counts	with	
multiple	replicates	per	year)	and	litter	information.	Similarly,	as	harvest	
and	 sex	 affect	 individual	 survival	 probabilities,	 these	 factors	 can	be	
studied	using	repeated	counts	and	capture–recapture	data.	Biological,	
ecological,	and	observational	linkages	among	data	types	can	then	be	
exploited	to	better	assess	the	importance	of	these	factors.

We	 present	 a	 general	 Integrated	 Population	 Model,	 specifically	
targeted	 for	 management	 of	 brown	 bears,	 explicitly	 connecting	 re-
peated	counts,	capture–mark–recapture,	and	litter	information	using	
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biological,	 ecological,	 and	 observational	 relationships.	We	 expected	
this	approach	 to	 improve	precision	and	accuracy	of	population	esti-
mates.	We	 tested	 these	 assumptions	 using	 a	 simulated	 population.	
We	then	present	an	application	of	this	general	approach	adapted	to	
the	constraints	of	a	case	study	using	historical	long-	term	demographic	
data	 for	Kodiak	brown	bears	 (U. a. middendorffi,	Figure	1)	on	Kodiak	
Island,	Alaska,	USA.	We	compared	results	from	our	model	to	the	ex-
tensive	literature	on	this	population	to	evaluate	the	practical	applica-
tion	of	our	model.

2  | MATERIALS AND METHODS

The	hierarchical	Bayesian	 framework	 allows	 for	 a	 joint	modeling	of	
different	data	types	suitable	for	integrated	population	models,	using	
an	explicit	description	of	the	mechanisms	responsible	for	these	data.	It	
also	allows	integration	of	information	from	literature	or	expert	opinion	
with	the	inclusion	of	informative	priors	for	relevant	parameters.

In	the	general	modeling	approach	for	large	carnivores	populations,	
and	brown	bears	in	particular,	the	most	commonly	available	data	are	
repeated	 counts	 (including	 harvest	 data,	 defined	 as	 anthropogenic	
mortality),	capture–mark–recapture	(CMR)	data,	 litter	size,	and	radio	
telemetry	data	(e.g.,	Miller	et	al.,	1997;	Barnes	&	Smith,	1998;	Solberg,	
Bellemain,	Drageset,	Taberlet,	&	Swenson,	2006).	Counts	can	be	used	
to	assess	the	size	of	a	target	population,	potentially	differentiating	be-
tween	different	age	and	sex	classes,	to	better	understand	the	compo-
sition	and	dynamics	of	said	population.	CMR	data	can	provide	more	
detailed	 information	about	 individual	 survival	 and	 reproductive	 suc-
cess.	Information	on	litters	can	often	be	collected	at	the	same	time	as	
capture–recapture	data	to	estimate	survival	of	young	and	adult	repro-
ductive	success.	In	this	context,	these	distinct	data	types	can	be	linked	
through	 ecological	 and	 observation	 components.	 Ecological	 process	
refers	to	the	underlying	true	state	of	the	population,	and	the	factors	
and	mechanisms	 affecting	 this	 state;	 the	observation	processes	will	
reflect	the	partial	access	we	have	to	the	underlying	ecological	process	
due	 to	 limitations	 emerging	 from	 “imperfect”	 observation	methods.	

We	developed	a	conceptual	model	to	explicitly	link	these	three	com-
mon	data	types,	specifically	targeted	for	brown	bears	(Figure	2).	This	
model	offers	a	general	framework	for	managers	and	can	be	used	with	
modifications	to	fit	their	specific	needs	and	available	data.	As	an	illus-
tration	of	how	this	could	be	practically	implemented,	we	also	present	a	
subset	model	for	a	case	study	where	not	all	data	are	available.

2.1 | General model description: Counts

N-	mixture	 models	 provide	 a	 convenient	 framework	 to	 analyze	 re-
peated	counts	while	accounting	for	imperfect	detection	(Kery,	Royle,	
&	Schmid,	2005;	Royle,	2004).	Following	this	approach,	we	assumed	
repeated	 count	 data	 collected	 across	 years	 (i.e.,	 yearly	 counts	with	
within-	year	replicates).	For	any	given	sex–age	class	X	during	replicate	
k	in	year	t,	we	can	define	the	set	of	repeated	counts	CXt ,k	following	a	

binomial	distribution:

where NXt
	corresponds	to	the	actual	population	size	for	the	sex–age	

class	X	during	year	t,	and	p	represents	the	individual	detection	prob-
ability	(i.e.,	probability	that	an	individual	available	for	detection	is	ac-
tually	 detected).	 For	 simplicity,	we	 set	p	 as	 constant	over	 time	 and	
classes,	but	this	assumption	can	trivially	be	removed.

Subsequent	definition	of	the	corresponding	sex–age	class	popula-
tions	is	done	using	a	simple	population	model	where	each	class	size	is	
defined	based	on	the	structure	of	the	general	population.	We	used	five	
age	classes	(cub	[<1	year	old],	yearling	[1	year	old],	dependent	young	
[>1	year	old	but	with	adult	female],	subadult	[3-	4	years	old],	and	adult	
[>4	years	 old]).	 Because	 we	 know	 that	 survival	 probabilities	 differ	
between	sexes	(McLellan	et	al.,	1999;	Schwartz	et	al.,	2003,	2006b),	
we	further	divided	each	age	class	into	male	and	female	classes.	In	the	
following	 equations,	 these	 age	 classes	 are	 referred	 to	 as	 subscripts	
C,	Y,	D,	S	and	A,	respectively.	For	brevity,	only	equations	for	females	
are	presented,	and	male	age	class	population	size	is	defined	similarly.	
Global	cub	population	size	NCtBH

	in	year	t,	before	harvest	(BH),	can	be	
defined	as	following	a	Poisson	distribution	such	as:

where	the	Poisson	mean	is	the	product	of	total	adult	female	abun-
dance	 in	 year	 t−1NA♀t−1

