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Abstract
Influenza A viruses cause a mild-to-severe respiratory disease that affects millions of people each year. One of the many 
determinants of disease outcome is the innate immune response to the viral infection. While antiviral responses are essential 
for viral clearance, excessive innate immune activation promotes lung damage and disease. The influenza A virus RNA poly-
merase is one of viral proteins that affect innate immune activation during infection, but the mechanisms behind this activity 
are not well understood. In this review, we discuss how the viral RNA polymerase can both activate and suppress innate 
immune responses by either producing immunostimulatory RNA species or directly targeting the components of the innate 
immune signalling pathway, respectively. Furthermore, we provide a comprehensive overview of the polymerase residues, 
and their mutations, associated with changes in innate immune activation, and discuss their putative effects on polymerase 
function based on recent advances in our understanding of the influenza A virus RNA polymerase structure.
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Introduction

A 100 years after the devastating influenza pandemic of 
1918, influenza A viruses continue to pose a serious threat 
to human health. They infect up to twenty percent of the 
global population each year, resulting in several hundred 
thousand deaths [1]. In addition, influenza A viruses have 
a well-established zoonotic potential and ability to cause 
pandemics in naïve populations. In humans, influenza dis-
ease typically manifests itself as a mild-to-severe respiratory 
disease, but influenza A virus infections can occasionally 
spread beyond the respiratory tract. In humans and animal 
models, viral antigens have also been detected in the nervous 
system and heart [2–4].

Many factors contribute to influenza disease severity, 
including underlying risk factors, bacterial co-infections, and 

the innate immune response to infection [5, 6]. During an 
influenza virus infection, the innate immune response is typ-
ically activated when viral RNA (vRNA) is detected by the 
cytoplasmic or nuclear retinoic acid-inducible gene I (RIG-I) 
[7–9]. Subsequent signalling events lead to the production 
of interferons and other cytokines, which together mount a 
robust antiviral defence, and attract leukocytes and lympho-
cytes to clear the IAV infection. Counterintuitively, the virus 
can benefit from the pro-inflammatory responses in the lung, 
if it can use recruited leukocytes as additional targets for 
replication, as was shown for a low-dose influenza A virus 
infection [10]. Another outcome of infection is a dispropor-
tional and prolonged innate immune activation, commonly 
referred to as ‘cytokine storm’, that can cause tissue dam-
age, acute lung injury, or severe acute respiratory distress 
syndrome [11, 12]. Prolonged exposure to IFNs, which are 
one group of cytokines overproduced during the ‘cytokine 
storm’, has also been linked to impaired lung repair and an 
increased susceptibility to bacterial infection after influenza 
virus infection in mice [13]. The cytokine storm is particu-
larly common in infections with highly virulent influenza 
A virus strains, such as highly pathogenic avian H5N1 and 
H7N9 viruses, and the 1918 pandemic H1N1 strain, which 
trigger an overproduction of interferons and pro-inflamma-
tory cytokines in the lower respiratory tract [14–17]. Several 
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viral and host determinants of the immune dysregulation 
have been proposed, but the molecular mechanisms that 
allow these factors to start a cytokine storm are still poorly 
understood (reviewed in [18]).

Activation of the innate immune response is triggered by 
the replication of the viral genome [19]. The influenza A 
virus genome consists of eight segments of negative-sense 

single-stranded vRNA that vary in length from 890 to 2341 
nucleotides and code for ten major proteins, such as nucleo-
protein (NP), non-structural protein 1 (NS1), and polymerase 
subunits [polymerase acidic (PA), polymerase basic 1 and 2 
(PB1 and PB2)], as well as various accessory proteins, such 
as PA-X and PB1-F2 [20]. Each vRNA segment is encap-
sidated by a double-helical filament of NP and capped by a 
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copy of the viral RNA polymerase, forming a viral ribonu-
cleoprotein (vRNP) (Fig. 1A). It is in the context of these 
RNPs that the viral RNA polymerase copies and transcribes 
the genome segments [21]. In addition to making full-length 
copies of the viral genes, the viral RNA polymerase pro-
duces various aberrant RNA products that contain deletions 
in the genome segments, such as defective viral genomes 
(DVGs), mini viral RNAs (mvRNAs) and small viral RNAs 
(svRNAs) [22]. Various lines of research suggest that DVGs 
and mvRNAs play a role in activating the innate immune 
response through RIG-I [23, 24].

