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Abstract: Modern visual SLAM (vSLAM) algorithms take advantage of computer vision
developments in image processing and in interest point detectors to create maps and trajectories
from camera images. Different feature detectors and extractors have been evaluated for this purpose
in air and ground environments, but not extensively for underwater scenarios. In this paper (I) we
characterize underwater images where light and suspended particles alter considerably the images
captured, (II) evaluate the performance of common interest points detectors and descriptors in a
variety of underwater scenes and conditions towards vSLAM in terms of the number of features
matched in subsequent video frames, the precision of the descriptors and the processing time.
This research justifies the usage of feature detectors in vSLAM for underwater scenarios and present
its challenges and limitations.

Keywords: vSLAM; detector; descriptor; underwater video; monocular underwater; underwater
robots; SIFT; SURF; ORB; AKAZE; BRISK

1. Introduction

Knowing the position of underwater robots and obtaining maps of the surrounding environment
is essential for a variety of robot tasks, from gathering geo-referenced data to autonomous navigation
and exploration. Simultaneous Localization and Mapping (SLAM) offers a framework to incrementally
build a map while a robot moves through an unknown area and to use that map to localize the robot
simultaneously. A typical implementation of SLAM in the underwater environment involves the
use of dead-reckoning, acoustic sensors and cameras [1]. In the last few years, the use of cameras
as the primary sensor for SLAM has increased. This branch of SLAM is also referred to as visual
SLAM (vSLAM) which mainly focuses on estimating the pose of the camera from partially overlapping
images from different viewpoints and creates a map of images or a cloud of points. Visual SLAM
can be categorized based on how the images are processed in direct algorithms, where complete
image intensities are processed, and feature-based, where only certain key-points of the image are
computed [2].

A fundamental part of feature-based SLAM is data association which allows extracted features
from images as key-points to be recognized when re-observed in consecutive images as well as in
loop-closing. To achieve this, features are extracted using an interest point detector, and then described
including local information from the neighbors of the point through a feature descriptor. The descriptor
is a vector which assigns a distinctive identity to the feature to be recognizable [3].

In computer vision there are several feature detectors and descriptors which have been evaluated
in terms of scale invariance, viewpoint changes (including rotation) and variations in illumination [4,5],
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as well as their application to vSLAM [3,6,7]. There are successful implementations of vSLAM
for underwater robots such as in [8–10] which relies on Speeded-Up Robust Features (SURF),
Scale Invariant Feature Transform (SIFT) feature detectors and other methods to extract regions of
interests. To the best of the authors’ knowledge, there is not extensive documentation which analyses
feature detectors and descriptors for underwater environments. This might be related to the higher
number of applications of point detectors and descriptors in indoors environments and, in images
captured by ground or air robots compared to underwater environments which present images with
dynamic illumination, blurriness, turbidity; and there are fewer targets from which features can be
extracted, mostly limited to man-made structures, animals or the seafloor, which can be affected by the
currents such as in the cases of sand patches and algae.

Underwater images are subject to alterations to the light and characteristics of the medium
resulting in blurry, hazy and tinted images [11]. This presents challenges to the performance of feature
detectors towards vSLAM. Therefore, we propose a characterization of underwater scenarios based on
a variety of datasets in different conditions and include some processed datasets through enhancing
algorithms. We evaluate the response and performance of common feature detectors and descriptors
such as SIFT, SURF, Oriented FAST and Rotated BRIEF (ORB), Binary Robust Invariant Scalable
Keypoints (BRISK) and AKAZE in matching consecutive images towards its application in vSLAM.
Finally, we compare the computation time for the features detection and matching.

In the second part of this Section, a selection of related works to feature detectors and their
evaluation in vSLAM is presented. Section 2 presents a brief overview of selected feature detectors
with their corresponding descriptor. Section 3 presents the alterations found in underwater images
as well as a brief description of enhancement algorithms. The evaluation methodology and the
results are presented in Sections 4 and 5. Finally, the results are discussed in Section 6 together with
the conclusions.