,	 that	 survived	 and	 reproduced	 from	 year	
t-1	to	year	t	with	probabilities	ΦA♀t−1

	and	Pt−1,	respectively,	and	the	
average	litter	size	Lt−1	at	den	exit	between	years	t−1	and	t.	This	rep-
resents	cubs	born	between	years	t−1	and	t	surviving	until	den	exit.	
Consequently,	male	and	female	cub	abundance	during	year	t	before	
harvest	(NC♂tBH

	and	NC♀tBH

,	respectively)	is	defined	based	on	the	global	
cub	population	size,	and	the	corresponding	litter	sex	ratio	following

from	which,	we	can	define	the	total	abundances	for	male	and	fe-
male	 cubs	NC♂t

	 and	NC♀t
	 in	 year	 t,	 after	 harvest.	 For	 example,	 for	

females:

CXt ,k
∼Binomial

(

NXt
,p
)

NCt
BH

∼Poisson(NA♀t−1
ΦA♀t−1

Pt−1Lt−1)

NC♂tBH

∼Binomial(NCtBH

,♂:♀t−1)

NC♀tBH

=NCtBH

−NC♂tBH
F IGURE  1 Kodiak	brown	bear	(Ursus arctos	middendorffi).	This	
induced	sow	has	been	collared	before	release.	Green	ink	was	used	to	
tattoo	lips	and	spread	on	the	head	and	shoulders	to	allow	for	quick	
identification	of	recently	captured	animals	and	prevent	unnecessary	
early	recapture
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	 (1)

with	HC♀t
	the	number	of	female	cubs	harvested	in	year	t	(typically	equal	

to	0).	We	assume	here	that	information	about	harvest	is	available	and	
observed	without	error.	 If	not,	a	separate	modeling	effort	should	be	
carried	out	to	account	for	incomplete	harvest	reporting,	or	interpreta-
tion	about	survival	probabilities	should	acknowledge	that	they	include	
in	part	anthropic	mortality.

Male	and	female	yearling	populations	in	year	t,	before	harvest	(BH)	
(NY♂tBH

	and	NY♀tBH

,	respectively),	are	defined	based	on	the	correspond-
ing	cubs	population	and	sex-	specific	survival	probabilities	in	year	t-1 
(ΦC♂t−1

	and	ΦC♀t−1
).	Actual	male	and	female	yearling	populations	in	year	

t,	after	harvest	 (NY♂t
	and	NY♀t

),	are	then	computed	by	accounting	for	
their	 respective	harvest	 results	 (HY♂t

	 and	HY♀t
)	 following	equation	1.	

For	example,	for	females

Dependent	young	abundances	ND♂tBH

	 and	ND♀tBH

	 at	year	 t,	before	
harvest,	can	be	defined	in	terms	of	yearlings	that	survived	in	year	t−1	
to	become	dependent	young	and	dependent	young	that	survived	 in	
year	t-1	but	did	not	wean.	For	example,	for	females:

with	ΦY♀t−1
	 yearling	 survival	 probabilities,	 and	ΦD♀t−1

	 dependent	young	
survival	probabilities	for	females.	Transition	rates	from	dependent	young	
to	subadults,	indicating	successful	weaning,	correspond	to	γD♀t−1

.	It	should	
be	noted	that	the	above	notation	does	not	refer	to	a	mixture	distribu-
tion,	but	 rather	 indicates	 that	dependent	abundance	before	harvest	 is	
the	sum	of	two	independent	binomial	random	variables:	abundance	of	
yearlings	that	survived	and	became	dependent	young	and	abundance	of	
dependent	young	that	survived	but	did	not	yet	reach	independence.	This	
notation	has	been	adopted	in	the	rest	of	the	article	for	brevity.	The	actual	

abundances	of	dependent	young	(ND♂t
	and	ND♀t−1

)	at	year	t,	once	harvest	
has	been	taken	into	account	(reported	as	HD♂t

	for	males,	and	HD♀t
	for	fe-

males),	are	then	derived	following	equation	1.
Similarly,	 the	 subadult	 population	 is	 the	 result	 of	 subadults	 sur-

viving	between	year	 t-1	and	year	 t	not	 transitioning	to	adult,	of	 the	
surviving	dependent	young	that	actually	weaned	to	become	subadults,	
and	of	yearly	harvest	(HS♂t

andHS♀t
)	(following	Equation	1).	For	exam-

ple,	for	females,	this	can	be	described	as:

where NS♀tBH

	and	NS♀t
	are	female	subadult	abundance	before	and	after	

harvest	 during	 year	 t,	ΦS♀t−1
	 is	 the	 subadult	 survival	 probability	 be-

tween	year	t-1	and	year	t,	and		γS♀t−1
	the	probability	that	surviving	sub-

adults	will	transition	to	adult.	The	corresponding	counterparts	for	male	
subadults	are	NS♂tBH

,	NS♂t
,	ΦS♂t−1

,	and	γS♂t−1
,	respectively.

Adult	 populations	 before	 harvest	 (NA♂tBH

	 and	NA♀tBH

)	 on	 year	 t	 are	
based	on	adult	and	subadult	populations	the	previous	year	(after	harvest),	
taking	into	account	adult	survival	probabilities	(ΦA♂t−1

	and	ΦA♀t−1
)	and	sub-

adult	survival	and	transition	probabilities.	For	example,	for	females

Final	adult	populations	at	year	t	(NA♂t
	and	NA♀t

)	are	then	obtained	
after	taking	into	account	harvest	number	for	both	males	and	females	
(HA♂t

	and	HA♀t
)	following	equation	1.

A	detailed	diagram	of	the	general	population	model	 is	presented	
in	Appendix	S1.