Several viral proteins, such as NS1, PA-X and PB1-F2, 
have well-established functions as innate immune modula-
tors [25, 26]. However, these proteins do not explain the 
full complexity of the activation and inhibition of the innate 
immune response during infection. A factor, whose role in 
triggering and antagonising the innate immune response 
has been less comprehensively analysed, is the influenza A 
virus RNA polymerase. The role of the influenza virus RNA 
polymerase in innate immune responses to infection became 
evident in genome segment reassortment studies, in which 
polymerase encoding segments were exchanged between dif-
ferent virus strains or isolates. Together those studies dem-
onstrated that the polymerase genes not only significantly 
affect virulence and innate immune signalling, but also 
likely contribute to cytokine dysregulation during infection 
with highly pathogenic virus strains [27–31] (full list in Sup-
plementary Table 1). Similarly, innate immune activation 

can be induced by single mutations in the polymerase genes 
or combinations of mutations in one or more genes [24, 32, 
33] (full list in Supplementary Table 2). Additional studies 
have shown that elimination of the interferon pressure dur-
ing infection leads to substitution of conserved polymerase 
amino acids, indicating that the RNA polymerase amino acid 
composition is under a selection pressure from the immune 
response [34, 35].

In the last decade, significant advances have been made in 
understanding influenza A virus genetics, vRNA and vRNP 
structure, and the catalytic activity of the influenza A virus 
RNA polymerase [21]. However, the mechanisms underlying 
the immuno-stimulatory and -inhibitory effects of the viral 
polymerase are complex and diverse, and they have, to our 
best knowledge, not been comprehensively reviewed in light 
of these recent advances. Here, we aim to bring together our 
current understanding of the RNA polymerase, the role of 
the RNA polymerase in the innate immune response dur-
ing influenza virus infection, and the polymerase mutations 
that affect innate immune signalling and host adaptation. By 
framing these concepts within our understanding of the RNA 
polymerase structure, we hope to extend our knowledge of 
the innate immune activation during influenza virus infec-
tion and the outcome of influenza disease.

Structure of the viral RNA polymerase

The viral RNA polymerase transcribes and replicates the 
vRNA segments in the context of vRNPs (Fig. 1A). Within 
an RNP, the RNA polymerase binds to the viral promoter, 
which is formed by partially complementary 5′ and 3′ ter-
mini of the bound vRNA segment [36–38]. This organisation 
ensures that the vRNA termini as well as the RNA polymer-
ase reside at one end of the RNP.

The influenza virus RNA polymerase is comprised of 
three subunits: PB1, PB2 and PA (Fig. 1B). The PB1 subunit 
contributes most to the RNA polymerase core and contains 
a typical RNA-dependent RNA polymerase (RdRp) domain 
fold, with fingers, thumb and palm subdomains. The three 
subdomains give rise to the structure of the active site and 
provide the residues that coordinate nucleotide incorpora-
tion [39–41]. The carboxy-terminal domain of PA and the 
amino-terminal third of PB2 also contribute to the RNA 
polymerase core, and in particular the thumb subdomain of 
the active site. The active site can be accessed by four chan-
nels that direct the movement of the RNA template in and 
out of the active site, the RNA product out of the active site, 
and nucleotides towards the active site (Fig. 1C). The RNA 
polymerase core is surrounded by several additional domains 
that are attached to linkers and support the transcriptional 
activity of the RNA polymerase [40–42]. These additional 
domains include an endonuclease domain that resides in 