1.1. Related Work

In [2], Younes et al. presented a survey on monocular visual SLAM outlining a general guideline of
a monocular keypoints SLAM system in which seven components were defined: “visual initialization,
data association, pose optimization, topological/metric map generation (map expansion), bundle
adjustment/pose-graph optimization/map maintenance, failure recovery and loop closure”. In [12],
typical modern SLAM architectures are abstracted to front-end and back-end components. The first
one extracts sensors data and pre-processes it to be handled by the back-end to infer a consistent map
and pose estimation. In this representation, the data association process fits in the front-end leaving
the other modules to the back-end Figure 1.

Figure 1. Simplified vSLAM architecture.

For feature-based vSLAM, the front-end involves the detection of interest points, the creation of
descriptors, and the data association performed by matching features from the current frame with
previous frames.



Sensors 2020, 20, 4343 3 of 16

1.2. Feature Detectors in Visual SLAM

Visual SLAM approaches have been evaluated for indoor and outdoor applications over
benchmark datasets. In [13] ORB-SLAM, Large Scale Direct SLAM (LSD-SLAM), Low dimensionality
SLAM (L-SLAM) and open source of RatSLAM algorithms are briefly described and assessed.
ORB-SLAM shows good results for different environments presenting the smallest errors when
compared to LSD-SLAM and Rat-SLAM. The authors also pointed out the need of manual post-
processing to reduce the error since the maps and trajectories need post-scaling to fit proper dimensions.

In [14] an experimental evaluation of the algorithms was performed for different datasets collected
on land, aerial and underwater vehicles. They found, again, a good performance by ORB-SLAM and
Parallel Tracking and Mapping (PTAM) for the majority of scenarios. Finally, another evaluation was
performed in [7] having similar results with three different feature detectors: Harris, Kanade-Lucas
Tracker (KLT) and SIFT.

1.3. Feature Detectors Evaluation

Several feature detectors and descriptors have been evaluated in the past regarding correct
matching against image alterations. For this purpose, features are extracted from a pair of images from
the same scene or digitally altered and then matched against the other. In [15] the SIFT descriptor
was evaluated with ground truth showing robustness against rotation, scale, viewpoint changes,
image blur and light change. They define a few ratios, first used in [16], to measure the performance of
the measurements.

recall =
#correct_matches
#correspondences

(1)

The recall ratio Equation (1) equivalent to the detection rate where #correct_matches are the
features matched correctly in both images.

1 − precision =
# f alse_matches

#matches
(2)

The 1 − precision ration Equation (2) which indicates the relative number of false matches,
where # f alse_matches is the number of matches that do not correspond features found in both images
and #matches is the total number of matches.

Johansson et al. used the same performance ratios to evaluate more detectors and descriptors; and
combinations (detectors/descriptors). They include SURF, ORB, BRISK, Fast Retina Keypoint (FREAK)
finding the combination SURF/SURF and ORB/BRISK robust against geometric and photometric
transformations [17]. Similarly, Gil et al. evluated SURF and Gradient Location and Orientation
Histogram (GLOH) (a SIFT like descriptor) suitable for a vSLAM application [3].

Other evaluations are carried out for customized functions such as for tracking objects [18] and
vision-based localization [19]. In [19] they added the Accelerated-KAZE (AKAZE) detector/descriptor
to the review and analyzed the computing time. They also included Compute Unified Device
Architecture (CUDA) implementations of AKAZE and SIFT being the fastest two in extracting,
detecting and matching, followed by ORB and SURF. SIFT appeared as the slowest followed by AKAZE
and BRISK. Additionally, they added repeatability, precision and accuracy as comparison criteria.