2.2 | General model description: CMR

Capture–mark–recapture	 data	 (e.g.,	 Jolly-	Seber,	 Cormack-	Jolly-	
Seber,	robust	designs,	Williams,	Nichols,	&	Conroy,	2002)	are	often	
collected	 for	 large	 carnivores,	 including	 brown	 bears,	 to	 monitor	

NC♀t
=NC♀t

BH

−HC♀t

NY♀tBH

∼Binomial(NC♀t−1
,ΦC♀t−1

)
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,ΦD♀t−1

(1−γD♀t−1
))+Binomial(NY♀t−1

,ΦY♀t−1
)
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BH
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,ΦS♀t−1

(1−γS♀t−1
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F IGURE  2 Links	among	three	data	
types	(dashed	boxes)	used	for	the	
integrated	population	model	for	brown	
bears,	based	on	available	data	(boxes),	and	
derived	parameters	(circles).	With	Surv:	
survival	probabilities,	preprod:	reproduction	
probability,	N:	abundance,	and	pdetect: 
detection	probability
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population	 size,	 growth	 rate,	 and/or	 vital	 rates	 responsible	 for	
changes	in	this	state	variable.	We	present	here	a	modeling	approach	
similar	to	a	CJS	model	including	dead	recovery,	but	this	could	eas-
ily	 be	 modified	 to	 accommodate	 different	 designs.	 For	 a	 general	
IPM	where	 CMR	 data	 for	 brown	 bears	 are	 available	 over	 several	
years,	we	define	detection	yi,t	for	bear	i,	during	year	t	conditionally	
on	the	individual	actual	alive	status	zi,t.	We	can	detect	an	individual	
as	recovered/seen	alive	(zi,t	=	1)	or	dead	(zi,t	=	0).	If	the	individual	is	
detected	alive,	yi,t	is	equal	to	1,	and	to	0	otherwise.	Because	of	how	
records	 are	 typically	 kept,	 we	 included	 a	 third	 variable	 ri,t where 
ri,t	=	1	indicates	that	the	individual	has	been	recovered	dead	(while	
ri,t	=	0	corresponds	to	an	individual	that	is	still	alive,	or	dead	but	not	
recovered).	Once	an	individual	has	been	recovered	dead,	its	recap-
ture	 history	 ends,	 effectively	 restricting	 the	 recapture	 vectors	 yi,t 
and	ri,t.	up	to	the	year	of	detected	death.	In	practice,	this	allows	us	
to	consider	two	separate	detection	probabilities	p	and	p′,	for	indi-
viduals	alive	or	dead,	respectively.	We	note	that	if	CMR	and	count	
data	are	collected	using	the	same	general	protocol,	it	would	be	pos-
sible	to	assume	that	their	detection	probability	is	the	same.	We	then	
formally	defined	survival	status,	detection,	and	dead	recovery,	using	
Bernoulli	distribution	such	as:

where	detectability	and	dead	recovery	are	defined	conditionally	on	the	
survival	status	in	year	t.	Survival	of	individual	i	in	year	t	is	conditional	on	
its	status	during	the	previous	year,	and	its	specific	survival	probability	
ϕi,t−1	between	year	t−1	and	t.	Subsequently,	the	survival	probability	can	
be	expressed	as	a	linear	combination	on	the	logit	scale	of	an	intercept	
βz,	some	relevant	covariates	xz	(time-	individual	dependent	or	not)	and	
their	associated	slopes	αz,	and	optionally	a	random	effect	εzi,t.

Supplementary	information	about	the	detected	reproductive	status	Ri,t 
of	female	individual	i	during	year	t	can	be	recorded	(with	Ri,t	=	1	if	in-
dividual	i	successfully	reproduced	in	year	t,	0	otherwise)	and	modeled	
following	a	Bernoulli	distribution:

with	ρi,t	being	the	probability	that	individual	i	successfully	reproduced	
in	year	t	(i.e.,	is	accompanied	by	cubs),	and	pr	the	specific	detectability	
of	 the	 reproductive	 status.	This	 effectively	 conditions	 the	detection	
of	 the	 reproductive	 status	 on	 reproductive	 rates,	 detectability,	 and	
survival	of	the	individual.	As	for	the	individual	survival	probability,	we	
can	express	the	successful	reproduction	probability	as	a	linear	combi-
nation	on	the	logit	scale	of	an	intercept	βr,	any	relevant	covariates	xr 
(time-	individual	dependent	or	not)	and	their	associated	slopes	αr,	and	
optionally	a	random	effect	εri,t:

2.3 | General model description: Litter

Information	about	the	reproductive	success	of	 individuals	 is	often	
obtained	simultaneously	to	population	counts	or	CMR	data.	We	can	
distinguish	two	essential	elements	of	 information:	 initial	 litter	size	
ℓk,1	 for	a	 litter	k,	and	changes	 in	 litter	size	over	time	(due	to	mor-
tality).	 Females	will	 often	 care	 for	 their	 young	 for	 periods	 of	 1.4	
to	2.5	years	before	reproducing	again	(Hensel,	Troyer,	&	Erickson,	
1969;	Dahle	&	Swenson,	2003).	Weaning	age	can	be	recorded	and	
provide	 useful	 information	 about	 the	 structure	 of	 the	 population	
(e.g.,	ratio	of	dependent	young	to	subadults,	parental	 investment).	
Initial	 litter	 size	 at	 den	 exit	 can	 be	 modeled	 following	 a	 Poisson	
distribution	with	mean	λk;	 the	Poisson	mean	 can	 then	be	defined	
on	the	log	scale	as	a	linear	combination	of	an	intercept	βL,	any	rel-
evant	factor	xL,	and	their	corresponding	slopes	αL,	and	if	necessary	
a		random	effect	εLk.

The	litter	size	in	subsequent	years	can	be	described	dynamically	using	
a	binomial	distribution	with	litter	size	the	previous	year	as	sample	size,	
and	young	survival	probabilities	between	year	t − 1	and	t	(�youngk,t−1

)	as	
success	probability,	such	as:

where	the	survival	probability	is	defined	on	the	logit	scale	as	a	lin-
ear	combination	of	an	intercept	βyoung,	any	relevant	factor	xyoung,	and	
their	corresponding	slopes	αyoung,	and	if	necessary	a	random	effect	
εyoungk:

The	probability	that	a	litter	weans	(i.e.,	Wk	=	1,	0	otherwise)	is	de-
fined	conditionally	on	the	age	of	the	litter.	Following	what	is	available	
in	 literature	 (e.g.,	Hensel	 et	al.,	 1969;	Dahle	&	 Swenson,	 2003),	we	
assumed	that	weaning	does	not	occur	if	young	are	less	than	2	years	
old,	and	that	litters	4	years	old	or	greater	have	weaned.	Litters	2	and	
3	years	old	will	have	a	probability	of	weaning	pwk,t

:

As	described	previously,	we	can	 further	our	description	of	 the	
weaning	probability	using	a	linear	combination	on	the	logit	scale	of	
an	 intercept	 (βw),	 covariates	 (xw),	 and	 corresponding	 slopes	 (αw)	 if	
relevant	 and	 sufficient	 data	 are	 available,	 and	 if	 useful	 a	 random	
effect	(εwk

).
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2.4 | General model description: Links

Once	the	model	used	to	describe	each	individual	data	type	has	been	
set,	we	can	establish	links	allowing	for	 information	sharing	between	
datasets	 (Figure	2;	 Schaub	&	Abadi,	 2011).	While	 data	 collected	 at	
the	 individual	 level	 through	CMR	reflect	 individual	histories	and	ac-
count	 for	 individual	variation	 (e.g.,	age	or	 location),	 this	 information	
needs	to	be	summarized	among	multiple	individuals	to	reflect	global	
processes	 at	 the	 population	 scale.	 This	 approach	 assumes	 that	 the	
CMR	data	represent	an	accurate	sample	of	the	entire	population	and	
the	general	range	of	factors	that	affect	it.	This	assumption	is	neces-
sary	 to	 consider	 that	 the	 average	 of	 the	 demographic	 parameters	
over	 the	 individual	 scale	 (individual	 survival	and	 reproduction	prob-
abilities)	provides	an	accurate	estimate	of	the	survival	and	reproduc-
tion	 probabilities	 at	 the	 scale	 of	 the	 whole	 population.	 The	 global	
female	reproduction	probability	Pt	for	counts	can	be	informed	by	the	
average	 individual	 reproduction	probability	of	 females	during	year	 t 
(n

ρt : total number of adult female alive during year t
),	using	CMR	data,	

such	as:

Following	the	same	approach,	CMR	data	can	also	be	used	to	inform	
count	modeling	through	refining	the	global	yearly	survival	probabilities	
of	adults	and	subadults	by	averaging	the	survival	probability	of	individ-
uals	alive	the	previous	year	in	function	of	age-sex	classes:

Litter	information	can	be	used	similarly	to	provide	more	detailed	
information	about	young	survival.	As	with	the	above	formulation,	we	
can	average	the	individual	survival	probabilities	in	litters	as	a	function	
of	their	age	and	sex	to	model	the	global	yearly	survival	probability	of	
cubs,	yearlings,	 and	 dependent	young	 (ΦC♂t

	 and	ΦC♀t
,	ΦY♂t

	 and	ΦY♀t
,	

ΦD♂t
	and	ΦD♀t

,	 respectively,	 for	males	and	females).	We	assume	that	
information	on	sex	of	young	is	not	available	during	dependence;	this	
assumption	could	easily	be	removed	if	this	information	is	available.

Similarly,	the	global	yearly	litter	size	Lt	for	counts	can	be	expressed	
as	the	average	size	of	all	the	individual	litters	born	in	year	t.

2.5 | Priors

When	additional	information	from	which	parameters	can	be	derived	is	
unavailable,	as	shown	above,	we	can	use	informative	or	noninforma-
tive	priors.	For	the	general	count	model,	we	included	transition	rates	
(from	dependent	young	to	subadults	γS♂t

	and	γS♀t
,	and	from	subadults	

to	adults	γA♂t
	and	γA♀t

)	with	noninformative	priors,	such	as	for	example:

It	 can	 be	 beneficial	 to	 use	 information	 from	 the	 literature	 or	
expert	 opinion	 to	 develop	 informative	 priors.	 For	 example,	 the	
sex	ratio	could	be	provided	with	a	noninformative	prior	and	be	es-
timated	 from	 count	 and	 litter	 information.	 However,	 as	 abundant	
literature	is	available	for	brown	bears,	we	used	an	informative	Beta	
prior,	such	as:

with

where μ♂:♀	 and	σ2♂:♀	 correspond	 to	estimated	mean	and	variance	 for	
the	 sex	 ratio,	 from	 the	 literature.	 This	 is	 derived	 from	 the	 relation-
ship	between	the	beta	distribution’s	mean	and	variance	with	its	shape	
parameters:

For	Kodiak	island,	we	set	μ♂:♀=0.5238	and	μ♂:♀=0.0771,	using	in-
formation	from	Troyer	and	Hensel	(1964).

Finally,	 if	 we	 assume	 the	 individual	 detection	 probability	 is	
the	same	between	data	collected	during	the	count	survey	and	the	
CMR	data,	we	can	set	a	noninformation	prior	and	use	 information	
from	count	and	CMR	data	 to	determine	 the	parameter’s	posterior	
distribution.

If	we	assume	that	detectabilities	 for	CMR	and	count	data	differ,	
separate	priors	for	each	detection	probability	should	be	used.

We	also	set	a	noninformative	prior	for	the	recovery	probability	(p’)	
and	reproduction	detectability	(pr).

2.6 | Simulations

To	demonstrate	the	advantages	of	jointly	using	multiple	data	sources,	
we	compared	population	estimates	from	the	general	integrated	popu-
lation	 model	 described	 above	 with	 population	 estimates	 from	 the	
counts	section	only	of	this	model	for	increasing,	decreasing,	and	stable	
populations.	Randomly	drawing	sets	of	values	for	demographic	param-
eters	using	intervals	commonly	estimated	in	the	literature	specific	to	
coastal	brown	bears	(e.g.,	Schwartz	et	al.,	2006;	Schwartz,	Haroldson,	
&	White,	2006a,b),	we	simulated	populations	following	these	differ-
ent	 dynamics	 and	 created	 several	 datasets	 (counts,	CMR,	 and	 litter	
information)	reflecting	ecologically	realistic	conditions	allowing	us	to	
assess	the	accuracy	of	our	model.

We	simulated	counts	over	20	 time	units	 (years),	with	 four	 repli-
cates	per	year.	Over	the	same	time	period,	we	simulated	CMR	data	for	
1,000	individuals,	and	data	for	200	litters	corresponding	to	a	total	of	
30	reproducing	females.	Reproduction	parameters	were	set	to	allow	
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the	average	litter	size	to	vary	in	an	interval	that	matched	what	is	avail-
able	in	the	literature	for	brown	bears,	between	one	and	four	cubs	per	
litter	 (McLellan,	1994).	We	used	 the	same	approach	 for	survival	pa-
rameters.	We	 set	 the	detection	probability	 to	0.7,	 the	 reproduction	
detectability	to	0.8,	and	the	recovery	probability	to	0.9.