Fig. 1  Structure and function of the influenza A virus RNA poly-
merase. A A schematic representation of an RNP, in which both ter-
mini of the vRNA are bound by the viral polymerase and the rest is 
associated with NP. B A surface representation of the human H3N2 
influenza A virus RNA polymerase (PDB 6RR7) bound to the 3′ and 
5′ promoter and the capped RNA (black; labelled as product). PA 
C-terminal (PA-C) and endonuclease (PA-endo) domains and PB2 
cap-binding (PB2-cap), Mid-link and 627 domains are indicated. 
C A model of influenza A virus polymerase showing the active site 
cavity within the PB1 subunit. The location of the four channels that 
lead to the active site and the binding pockets of the 3′ and 5′ RNA 
termini are indicated. D Schematic representation of influenza virus 
genome transcription and replication. During transcription PA-C 
interacts with the Ser5-phosphorylated CTD of a transcribing RNA 
Pol II. PB2-cap binds the cap structure of the nascent cellular RNA, 
which is subsequently cleaved by PA and used to prime viral mRNA 
synthesis. Capped and polyadenylated viral mRNAs are translated in 
the cytoplasm by the host ribosomes. The newly made components 
of the viral RNP are transported into the nucleus by importins where 
they promote viral replication. During cRNA synthesis from a vRNA 
template, a newly made encapsidating polymerase forms a dimer with 
a replicating polymerase, while ANP32A acts as a bridge between the 
polymerases. During vRNA synthesis from a cRNA template a newly 
made trans-activating polymerase forms a dimer with the replicating 
polymerase, stimulating replication. An encapsidating-replicating 
polymerase dimer is also likely to form during vRNA synthesis with 
the aid of ANP32A to promote vRNP assembly. Examples of other 
cellular factors that are involved in either transcription or replication 
are shown at the bottom of the diagram

◂



7240 E. Elshina, A. J. W. te Velthuis 

1 3

the amino-terminal third of PA and a cap-binding domain 
that resides in the C-terminal third of PB2. Other important 
PB2 domains include the N-terminal domain, Mid-link, 627 
domain, and nuclear localisation signal (NLS) domain [40].

Function of the viral RNA polymerase

Upon viral entry and release of the vRNPs from the virion 
into the cytoplasm, the vRNPs are transported by host cell 
importins into the nucleus where primary transcription takes 

place (Fig. 1D) [43]. The process of viral transcription is ini-
tiated when the PA C-terminus of the incoming vRNP asso-
ciates with the C-terminal domain (CTD) of an initiating, 
serine-5 phosphorylated cellular RNA polymerase II (Pol 
II). Following this interaction, the cap-binding domain of 
PB2 binds the cap-structures of nascent Pol II RNAs, ensur-
ing that they can be cleaved by the endonuclease domain 
of PA. The resulting capped primers are 10–14 nucleotides 
long and used by PB1 as primers for viral transcription [41, 
44, 45]. Viral transcription terminates when the viral RNA 
polymerase stutters on a poly-uridine track at the 5′ terminus 
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of the vRNA template, producing a polyA tail [41, 46]. The 
resulting viral mRNAs are translated by host ribosomes into 
new viral proteins required for viral replication (Fig. 1D). 
These new viral proteins are transported from the cytoplasm 
to the nucleus by host cell importins [47].

In contrast to viral transcription, viral replication is a two-
step process that starts with the generation of a complemen-
tary RNA (cRNA) intermediate using a primer-independent 
initiation mechanism (Fig. 1D). As the nascent cRNA leaves 
the active site through the product exit channel, it must be 
encapsidated by a newly synthesized RNA polymerase and 
nucleoproteins [21, 22]. To start the encapsidation process, 
the replicating polymerase and new polymerase must form 
a dimer that is stabilised by host protein Acidic Nuclear 
Phosphoprotein 32 Family Member A (ANP32A) [48–54]. 
Next, the new RNA polymerase in the resulting cRNP uses 
the cRNA as template for vRNA synthesis [55]. However, 
the initiation of vRNA synthesis requires a trans-activating 
or regulatory polymerase, as well as an encapsidating RNA 
polymerase and ANP32A. The trans-activating polymerase 

and the replicating polymerase form a dimer that is dis-
tinct from the encapsidating-replicating polymerase dimer 
(Fig. 1D). This dimer is likely formed to ensure that enough 
newly made viral proteins are available to assemble the nas-
cent vRNA into a vRNP, and to trigger an essential realign-
ment step during the initiation of vRNA synthesis when this 
condition is met [48, 56, 57].