2. Selected Feature Detectors and Descriptors

Based on the performance of features extractors in the literature discussed in Section 1 we select
SIFT [20], SURF [21], ORB [22], AKAZE [23] and BRISK [24] which are robust and have been used
for indoor and outdoor environments in [19,25]. In Table 1 the characteristics of the detectors and
descriptors are presented, as well as some parameters based on their OpenCV implementation.
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Table 1. Detectors/Descriptors characteristics and parameters.

Detector/Descriptor Features to Detect Size of Descriptor Parameters

SIFT Blobs 128 Bytes Contrast Theshold, Sigma
SURF Blobs 128 Float Hessian Threshold
ORB Corners 32 Bytes Fast Threshold, Max Features
BRISK Corners 64 Bytes BRISK_threshold
AKAZE Blobs 61 Bytes AKAZE_threshold

2.1. Scale Invariant Feature Transform (SIFT)

The SIFT algorithm follows two main stages in the detection part: (1) Scale-space extrema
detection, where Difference of Gaussian (DoG) is applied to identify keypoint invariants to scale
changes, then a local extrema check with adjacent pixels is performed; (2) keypoint localization, which
rejects low contrast keypoints and then eliminates non-edge points based on Hessian matrix.

For building the descriptor the algorithm follows two further steps: (3) orientation assignment,
which forms orientation histograms from local gradients to determine the dominant direction of the
keypoint; (4) keypoint descriptor, where the proper vector is constructed based on the course of the
keypoints and local areas around them, and finally the descriptors are normalized to improve light
invariance [20,26].

2.2. Speeded-Up Robust Features (SURF)

SURF follows a similar idea as SIFT, it was developed by Bay et al. [21] as a faster and robust
alternative to previous extractors. It uses integral images [27] and simplified filter kernels compared to
SIFT through a Fast-Hessian detector based on 2D Haar wavelet response.

The descriptor combines local gradient information, like SIFT, 2D Haar wavelet response to local
areas and windows around they keypoints to approximate the gradients.

2.3. Oriented FAST and Rotated BRIEF (ORB)

ORB is based on Features from Accelerated Segment Test (FAST) and Rotated BRIEF. It creates a
pyramid of blurred and subsample versions of the image which are then divided into cells and FAST is
computed. Then the cells are subdivided to contain one corner per cell or the maximum number of
cells allowed by a parameter of the algorithm, disregarding the features with low score per cell.

The ORB descriptor modifies the FAST extractor adding an orientation component through
first-order moments in a local patch. Then the Binary Robust Independent Elementary Features (BRIEF)
descriptor is computed on a rotated patch. It reduces the descriptor vectors such as in SIFT and SURF
to binary vectors [22].

2.4. Binary Robust Invariant Scalable Keypoints (BRISK)

BRISK is based on the FAST detector, it extracts features from the image and different scales of
it. For the descriptor, it uses a concentric rings sampling pattern to retrieve the gray values of their
neighbors and process local intensity gradients to obtain the direction of the keypoint. Then it forms
the binary descriptor comparing the intensity between pairs from the pattern [24].

2.5. Accelerated-KAZE (AKAZE)

AKAZE focuses on multi-scale feature detection exploiting non-linear scale spaces. It is
computationally efficient taking advantage of Fast Explicit Diffusion. It applies the Hessian
determinant to the scaled images and performs a search of the maxima response in spatial location.

Alcantarilla et al. proposed a Modified-Local Difference Binary (M-LDB), that exploits gradient
and intensity from the extractor stage, as a descriptor. It is based on BRIEF performing over the average
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of areas instead of pixels. It includes intensity values, and the orientation of the keypoint is similar to
KAZE [23].

3. Underwater Monocular Images

Images captured in underwater scenarios are altered in every aspect due to the changes in radiant
energy when traveling through water rather than air. Light gets scattered by suspended tiny particles
in the water (quartz sand, clay mineral, plankton, etc.) and it is also absorbed by the water itself
causing blur and loss of contrast (Figure 2a) [28]. The energy absorption varies with wavelengths and
types of water (i.e. sea, fresh and variations in its composition), generating perceived color distortions
(Figure 2b) at different distances and types of water. Additionally, changes in perception of size and
distance also occur in underwater scenarios and are caused by the light refraction as it passes from air
to water [11].