3  | CASE STUDY: KODIAK BROWN 
BEAR POPULATION

Although	theoretical	datasets	provide	a	good	basis	to	assess	the	ef-
ficiency	of	the	integrated	population	model	approach,	it	is	essential	to	
also	consider	its	practicality	by	applying	this	method	to	a	less	optimal	
situation	such	as	what	can	be	encountered	in	real-	life	surveys	where	
not	all	data	are	available.

We	used	data	 from	1983	 to	1998	provided	by	 the	US	Fish	and	
Wildlife	Service	and	Alaska	Department	of	Fish	and	Game	to	model	
the	 dynamics	 of	 the	 Kodiak	 brown	 bear	 population.	 Kodiak	 island	
(9293	km2,	Meiri,	Simberloff,	&	Dayan,	2005)	is	located	in	the	western	
Gulf	of	Alaska	 (56°45′–58°00′N,	152°09′–154°47′W)	and	supports	
approximately	 3,500	 brown	 bears	 (Van	 Daele	 2007).	 Kodiak	 Island	
has	a	subarctic	maritime	climate,	with	variable	weather	due	to	topo-
graphic	relief	(Van	Daele,	Barnes,	&	Smith,	1990).	A	detailed	descrip-
tion	of	Kodiak	Island	vegetation	can	be	found	in	Fleming	and	Spencer	

(2004).	Despite	 this	population	being	well-	studied,	only	partial	 data	
were	available.	CMR	surveys	and	concomitant	collection	of	 litter	 in-
formation	were	 regularly	 collected	 (Van	Daele	&	Barnes,	2010),	 but	
not	enough	yearly	count	data	were	available	for	proper	modeling.	To	
demonstrate	the	versatility	and	adaptability	of	our	IPM	approach,	we	
fitted	a	reduced	version	of	our	general	model	to	these	data,	taking	ad-
vantage	of	the	connection	between	CMR	reproduction	data	and	litter	
information.

There	 were	 bear	 research	 projects	 on	 four	 primary	 study	 areas	
across	Kodiak	 Island	 from	1982	 to	1997,	all	of	which	 included	 radio	
telemetry	(Van	Daele	&	Barnes,	2010).	We	used	comparable	capture,	
handling,	 and	 processing	 techniques	 in	 all	 investigations.	 For	 each	
captured	 bear,	we	 noted	 gender,	 reproductive	 status,	 and	 extracted	
a	 first	 premolar	 for	 age	determination	 (Matson	et	al.,	 1993).	We	de-
ployed	conventional	VHF	radio	collar	transmitters	(Telonics	Inc.,	Mesa,	
AZ,	USA)	on	a	sample	of	subadult	and	adult	bears	in	each	study	area.	
The	sample	was	purposefully	biased	toward	adult	females	because	they	
would	provide	the	most	information	on	productivity	and	cub	survival,	
and	because	of	concerns	about	neck	injuries	the	collars	could	cause	to	
subadults	and	males.	Collared	bears	were	typically	radiotracked	from	a	
fixed-	winged	aircraft	(Piper	PA-	18	or	equivalent)	weekly	by	experienced	
pilot/observer	teams.	We	reduced	the	flight	schedule	to	twice	monthly	
during	 the	 winter	 months.	 Tracking	 flight	 frequency	 was	 increased	
during	 spring	 emergence	 to	 ascertain	 cub	 production	 and	 survival.	

TABLE  1 Potential	factors	influencing	brown	bear	population	dynamics

Category Factors

Survival
Reproductive 
successCubs/yearlings/subadults Adult males Adult females

Biological Age + +/- +/- +/-

Sex ♀ > ♂ − + na

Litter	size + na na +

Mother’s	age + na na na

Presence	of	dependent	young na na na −

Age	of	first	reproduction na na na −

Perinatal	mortality − na na na

Interbirth	interval na na na +

Disease − − − na

Intraspecific	predation − na na −

Ecological Food	availability/Salmon	
stream	density

+ + + +

Habitat	type/Forest	cover + + + +

Density − − − −

Climate	change − − − −

Extreme	weather +/− − − na

Anthropogenic Harvest/Hunting +/− − − − na

Management	policies +/− +/− +/− +/−

Human	presence − − − −

Cells	in	dark	gray	with	bold	text	correspond	to	essential	interactions	that	should	be	considered.	Cells	with	bold	text	only	correspond	to	factors	that	should	
secondarily	be	explored.	A	“+”sign	indicates	an	expected	positive	correlation	between	the	population	parameter	and	the	factor;	a	“−”indicates	an	expected	
negative	correlation;	and	“na”	indicates	there	is	either	no	relationship	or	that	it	is	not	relevant	to	our	study.
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CMR	data	consisted	of	yearly	detections	 (i.e.,	whether	or	not	a	bear	
was	successfully	detected	at	least	once	during	radiotracking	in	a	given	
year)	of	a	total	of	241	marked	bears	(55	males	and	186	females)	during	
1983–1998,	representing	977	total	detections.	We	recorded	age,	sex,	
and	 reproductive	 status	 (presence	 and	 age	 of	 dependent	 young)	 for	
each	individual.	Litter	data	were	composed	of	an	initial	assessment	of	
the	litter	size	of	the	reproductive	females	resighted	every	year	before	
den	entrance.	We	also	recorded	a	yearly	follow-	up	to	determine	if	any	
young	died	 and	when	weaning	occurred.	We	were	unable	 to	 collect	
information	on	sex	ratios	of	 litters.	We	collected	data	on	519	 litters,	
representing	910	litter-	years	(mean	±	SD	=	1.75	year	per	litter	±1.11).