Besides Pol II and ANP32A, viral transcription and rep-
lication are assisted by a number of other cellular proteins, 
many of which also directly interact with the viral poly-
merase (reviewed in [58]). These host factors participate in 
different stages of RNA synthesis, such as cap snatching 
(rRNA processing 1 homolog B or RRP1B, RNA exosome), 
general transcription (chromodomain helicase DNA-binding 
1 or CHD1, hCLE and NXP2) polyadenylation (splicing 
factor proline-glutamine rich or SFPQ), cRNA synthesis 
(minichromosome maintenance or MCM) nuclear import 
and assembly of the polymerase (importins, long non-coding 
RNA-PAAN or lncRNA-PAAN, heat shock protein 90 or 
Hsp90), and vRNP assembly and transport (LYAR, FMRP 
and CLUH) (Fig. 1D) [58].

RIG‑I signalling pathway activation by IAV

Pathogen receptors, or pattern recognition receptors (PRRs), 
start the innate immune response during an infection. PRRs 
function by binding to conserved structures, or pathogen-
associated molecular patterns (PAMPs), and activating sig-
nalling cascades that trigger expression of innate immune 
genes, such as type I and type III interferons. There are at 
least three PRR protein families involved in the recognition 
of an influenza virus infection, including toll-like receptors 
(TLRs), the nucleotide oligomerization domain (NOD)-like 
receptors (NLRs) and RIG-I-like receptors (RLRs) [59]. In 
addition, influenza A virus RNA is bound by Z-DNA bind-
ing protein 1, an activator of necroptosis [60].

In most cell types, the RIG-I signalling pathway (Fig. 2) 
plays a key role in detecting influenza A virus RNA [8, 9, 
61]. Only in plasmocytoid dendritic cells are the influenza 
virus RNA molecules mainly detected by the endosomal 
TLR7 [62, 63]. RIG-I is activated when its C-terminal 
domain (CTD) binds the partially double-stranded 3′ and 
5′ termini of the vRNA or cRNA promoter, so-called ‘pan-
handle’ [7, 64, 65] (Fig. 2). This binding leads to an ATP-
dependent conformational change in RIG-I that exposes 
the N-terminal caspase activation and recruitment domains 
(CARDs) [66]. At the same time, the RNA-binding domains 
of RIG-I (CTD and helicase) translocate along the RNA 
ligand, bringing several RIG-I molecules and their CARDs 
into proximity [67–69]. The exposed CARDs of RIG-I are 
next polyubiquitinated by the tripartite motif-containing 
protein 25 (TRIM25), which promotes formation of CARD 