Sunlight flickers (caustic waves) are observed in very shallow water which are formed by
trespassing a wavy water layer [29]. These lighting variations generate flickering caustic patterns
(Figure 2c), which can be seen as random thin bright traces and non-uniform illumination, which are
observable as brighter small patches (Figure 2d) [8].

Artificial light sources are used when gathering images at night or in murky water to increase
the lightness of the scene. The source is usually located near the camera and the light is reflected by
particles in the medium yielding the back-scatter component (Figure 2e) [30,31].

(a) Blur and loss of contrast (b) Color distortions (c) Flickering caustic pattern

(d) Non-uniform illumination (e) Back-scattering

Figure 2. Lighting effects on underwater images.

3.1. Underwater Image Enhancement

There are several approaches of image processing to enhance underwater images regarding the
lighting effects presented before. In [31], Wang lists around 25 different algorithms for underwater
image enhancement and restoration. The author organized them in four categories, having ‘Histogram
and Contrast Ratio’, which mainly enhances the contrast; ‘Retinex Model’, with good results in
low contrast and non-uniform illumination; ‘Filtering and Transformations’, which also enhances
non-uniform illuminated images, corrects the image tone, reduces noise of bright spots and improves
contrast; and ‘Comprehensive’, which enhances and restores colors in the images.

Other methods developed mainly to diminish the effect of sunlight flickering such as the works
presented in [29,32–34]. Additionally, the algorithms presented in [30,35] enhance underwater images
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with respect to the back-scattering problem. ‘Dehaze’ algorithms have also been used to overcome the
light scattering problem in air [36–38] and in water [39]. In [40], a method for enhancing images against
low contrast and color distortion based on guided filer and color space conversion is introduced.

External hardware have been used for mitigating the lighting problems when gathering
underwater images. Treibitz et al. placed polarizers on the light source and the camera to achieve
back-scatter reduction [41,42]. In [43], a barrier filter was used in front of the camera for the
same purpose.

4. Evaluation Framework

In this Section we present the evaluation framework followed, based on the literature described in
Section 1. A quantitative and qualitative analysis is performed to evaluate the performance of feature
detectors and descriptors applied to underwater images toward their application to vSLAM.

Three key elements to apply the detector/descriptor sets described to a feature-based SLAM are:
the capacity to extract keypoints from an image, the capacity to associate re-observed keypoints, and
the computational time. In this regards the detectable features and frame sequence matching tests are
proposed. Additionally, we include pre-processed images from the datasets through an enhancing
underwater image by fusion [44] and backscatter removal to enhance the visibility of underwater
objects [35].

We use two detectors’ profile tuned manually to expose features proportionally to a limit. One is
set to obtain around 1000 features (Pro f ile1k) and the other to achieve a higher value, limited to
10,000 features (Pro f ile10k). The profiles are based on the threshold of the extractors and the number
of maximum features (Table 2). The other parameters are left to the default values of the OpenCV
implementation of the algorithms.

Table 2. Profile parameters changes

Prof ile1k Prof ile10k

Max Features 1000 10,000
Threshold

SIFT Contrast 0.01 0.008
SURF Hessian 60 8

ORB Edge 32 8
BRISK 10 7

AKAZE 0.0005 0.0001

4.1. Detectable Features in Underwater Images

We describe a selected number of underwater datasets based on the challenges presented in
Section 3 and evaluate different feature detectors on them to determine distinctive image features
in underwater scenarios. The features are obtained by applying the OpenCV implementation of the
feature extractors to each of the frames of the datasets. Enhanced datasets are also included to examine
how the pre-process performs when the feature extractors are applied.

The two features extractors profiles are included in the analysis. Quantitatively, the number of
features extracted is given. A qualitative description of the detected features in different scenario
conditions is also provided.