We	conducted	a	literature	review	of	factors	potentially	impacting	
brown	bear	populations	(Table	1)	and	selected	a	subset	of	parameters	
for	which	we	had	data.	We	retained	eight	covariates:	age,	sex,	salmon	
availability	(annual	estimates	of	salmon	biomass,	Alaska	Department	
for	Fish	and	Game	data,	Van	Daele,	Barnes,	&	Belant,	2012),	age	of	
first	 reproduction,	 litter	 size,	 mother’s	 age,	 presence	 of	 dependent	
young,	and	subadult	status.	Specifically,	we	modeled	adult	survival	as	
a	function	of	age	(including	a	quadratic	term),	sex,	and	food	availabil-
ity	(more	specifically	salmon	availability).	We	also	included	a	separate	
effect	for	subadults	and	a	random	effect.	We	expressed	individual	re-
production	probability	as	a	 linear	function	on	the	 logit	scale	of	age,	
food	 availability,	 age	 of	 first	 reproduction,	 presence	 of	 dependent	
young,	and	included	a	random	effect.	Initial	litter	size	was	modeled	as	
a	function	of	the	mother’s	age,	its	age	of	first	reproduction,	food	avail-
ability	(through	salmon	production),	and	a	random	effect.	Covariates	

considered	to	potentially	impact	young	survival	probability	were	the	
young’s	 age	 (including	 a	 quadratic	 effect),	 litter	 size,	 mother’s	 age,	
food	availability,	and	a	random	effect.	Finally,	we	considered	weaning	
probability	to	be	solely	dependent	on	the	young’s	age	and	a	random	
effect.

4  | IMPLEMENTATION

We	 implemented	 our	models	 for	 both	 simulated	 and	Kodiak	 Island	
datasets	using	program	JAGS	(Plummer,	2003),	called	from	R	(v.3.0.1,	
R	Core	Team,	2014)	with	the	package	rjags	(Plummer,	2014;	Appendix	
S2).	We	ran	three	chains	using	noninformative	priors,	for	50,000	it-
erations	after	a	50,000	iteration	burn-	in	(to	insure	convergence)	with	
a	 thinning	of	4.	We	monitored	convergence	by	visual	 inspection	of	
the	MCMC	chains	and	using	the	Gelman–Rubin	convergence	statistic	
(Gelman,	Carlin,	Stern,	&	Rubin,	2014).	All	results	are	presented	with	
mean	and	95%	credible	intervals.

5  | RESULTS

5.1 | Simulated datasets

Using	 simulated	 datasets,	 our	 integrated	 population	 model	 pro-
duced	estimates	extremely	close	to	the	actual	simulated	abundance	
of	 our	 theoretical	 populations,	 with	 estimates	 more	 accurate	 and	

F IGURE  3 Comparison	of	estimates	of	a	simulated	population	size	over	time	using	integrated	population	model	(IPM)	and	replicated	counts	
only.	The	left	and	right	panels	correspond	to	results	for	simulated	adult	male	and	subadult	female	subpopulations,	respectively.	Simulated	
abundances	are	indicated	by	a	black	circle,	estimated	abundances	with	corresponding	95%	credible	intervals	are	represented	as	black	points	for	
the	IPM	and	gray	triangles	for	the	replicated	counts	only
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precise	than	obtained	using	the	count-	only	component	of	the	model	
(Figure	3).	Credible	intervals	from	the	IPM	included	the	true	simulated	
population	abundance	94%	of	the	time	whereas	the	count-	only	model	
included	 the	 true	population	only	5%	of	 the	 time.	Considering	 that	
the	underlying	structure	of	the	simulated	dataset	was	similar	to	the	
one	used	by	both	models,	the	simple	count	model	performance	was	
less	than	expected.	Population	estimates	from	the	count	model	were	
biased	and	imprecise	(Figure	3).

5.2 | Kodiak brown bear case study

Adult	 survival	 probability	 differed	 between	 sexes	 (female	 having	 a	
higher	 survival	 probability,	 coefficient	=	3.11	 [1.72;	 4.53])	 and	 was	
correlated	 with	 food	 availability	 (slope	=	0.68	 [0.19;	 1.21]).	 There	
was	also	a	quadratic	 relationship	between	adult	 survival	probability	
and	 age	 (quadratic	 slope	=	−0.03	 [−0.04;	 −0.01],	 linear	 slope	=	0.61	
[0.18;	 1.05];	 Figure	4).	We	did	 not	 detect	 a	 subadult	 effect	 (coeffi-
cient	=	0.25	[−2.18;	2.73]).	Young	survival	probability	increased	with	
age:	 survival	 probability	 for	 cubs,	 yearlings,	 and	 dependent	 young	
were	estimated	as	0.89	[0.85;	0.92],	0.96	[0.94;	0.98],	and	0.98	[0.96;	
0.99],	 respectively.	 Young	 survival	 was	 negatively	 correlated	 with	
litter	size	 (slope	=	−0.89	[−1.65;	−0.24]).	While	we	detected	no	cor-
relation	 between	 reproduction	 probability	 and	 food	 availability	 (as	
expressed	through	salmon	biomass,	slope	=	−0.24	[−0.76;	0.21]),	this	
probability	was	negatively	correlated	with	age	(slope	=	−0.43	[−0.69;	
−0.21]).	The	presence	of	dependent	young	ensured	that	a	female	had	
an	effective	reproduction	probability	of	0,	with	a	coefficient	on	the	
logit	 scale	 of	 −89.01	 [−230.32;	 −15.92].	 This	 result	 suggests	 to	 fix	
the	reproduction	probability	to	0	when	dependent	young	are	present	
for	Kodiak	brown	bears.	Estimated	annual	average	litter	size	(within	
1	year	of	birth)	ranged	from	0.45	[0.43;	0.55]	to	1.59	[1.55;	1.82].