Fig. 2  RIG-I signalling pathway and its interaction with the influ-
enza A virus polymerase subunits. Centre left to centre bottom: 
the RIG-I signalling pathway is activated upon binding of an RNA 
ligand, such as the 5′ppp-dsRNA region of the influenza virus pro-
moter, by the CTD of RIG-I. A subsequent ATP-dependent confor-
mational change exposes two N-terminal CARDs of RIG-I and pro-
motes RIG-I translocation along the RNA and formation of a RIG-I 
oligomer. One of the host proteins that potentiates RIG-I signalling 
is PKR activating protein (PACT), which binds to the CTD domain 
of RIG-I and enhances ATPase activity. RIG-I filament formation 
brings RIG-I CARDs into close proximity, facilitating formation of 
a CARD tetramer. The tetramer is stabilised by ubiquitin chains that 
are added by TRIM25. The RIG-I complex then migrates towards the 
mitochondrial outer membrane, where it associates with MAVS. The 
interaction between the CARD domains of RIG-I and MAVS nucle-
ates MAVS filament formation. MAVS aggregation induces bind-
ing of TRAF family E3 ubiquitin ligases to MAVS, which potentiate 
recruitment of IKKs. Activated IKKε and TBK1 phosphorylate tran-
scriptional factors IRF3 and IRF7, while transcriptional factor NF-κB 
is activated by the IKKα/β/γ complex. The activated IRF3, IRF7 and 
NF-κB translocate into the nucleus where they induce transcriptional 
activation of IFN and pro-inflammatory cytokine genes. Top left: the 
influenza virus RNA polymerase shields viral promoter from RIG-I 
recognition. Polymerase subunits also bind RIG-I in an ‘ESIE’-motif-
dependent manner and interact with PACT. Middle: PB2 binding to 
MAVS is associated with inhibition of IFN expression and is attrib-
uted either to its N-terminal domain or to PB2 amino acids 588 and 
292. PB1 induces degradation of MAVS by forming a complex with 
MAVS, RNF5 and NBR1. PB1 induces Lys27-linked ubiquitination 
of MAVS by RNF5, which is then recognised by NBR1 that targets 
ubiquitinated MAVS for autophagic degradation. Bottom right: PB2 
(residues 490–759) binds to TRAF3 and prevents its Lys63-linked 
polyubiquitination by TRIM35, disrupting the formation of TRAF3-
MAVS complex and preventing activation of TBK1 and IKKε 
kinases. TRIM35, in turn, induces Lys48-linked polyubiquitination of 
PB2, targeting it for proteasomal degradation. PB2 is also targeted to 
mitochondria via residues L7, L10 and N9. Bottom left: PA inhibits 
IFN production by binding to IRF3 and precluding its phosphoryla-
tion and nuclear translocation

◂
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tetramers [70, 71]. CARD tetramers of RIG-I subsequently 
bind to the CARDs of mitochondrial antiviral-signalling 
protein (MAVS), nucleating MAVS filament formation—
a step necessary for subsequent signal transduction [72]. 
MAVS oligomerisation leads to recruitment of downstream 
signalling molecules, such as TNF receptor-associated factor 
(TRAF) family E3 ubiquitin ligases and inhibitor of NF-κB 
kinase (IKK) family members. IKKs subsequently activate 
interferon-regulatory factors 3 and 7 (IRF3, IRF7) and 
NF-κB, which translocate into the nucleus to promote the 
transcription of interferon and pro-inflammatory cytokine 
genes [73].

Our understanding of the mechanisms behind the interac-
tions between RIG-I and the viral promoter are complicated 
by the fact that the viral RNA polymerase shields the par-
tially double-stranded promoter from RIG-I recognition in 
the context of an RNP. The RNA polymerase binds the first 
10 residues of the 5′ terminus in a hook structure within a 
binding pocket consisting of PA and PB1 residues. The 3′ 
terminus, on the other hand, exists in at least three positions: 
either bound above the active site (A-site), on the outside 
of the PB2-N1 and PB1 thumb subdomain (B-site), or in 
the active site (Fig. 3) [36, 41, 56, 74]. Even during viral 
genome replication, nascent RNA is likely directly encap-
sidated by a new polymerase [48, 55]. Nevertheless, base-
pairing of the terminal promoter region, which occurs in the 
absence of polymerase, is important for RIG-I activation 
[7]. It has been proposed that influenza viruses evolved a 
promoter that is not completely double-stranded, such as 
observed in other negative-strand RNA viruses, and that 
interruptions in the duplex reduce RIG-I activation relative 
to a fully base-paired promoter [7, 75]. It, therefore, remains 

unknown at which stage of the viral life cycle RIG-I is able 
to gain access to the viral promoter and initiate signalling.

Interference of the viral RNA polymerase 
with the components of RIG‑I signalling 
pathway

Besides its major role in genome replication and transcrip-
tion, the influenza A virus polymerase and its individual 
subunits specifically interact with and inhibit several com-
ponents of the RIG-I signalling pathway (Fig. 2).