4.2. Frame Sequence Matching

We evaluate matches between consecutive scenes which are analyzed towards the application of
the detectors/descriptors set in vSLAM. This provides insights of the data association process in the
location of features from different viewpoints [45,46].

We use a similar approach to the works reviewed in Section 1.3, but since the datasets extract
features for real underwater surveys, ground truth of the keypoints was not gathered. Under vSLAM



Sensors 2020, 20, 4343 7 of 16

method of connecting frames and features we assume that all the features detected in a frame should
appear in the subsequent frame. Additionally, we use the computed number of inliers (correct match
of keypoint in both images) and outliers (false match) by homography presented in Figure 3.

We adapt Equation (1) to Equation (3) where #correct_matches becomes #inliers and
#correspondences becomes # f eatures. Instead of evaluating Equation (2) we evaluate Equation (4),
where precision_mod is the relative number of correct matches obtained from the inliers and outliers.
In other words recall_mod gives an idea of the number of good matches it would get in the subsequent
frame from the number of features found in the current frame; and precision_mod provides information
on the performance of the detector/descriptor worked, from the total matches found, how many
are correct.

recall_mod =
#inliers

# f eatures
(3)

precision_mod =
#inliers

#matches
(4)

4.3. Datasets

We collected different datasets for a variety of underwater scenarios in rivers, beaches, ports
and open sea in the surroundings of Perth, Australia (http://robotics.ee.uwa.edu.au/auv/ftp/
Underwater_datasets.zip). We used the BlueROV2 robot to acquire 1024 × 768 pixels images which are
collected on an average of 12 frames per second. Images include part of the structure of the Remotely
Operated Vehicle (ROV) (lights). Eight datasets are selected for the present chapter.

In Table 3, the selected datasets are described based on the underwater alterations explained in
Section 3. The datasets covered sandy and rocky backgrounds with the presence of algae, far algae
means that the algae is viewed as patches or are not moving, close algae means that algae is observed
closely and movement is captured. Some datasets recorded isolated objects such as poles, rocks, part of
a wreck and debris. The rotating over an object cell point out the frames involved in the navigation of
the ROV around an object (frames in thousands).

Table 3. Datasets characteristics. The symbols >>, >, <, << are used to indicate the quantity: most,
moderate, low and few, respectively

Dataset_1 Dataset_2 Dataset_3 Dataset_4 Dataset_5 Dataset_6 Dataset_7 Dataset_8

Seafloor sandy,
algae
(far), algae
(close)

sandy,
algae (far)

rocky, algae
(far)

sandy,
<algae (far)

sandy,
algae (far)

sandy sandy sandy

Objects poles rocks wreck <debris >>small
rocks

<partial
poles

Light non-uniform >>uniform caustic
pattern

night,
backscatter

<<non-uniformcaustic
pattern

>>uniform >>uniform

Tint greenish greenish natural natural greenish natural natural greenish
Turbidity low low low low low low low low
# Frames 11729 5830 1929 8308 9155 2514 2522 2388
Notes horizontal

and vertical
poles

little algae
on rocks

robot
shadow

wavy
pattern on
sand

4.4. Experimental Setup

We used a desktop computer with an Intel Core i7-7500U CPU @ 2.70 GHz × 4 CPU and 16 GB of
RAM with Ubuntu 16.04 for the evaluation. The OpenCV [47] implementation of SIFT & SURF (non-free
module xfeatures2d), AKAZE, ORB and BRISK are used. As well as the Nearest Neighbour (NN)
algorithm for detecting matches between keypoints sets and Homography based on Random Sample
Consensus (RANSAC) to reject outliers. The evaluation setup is based on the work found in [48] which
integrates the OpenCV implementations in a friendly Graphical User Interface (GUI).

http://robotics.ee.uwa.edu.au/auv/ftp/Underwater_datasets.zip
http://robotics.ee.uwa.edu.au/auv/ftp/Underwater_datasets.zip
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The modified program follows the block diagram presented in Figure 3 to perform our evaluation.
The datsets are masked with a ‘Selected Area’ to exclude the lamps from the ROV which are easily
recognizable by the detectors and appears in every frame causing inconsistencies in the matching
process. The inliers and outliers are the feature matched between the two frames after computing the
homography which ‘validates’ the correct matches (inliers) and false matches (outliers).