6  | DISCUSSION

Our	 integrated	 population	 model	 provided	 estimates	 close	 to	 the	
simulated	 datasets,	 providing	 greatly	 improved	 accuracy	 and	 preci-
sion	 over	 population	 count	 model	 estimates.	When	 applied	 to	 the	
Kodiak	Island	brown	bear	population	dataset,	the	subset	model	pro-
vided	results	that	were	overall	consistent	with	what	is	reported	in	the	
literature.	The	Integrated	Population	Model	we	present	is	not	a	Rube-	
Goldberg	machine	or	a	black	box,	but	an	ecologically	based	approach	
to	populations	and	communities	that	can	be	used	to	bridge	the	gap	
between	ecology	and	management.	 Improving	estimation	with	data	
that	are	often	collected	simultaneously,	 and	 therefore	with	minimal	
increase	 in	 cost,	 responds	 to	 a	 need	 for	 efficient	 and	 economical	
methods	 in	wildlife	management	 (Field,	Tyre,	&	Possingham,	2005).	
The	mechanistic	description	of	ecological	processes	allows	for	a	con-
ceptual	approach	that	can	be	adapted	to	different	species	in	diverse	
ecosystems,	and	with	different	datasets,	depending	on	objectives.	The	
lack	of	some	data	can	be	compensated	for	using	external	available	in-
formation	(e.g.,	related	scientific	publications,	external	datasets).	The	
Bayesian	 framework	 allows	 for	 easy	 integration	 of	 this	 information	

(Clark,	 2005;	 Dupuis	 &	 Joachim,	 2006;	 Morris,	 Vesk,	 &	McCarthy,	
2013).

Developing	 an	 IPM	 for	 brown	 bears	 required	 specific	 ecologi-
cal	model	 structures.	Brown	bears	are	 solitary	 carnivores,	with	an	
omnivorous	diet	 (Mowat	&	Heard,	2006;	Bojarska	&	Selva,	2012).	
Reproducing	females	will	often	care	for	their	young	for	several	years	
before	reproducing	again	 (Dahle	&	Swenson,	2003).	Males	and	fe-
males	 have	 different	 survival	 probabilities,	 and	 males	 are	 usually	
subject	 to	 more	 intense	 harvest	 pressure	 (McLellan	 et	al.,	 1999;	
Bischof,	Swenson,	Yoccoz,	Mysterud,	&	Gimenez,	2009;	Van	Daele	&	
Barnes,	2010).	Moreover,	because	bears	are	harvested	in	some	juris-
dictions,	we	need	to	explicitly	incorporate	harvest	rates.	Bear	data,	
with	populations	being	monitored	using	a	large	variety	of	sampling	
designs,	methods,	and	metrics,	will	provide	different	information	of	
varying	quality.	 Information	 sharing	among	data	 types	was	 largely	
responsible	for	the	observed	 improvements	 in	accuracy	and	preci-
sion	of	this	IPM.	We	can	improve	the	development	of	mechanistic	
models	by	considering	how	population	trajectories	are	connected	to	
individual	histories.

Due	 to	 the	 particular	 history	 and	 geography	 of	 the	 region,	 the	
relationship	 between	 bears	 and	 humans	 in	 Kodiak	 is	 an	 especially	
interesting	 and	 challenging	 system	 to	 model.	 Interactions	 between	
Kodiak	 brown	bears	 and	 the	 local	 communities	 have	 been	 complex	
and	changing	under	the	different	pressures	of	human–bear	conflicts,	
trophy	hunting,	and	conservation	efforts	(Van	Daele,	2003).	We	em-
phasized	three	of	five	broad	categories	of	factors	known	to	affect	bear	
populations	 (biological,	 environmental,	 anthropogenic,	 genetic,	 and	
random).	 Our	 results	 regarding	 biological	 factors	 were	 overall	 con-
sistent	with	 previous	 studies,	 such	 as	 female	 survival	 being	 greater	
than	that	of	males	in	North	America	(McLellan	et	al.,	1999;	Schwartz	
et	al.,	2003,	2006b)	and	survival	of	dependent	young	increasing	with	
mother’s	age	(McLaughlin	et	al.,	1994;	Mattson,	2000;	Schwartz	et	al.,	

F IGURE  4 Survival	probability	as	a	function	of	age	and	sex	for	
brown	bears	on	Kodiak	Island,	Alaska,	USA,	1983–1998.	Mean	(solid	
line)	and	95%	credible	interval	(dashed	lines)	are	presented	for	adult	
males	(gray)	and	females	(black)
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2006,	2006b).	We	also	 confirmed	 the	 importance	of	 accounting	 for	
age	to	understand	the	drivers	of	population	dynamics.	We	note	that	
survival	probability	was	overall	high,	especially	for	dependent	young	
and	adult	females.	Abundant	high-	quality	food,	such	as	salmon	in	the	
Kodiak	system,	reduces	competition	for	resources	and	facilitates	im-
proved	condition	and	survival	of	these	cohorts.	The	lower	adult	male	
survival	 could	 also	be	 related	 to	 the	 fact	 that	 large	males	 are	more	
valuable	hunting	trophies	(McLellan	et	al.,	1999;	Bischof	et	al.,	2009).	
Reproduction	probability	on	the	other	hand	was	negatively	correlated	
with	 age,	 and	 a	 female	would	 not	 reproduce	 if	 she	were	 caring	 for	
dependent	young.	 Interestingly,	opposite	 to	what	we	observed,	 cub	
and	 yearling	 survival	 have	 been	 shown	 to	 increase	 with	 litter	 size	
(Craighead	 et	al.,	 1995;	 Schwartz	 et	al.,	 2006b).	Our	 litter	 size	 esti-
mates	and	cub	survival	were	respectively	lower	and	higher	than	typi-
cally	reported	(Hensel	et	al.,	1969;	McLellan,	1994;	Frković,	Huber,	&	
Kusak,	2001;	Schwartz	et	al.,	2003;	Van	Daele	et	al.,	2012),	possibly	a	
consequence	of	cub	mortality	before	we	estimated	litter	size	just	be-
fore	den	entrance	(about	4–6	months	post	den	emergence),	instead	of	
at	den	emergence	at	the	beginning	of	the	season	which	is	more	typical.

Food	 availability	 can	 strongly	 influence	 aspects	 of	 brown	 bear	
ecology.	Observed	variation	in	home	range	and	habitat	use	of	brown	
bears	 on	 Kodiak	 Island	 largely	 reflected	 quality	 and	 availability	 of	
food,	and	bears	had	a	demonstrated	ability	to	successfully	use	a	va-
riety	of	food	sources,	with	two	of	the	most	important	being	salmon	
and	berries	(Van	Daele	et	al.,	2012).	Bears	in	southwest	Kodiak	Island	
used	streams	with	spawning	salmon	as	 fish	arrived,	 then	moved	to	
other	streams	as	salmon	abundance	and	quality	decreased	 (Barnes,	
1990;	 Deacy,	 Leacock,	 Armstrong,	 &	 Stanford,	 2016).	 Food	 short-
ages	can	also	affect	young	survival	directly	and	indirectly	by	affecting	
their	mother	 (Schwartz	 et	al.,	 2006b).	Our	 results	 demonstrate	 the	
importance	of	food	availability	and	quality	for	understanding	young	
and	adult	survival.	Although	reproduction	probability	appeared	unre-
lated	with	salmon	availability	(as	 indexed	by	biomass),	salmon	avail-
ability	appeared	to	impact	reproductive	success	by	influencing	young	
survival.