Viral polymerase binds RIG‑I and its adaptor protein 
PACT 

Several studies have demonstrated a direct interaction 
between the RNA polymerase or the vRNPs and RIG-I [32, 
76, 77]. Weber et al. [76] showed that incoming vRNPs with 
an avian-adapted 627E residue in PB2 were more efficiently 
bound by RIG-I than those with the mammalian-adapted 
627K signature. However, this difference in binding did not 
affect innate immune signalling. Instead, the authors pro-
posed that the interaction allows RIG-I to block replication 
of 627E-containing viruses in mammalian cells [76]. Simi-
larly, Li et al. [77] showed that all three polymerase subunits 
of a H9N2 virus strain bind RIG-I, and that this interaction 
does not result in innate immune activation. By contrast, 
Liedmann et al. [32, 78] identified an ‘ESIE’ motif consist-
ing of PB1 (398E/524S/563I) and PA (351E) residues, which 
not only enhances the binding of the viral RNA polymerase 

Fig. 3  The conformations of the viral promoter when bound to the 
polymerase heterotrimer. Left: bat H17N10 influenza A polymerase 
with bound vRNA promoter (PDB 4WSB). Middle: bat H17N10 
influenza A polymerase pre-termination complex with 3′ terminus 
threaded through the template exit channel and bound at the polymer-

ase surface (top view) (PDB 6SZU). Right: human H3N2 influenza 
A virus polymerase bound to a vRNA promoter and a capped primer 
with 3′ terminus entering the active site (PDB 6RR7). Viral RNA pol-
ymerases are shown in surface representation and the viral promoter 
strands as a cartoon
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to RIG-I, but also inhibits innate immune activation when 
compared to the ‘GGRK’ variant of the same motif (Fig. 2). 
Except PB1 398E, the motif’s residues are conserved and 
located on the thumb subdomain side of the RNA polymer-
ase. By contrast, PB1 398E is localised at the opposite side 
of the RNA polymerase, and it is therefore unknown how 
these residues collectively contribute to RIG-I binding and 
whether separate residues might exhibit different immu-
nomodulatory effects.

All three subunits of the viral RNA polymerase also inter-
act with the PKR activating protein (PACT), an activator 
of PKR and RIG-I [79, 80]. In the case of RIG-I, PACT 
binds to the RIG-I CTD and triggers ATPase activity [80]. 
Chan et al. [81] showed that overexpression of the poly-
merase subunits diminishes IFN-β promoter activation dur-
ing overexpression of RIG-I and PACT in the absence of 
vRNA. Additional experiments showed that the overex-
pressed polymerase subunits can co-precipitate with PACT, 
in the absence of vRNA, and that knockdown of endogenous 
PACT stimulates influenza A virus polymerase activity. The 
interaction between the RNA polymerase and PACT can be 
interpreted as a viral strategy to interfere with host innate 
immune signalling as well as an antiviral strategy of the 
host cell [81]. At present, it is unclear whether the observed 
immunomodulatory effects are directly linked to the interac-
tion of the viral polymerase with PACT or that they derive 
from a reduced activation of RIG-I, or both.

Polymerase subunits target MAVS, TRAF3 and IRF3

The PB1 subunit of the RNA polymerase was recently found 
to inhibit RIG-I signalling by inducing autophagic degra-
dation of MAVS [82]. Specifically, PB1 forms a complex 
with MAVS and E3 ligase RNF5. This complex allows 
RNF5 to add Lys27-linked ubiquitin to MAVS (Fig. 2), 
which is recognised by an autophagic receptor, neighbour 
BRCA1 (NBR1). NBR1 recognition subsequently targets 
MAVS for autophagic degradation, inhibiting MAVS-medi-
ated signalling [82].