The data was logged into Comma Separated Values (CSV) files keeping the record of the number
of features found, matches and processing time.

Extract Descriptor

Extract Descriptor

Selected
Area

Frame

Keypoints

Matched 
Keypoints

Mask

Extract Features

Extract Features
Keypoints

Descriptors

Descriptors

Match Descriptors
 (NN)

Compute 
Inliers by

Homography

Subsequent Frame

Figure 3. Block diagram of data extraction for evaluation. First, features are extracted and
described from two consecutive frames (features in yellow and white for frame and subsequent
frame respectively). Then features are matched between both frames (cyan points on the subsequent
frame show matches, white points, rest of features). Finally inliers (cyan points) and outliers (yellow
points) are computed.

5. Results and Discussion

5.1. Detectable Features in Underwater Images

In Figure 4 an overview of the average features extracted per dataset is shown. The bar graphs
show average values and the standard deviation to quantify the dispersion of the values obtained.
The number of features indicates that the images present detectable salients which is the first step of a
feature-based SLAM, to locate features. This number is used to describe in which underwater scenarios
the detectors are more suitable and the performance of the detectors when compared to its pairs.

The overview shows an overall homogenous performance detecting around 500 features in
Pro f ile1k and 5000 features in Pro f ile10k for all the detectors. Dataset_1 shows a high dispersion of
the data for most of the detectors due to the sandy areas taken from far, similar to Datasets 4, 6 and 8,
which present a low average. Conversely, Datasets 2, 3, 5 and 7, which present objects, rocks, algae
patches, display a high average to the rest, being Datasets 3 and 7 the highest.

It is worth mentioning that the detailed graphs for both profiles have similar behavior, the only
difference is the number which is proportional to the maximum number of features per profile.
Therefore, in most cases, we analyze the Pro f ile1k detail where the fluctuations, when finding a low
number of features, are more evident than in Pro f ile10k.

We have selected two datasets to show the performance of the feature detectors in the underwater
scenario. In Figure 5a can be seen the performance of the detectors applied to Dataset_1. Algae offer a
good contrast on the sand exposing detectable features as seen in Figure 5b–f, it can be seen how ORB,
BRISK, SIFT and AKAZE features surround the algae while SIFT features are more spare along the
entire image. The figures also show that the detectors cannot find many features in plain sandy areas.
During the frames ∼3000–∼4200 the ROV gets far from the seafloor, and the algae are seen as blurry
patches, in this case, none of the detectors were able to extract much features (Figure 5g,h).
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Figure 4. Detectable features in underwater images. Bar graph of the average number of features
extracted per dataset with standard deviation (blue lines) given (a) Pro f ile1k and (b) Pro f ile10k.
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Frames
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SIFT
SURF
ORB
BRISK
AKAZE

(a) Features extracted from Dataset_1 Pro f ile1k per frame

(b) SIFT (c) SURF (d) ORB (e) BRISK (f) AKAZE

(g) ORB Frame=3148 (h) SURF Frame=3550

Figure 5. Detail of features extracted from Dataset_1. (a) features per frame. (b–f), features extracted
with common feature extractors over the frame 710. (g,h) example of frames where the number of
extracted features is low

Dataset_8 is mostly sandy with some frames capturing partial poles as objects. The illumination
is uniform and has a greenish tint (Table 3). As observed in Figure 5, plain sandy areas are hard
environment to extract features from. Figure 6 shows the detail for Dataset_8. When the robot is close
to the seafloor (20 cm approximately) the detectors start extracting features from the wavy pattern of
the sand.
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1000
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BRISK
AKAZE

(a) Features extracted from Dataset_8 Pro f ile1k per frame

(b) ORB Frame=198 (c) SIFT Frame=198 (d) SURF Frame=350 (e) ORB Frame=1017

Figure 6. Detail of features extracted from Dataset_8. (a) features per frame. (b–e) extractors applied in
different frames.