Further	considerations	for	 Integrated	Population	Model	used	for	
brown	bears	could	include	important	abiotic	factors	for	coastal	brown	
bear	populations	such	as	weather	and	climate	change	(Mattson,	2000;	
Schwartz	et	al.,	2006a;	Bojarska	and	Selva	2012).	Genetic	factors	in-
cluding	population	viability,	 heterogeneity	 and	plasticity,	 or	 connec-
tivity	among	populations	can	also	represent	long-	term	and	large-	scale	
challenges	 for	 brown	 bear	 populations	 (and	 other	 mid-	to-	large-	size	
predators;	Kamath	et	al.,	2015).	However,	these	have	a	lesser	effect	in	
the	timescale	that	managers	typically	use	when	considering	basic	pop-
ulation	models.	Population	variability	due	to	stochastic	and	uncaptured	
effects	can	often	be	obtained	through	integration	of	random	effects	
such	 as	 random	year	 effects	 or	 spatially	 structured	 random	effects;	
further	development	of	our	 IPM	would	benefit	 from	including	these	
effects.	Finally,	data	on	annual	population	counts	would	be	beneficial	
by	providing	a	means	to	evaluate	status	of	a	population(s)	throughout	
its	range,	useful	for	assessing	management	actions.

Our	explicit	 IPM	is	an	ecologically	relevant	and	integrative	ap-
proach	to	estimate	animal	abundance,	can	make	other	parameters	

identifiable,	or	 improve	 their	estimation.	We	 incorporated	generic	
and	 specific	 elements	 impacting	 population	 dynamics	 and	 ac-
counted	for	varying	sampling	designs,	surveys,	historical	datasets,	
and	external	information.	Our	approach	can	be	fitted	to	other	spe-
cies	or	to	a	combination	of	historical	data,	and	therefore,	presents	
numerous	applications	and	benefits	 for	 science	and	management.	
When	looking	at	particular	conservation	objectives	occurring	at	the	
interface	between	multiple	key	species	or	geographical	areas,	 this	
approach	provides	a	natural	and	 intuitive	framework	to	bring	var-
ious	agencies	and	 their	data	 together	and	achieve	 simultaneously	
their	 individual	 goals.	The	 inclusion	of	historical	data	 responds	 to	
the	 need	 for	 evaluating	 cultural	 and	 natural	 causes	 of	 variability	
and	characterizing	the	overall	dynamical	properties	of	ecosystems	
(Swetnam,	Allen,	&	Betancourt,	1999).	The	combined	use	of	current	
and	 historical	 data	 in	 integrated	 population	models	 can	 facilitate	
reconstruction	 of	 ecosystems	 or	 populations	 histories	 to	 inform	
management	decisions.

While	 integrated	population	models	are	one	of	the	most	power-
ful	methods	newly	added	to	the	toolbox	of	managers	and	wildlife	re-
searchers,	it	is	important	to	recognize	their	limitations.	Namely,	they	
require	considerable	data	 for	each	process	modeled.	Related	 to	 this	
issue,	before	modeling	response	variables—such	as	survival	or	detec-
tion	probabilities—in	function	of	a	set	of	explanatory	covariates,	users	
should	 assess	whether	 data	 sources	 contain	 enough	 information	 to	
statistically	identify	these	relationships.	Moreover,	computation	time	
can	be	long,	depending	on	model	complexity.	Model	selection	to	de-
termine	 the	 importance	of	each	variable	 should	also	be	 considered.	
Finally,	 initial	modeling	needs	 to	be	carefully	 completed	 to	 take	 full	
advantage	of	each	dataset	and	correctly	link	all	processes.	Regarding	
the	general	approach	we	present	here	to	provide	a	framework	tailored	
to	 brown	 bears,	 some	 complementary	 analyses	would	 be	 useful	 to	
identify	 its	 limitations.	 In	particular,	 it	would	be	useful	 to	determine	
what	components	and	data	are	most	important.	It	would	be	useful	to	
compare	the	full	IPM	to	counts	only,	CMR	only,	litter	only,	and	com-
binations	 of	 these	 components.	 Such	 analyses	 could	 be	 conducted	
by	removing	one	element	at	a	 time	and	could	provide	additional	 in-
formation	 regarding	 which	 combination	 of	 components	 allows	 for	
the	estimation	of	additional	parameters.	Because	these	components	
(counts,	CMR,	and	litter)	are	not	always	available	(or	are	only	partially	
available),	as	in	our	case	study,	this	would	provide	key	information	for	
managers	as	to	which	data	sources	are	most	important	for	their	spe-
cific	objectives.

The	 versatility	 of	 our	 approach	 would	 prove	 useful	 for	 other	
species.	 Minimal	 adaptations	 would	 be	 required	 for	 solitary	 large	
carnivores	and	would	mostly	 include	modifying	age	class	and	global	
population	structures.	In	contrast,	adaptations	for	social	species	would	
require	 accounting	 for	 density-	dependent	 processes,	 social	 interac-
tions,	and	dependencies	in	detections.	Further,	the	general	population	
model	could	be	modified	for	more	or	less	structured	systems.	We	rec-
ommend	that	spatially	explicit	data	and	components	be	included	(such	
as	a	conditional	autoregressive	component	to	the	count	model,	or	the	
inclusion	 of	 an	 adapted	 spatially	 explicit	 capture–recapture	 model)	
when	available.	Provided	data	are	available,	and	the	structure	of	the	
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underlying	ecological	models	for	each	dataset	are	well	understood;	a	
wide	range	of	species	and	ecosystems	could	be	studied	using	varia-
tions	of	our	modeling	approach.
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