The PB2 subunit of the RNA polymerase also inhibits 
innate immune signalling by targeting MAVS [83, 84]. The 
MAVS-interacting region of PB2 was mapped to the last 
37 residues of its N-terminus, but mutations outside of the 
N-terminal region also affect PB2-MAVS binding [85–87]. 
One of those mutations is PB2 T588I, which was identi-
fied in a swine isolate of the 2009 pandemic H1N1 virus 
strain (pdm09) that was highly pathogenic in mice [85]. 
Upon closer examination, the T588I mutation was found 
to improve polymerase activity and increase viral repli-
cation in cell culture and murine lungs. Interestingly, the 
mutation also led to a decrease in IFN-β expression [85]. 
This decrease correlated with the stronger binding of the 
T588I mutant to MAVS [85]. Another mutation implicated 

in MAVS binding, and gaining prevalence among circulating 
avian H9N2 viruses in recent years, is I292V in the Mid-link 
domain of PB2 [86]. I292V improved PB2-MAVS binding 
and decreased IFN-β expression, resulting in a more severe 
disease in mice [86]. Although it is unknown how PB2 
inhibits innate immune activation upon MAVS binding, it 
is possible that PB2 prevents a correct subcellular localisa-
tion of MAVS, limits MAVS oligomerization, or induces 
MAVS degradation [88, 89].

Another mechanism through which PB2 modulates 
MAVS-mediated signalling is by targeting TNF receptor-
associated factor 3 (TRAF3), the adaptor protein of MAVS 
that is required for optimal signal transduction [90]. TRAF3 
interacts with MAVS (Fig. 2), catalysing recruitment of the 
TBK1 and IKKε kinases, which in turn phosphorylate IRF3 
promoting expression of IFN genes [90, 91]. To achieve 
this, TRAF3 needs to be activated by TRIM35 through the 
addition of Lys63-linked polyubiquitin. PB2 prevents poly-
ubiquitination of TRAF3 by binding to TRAF3 with PB2 
residues 490–759. The binding between PB2 and TRAF3 
disrupts formation of the TRAF3-MAVS complex, and 
inhibits downstream IFN-β promoter activation. TRIM35, 
on the other hand, counters this immunomodulatory activity 
of PB2 by adding Lys48-linked polyubiquitin to Lys736 of 
PB2, which targets PB2 for proteasomal degradation [90].

The PA subunit of the viral RNA polymerase also inhibits 
innate immune signalling by binding to IRF3. This interac-
tion prevents phosphorylation and nuclear translocation of 
IRF3, both of which are central for IFN expression [92]. 
The same study also showed that a D108A mutation in PA 
inhibits PA-IRF3 interaction. However, it is unclear how 
D108 could be involved in this interaction as it is a catalytic 
residue of the endonuclease and not located on the surface 
of the domain.

PB2 is targeted to mitochondria

Mitochondria serve as platform for the interaction between 
RIG-I and MAVS and thus play a prominent role in innate 
immune signalling [88, 93, 94]. Influenza A viruses encode 
an accessory protein, called PB1-F2, that specifically local-
ises to mitochondria and interferes with their function in 
innate immune signalling [26]. However, there is also a 
small pool of PB2 that localises to the mitochondrial matrix. 
The purpose of this localisation remains controversial [84, 
95–97].

The mitochondrial targeting signal of PB2 has been 
mapped to PB2 residues L7 and L10, or N9 [84, 95]. It has 
also been shown that the PB2 proteins of different influenza 
A virus strains have different mitochondrial localisation 
tendencies, with seasonal human strains localising to mito-
chondria and avian strains showing reduced localisation, 
suggesting that mitochondrial localisation might play a role 
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in host adaptation [84]. The strain-specific localisation of 
PB2 dependents on the PB2 residue nine, which is typically 
an aspartate (D) in the PB2 proteins of avian strains and 
an asparagine (N) in the PB2 proteins of human-adapted 
strains. In vitro, introduction of an avian-like N9D mutation 
in the PB2 of the A/WSN/33 virus strain increases IFN-β 
expression in lung epithelial cells. In mice, however, the 
N9D mutation decreased IFN-β expression, likely because 
of the impaired growth of the N9D mutant in vivo [84]. Pres-
ently, the mechanisms behind innate immune modulation 
by the mitochondrial PB2 remain unclear, but they might 
involve changes in mitochondrial dynamics or mitochondrial 
membrane potential [95, 96].