In overall, detectors are able to find features in underwater scenarios specially over rocks,
defined algae patches (from far), objects and even sand (when exposing patterns). The detectors
struggle in sandy areas from far as well as where turbidity and blurriness appears.

5.2. Frame Sequence Matching

It is important to quantify the number of features that can be re-observed (matched) in the
following frames under the vSLAM scope. In this framework, the inliers (correct matches) are obtained
after applying NN and homography between the keypoints detected in two consecutive frames.
In Figure 7 a bar graph of the average inliers per dataset is shown. In this test, the descriptors obtained
from the keypoints found with the detectors are evaluated.
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(b) Pro f ile10k

Figure 7. Inliers, obtained after NN matches and homography, per dataset.

Similar to the average number of features found, Pro f ile1k and Pro f ile10k show similar behavior
for the different detectors. Pro f ile10k show a lower number of inliers compared to its limit number of
features (10,000) which means that a large number of features found in a frame is not matched in the
consecutive frame.
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Datasets 3, 4, 6 and 8 present the lowest average number of inliers, despite having a high average
number of features found in Figure 4. Datasets 3, 4 and 6 have strong lighting issues such as caustic
patterns and backscatter which are moving patterns that change rapidly between frames that are
wrongly detected as features. Dataset 8, showed a low number of features found due to uniform
texture displayed by sandy areas captured from far and got an even lower amount of inliers.

In the case of Pro f ile10k SIFT, ORB and BRISK features slightly stick out compared to the others,
especially in Datasets 2 and 7 which present defined algae areas from far and rocks, respectively.

AKAZE, which showed a lower number of average features extracted in Figure 4, shows around
the same amount of inliers than the others which means that in this case the AKAZE detector was
more robust than the others and only detected strong features that appeared in the consecutive frame,
this can be easier to observe in the recallmod ratio analysis.

Figure 8 shows the ratios presented in Equations (3) and (4), in percentage, for Pro f ile1k.
In Figure 8a it can be seen that around 40% of the features found by the detectors are matched
correctly in the consecutive frame. In other words, given 1000 features found in an frame, 400 features
will be found and matched in the subsequent frame. AKAZE outstrips the other detector/descriptors
in the performance, demonstrating that its extractor is more finicky than the others.

In Figure 8b can be observed that more than 75% of the features matched become inliers after
homography indicating a good performance overall for the descriptors evaluated. That is to say that
the descriptors are robust when describing keypoints in underwater scenarios.

D1 D2 D3 D4 D5 D6 D7 D8
Datasets

0

20

40

60

80

re
ca

ll_
m

o
d

 (
%

)

SIFT

SURF

ORB

BRISK

AKAZE

(a) Pro f ile1k

D1 D2 D3 D4 D5 D6 D7 D8
Datasets

0

25

50

75

100

p
re

ci
si

o
n
_m

o
d
 (

%
) SIFT

SURF

ORB

BRISK

AKAZE

(b) Pro f ile1k

Figure 8. Inliers ratios per dataset.

5.3. Image Enhancement

We applied two image enhancement algorithms for underwater images to Datasets 3, 4, 6 and 8
which showed the lowest number of features or inliers found. In Figure 9 the enhancement by fusion
filter [44] is represented by an ‘F’, and the backscatter removal filter [35], by a ‘B’. The results without
any enhancement are shown in grey for easy comparison.

The average number of features extracted increases for Datasets 4, 6 and 8 (Figure 9a). Dataset_3,
which is affected by light caustic patterns on a rocky background, does not show any improvement by
any of the two algorithms. The image enhancement algorithm by fusion shows a better result exposing
detectable features for the detectors.

It can be seen in Figure 9b that, in the case of SURF descriptors the number of features found
presented and increase although, this increase is not observed at the time of matching those features in
the consecutive frames (inliers). AKAZE benefits the most from the enhancement algorithms showing
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an improvement for all datasets. ORB, SIFT and BRISK are also helped by the algorithms in the
order presented.
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Figure 9. Results for pre-processed Datasets 3, 4, 6 and 8. Labels including an ‘F’ indicates pre-processed
images applying the enhancement by fusion filter; labels including a ‘B’, back scatter removal filter.

Dataset_4, which was taken at night with artificial illumination on a sandy background with few
algae and rocks, gets the most significant improvement in the number of inliers. The filter by fusion
gets better results than the backscatter filter.

Datasets 6 and 8 also increase their number of inliers, especially with the filtering by fusion.
These two scenarios present a sandy background with few objects on the seafloor. Both present
illumination problems, Dataset_6 presents a caustic pattern and Dataset_8 a non-uniform illumination.

5.4. Processing Time

The processing time is measured for the detection and describing, NN matching and homography
for the two profiles. In Figure 10, the average processing time for Dataset_2 is presented which also
includes the pre-processing time for the enhancement algorithm.

ORB is the fastest set detector/descriptor with an average processing time of 43 ms and 97 ms for
Pro f ile1k and Pro f ile10k respectively. SIFT and BRISK are the slowest with times around 150 ms and
above 300 ms for Pro f ile1k and Pro f ile10k. BRISK presents the highest dispersion having variations
correlated with the number of features found, similar to SIFT; the rest show a continuous time
for processing.

The enhancement algorithms applied are highly time-consuming showing values above 1 and 2
seconds for the filtering by fusion and backscatter removal algorithms respectively.
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Figure 10. Processing average time per frame based on Dataset_2.
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6. Conclusions

The experimental results provide a detailed analysis of SIFT, SURF, ORB, BRISK, and AKAZE
detectors/descriptors for underwater environments towards their application to vSLAM.

In this analysis, the detectors selected showed a satisfactory performance on images containing
color distortion, low non-uniform illumination and low turbidity. Sandy environments with algae
patches, algae recorded from near and far; small particles, such as debris and rocks; and objects, such as
poles and rocks presented detectable features for the detectors.

Different datasets were categorized according to the characteristics of the seafloor, types of objects,
lighting, tint, and turbidity. The influence of these effects on the images is seen in the number of
features extracted and subsequently matched in the following frames . The results showed a decrease
of features and matches in presence of turbidity and blurriness, as in Figure 5a,g,f; monotony; sand
patches with and without texture (Figure 6); and lighting, caustic patterns, shown in the overall number
of features (Figure 4) and in the number of matches (Figure 7).

The number of inliers when matching keypoints from consecutive frames was homogeneous
among the detectors, in Pro f ile10k ORB and BRISK stick out. AKAZE achieved the best recall_mod ratio.

The two enhancement algorithm applied in this survey showed an improvement in
the performance of the detectors/descriptors. The filter by fusion [44] showed the higher
improvement especially in night scenarios with artificial light, caustic pattern and significant
non-uniform illumination.

The survey provides abundant information and detailed insights valuable for making
decisions in applications towards vSLAM. ORB detector/descriptor stood out in detection and
matching performance, shaping up as a good selection for implementing vSLAM, with the lowest
computing time.
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Abbreviations

The following abbreviations are used in this manuscript:

SLAM Simultaneous Localization and Mapping
vSLAM Visual SLAM

Feature Detectors and Extractors:

SIFT Scale Invariant Feature Transform
SURF Speeded-Up Robust Features
BRIEF Binary Robust Independent Elementary Features
ORB Oriented FAST and Rotated BRIEF
BRISK Binary Robust Invariant Scalable Keypoints
AKAZE Accelerated-KAZE
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