Aberrant replication products as innate 
immune activators

Aberrant replication products and their synthesis

Besides full-length replication products, the influenza virus 
RNA polymerase also generates aberrant replication prod-
ucts, including DVGs, mvRNAs, and svRNAs (Fig. 4A) 
[24, 98–100]. svRNA are 21–27 nucleotides long and only 

contain the 5′ terminus of the vRNA template. By contrast, 
DVGs and mvRNAs both contain the conserved 5′ and 3′ 
terminal ends that are present in each vRNA segment and 
bound by the viral RNA polymerase. However, they lack 
internal sequences and can be distinguished from full-length 
vRNAs by their size, with DVGs being typically 178 to sev-
eral hundred nucleotides long, and mvRNAs being 56–125 
nucleotides long [24, 101, 102].

vRNAs, DVGs and mvRNAs all contain the conserved 
RNA promoter structure with 5′ triphosphate that forms a 
‘panhandle’ in solution [103]. In vitro and in vivo, this RNA 
structure is recognised by the cellular RIG-I sensor and able 
to activate the MAVS signalling cascade [7, 19, 24, 66, 104]. 
RIG-I binds different influenza A virus RNA species with 
different efficiencies. Aberrant RNAs of 56–125 nucleotides 
long are bound by RIG-I more efficiently than longer aber-
rant RNAs, and shorter vRNA segments are bound more effi-
ciently than longer vRNA segments [24, 104]. Interestingly, 
aberrant RNAs shorter than 56 nucleotides are not bound 
by RIG-I at all, even though short artificial hairpins are 
potent RIG-I agonists [24, 105]. Although, both mvRNAs 
and DVGs are potent inducers of IFN expression, they are 
thought to have opposite effects on disease, with mvRNAs 
having been linked to virulence and the cytokine storm, both 
common for the highly pathogenic influenza virus strains, 
and DVGs to protective IFN responses and a reduction of 
viral virulence [24, 106, 107].

The molecular mechanisms underlying DVG and mvRNA 
formation are currently poorly defined. In one model, the 
internal deletions are generated when the viral RNA poly-
merase pauses during elongation, back-tracks to separate 
template and nascent strand, and finally translocates to 
a downstream template sequence to realign the nascent 
strand and continue nascent RNA extension (Fig. 4B) [22, 
98]. Such polymerase translocations might be affected or 
directed by A/U-rich sequences, which have been observed 
near DVG breakpoints [108, 109]. It is possible that such 
A/U-rich sequences facilitate separation of the template and 
nascent strand prior to translocation. Other models for DVG 
and mvRNA synthesis, which involve, for instance, endonu-
cleolytic cleavage and ligation of the product RNA, are not 
supported by experimental data [98].

Several viral factors have been associated with the for-
mation of aberrant RNAs. Recent studies have shown that 
elongation defects can be induced experimentally by limiting 
the availability of NP, an important elongation factor and 
key component of RNPs, suggesting that impaired elonga-
tion or aberrant encapsidation play a role in DVG or mvRNA 
formation [24, 110, 111]. In addition, mutations in several 
viral proteins, such as nuclear export protein, matrix protein 
1 and 2, and the RNA polymerase subunits, also promote the 
formation of DVGs [34, 112–114].

Fig. 4  Aberrant viral RNA formation  and RNA polymerase  resi-
dues putatively implicated in this process. A A schematic representa-
tion of different types of aberrant RNAs produced by the influenza A 
virus polymerase. B A possible mechanism for the DVG and mvRNA 
synthesis during replication. C A surface representation of the bat 
H17N10 influenza A polymerase (PDB 6T0V) during transcription 
elongation. The 3′ terminus of the template (orange) can be seen 
exiting through the template exit channel. PB2 residues 9 and 81 are 
highlighted in red and PB2 80–90 loop is shown in purple. D A car-
toon representation of the template exit channel of the bat H17N10 
influenza A polymerase at the stage of transcription pre-initiation 
(PDB 6T0N) and during transcription elongation (PDB 6T0V). The 
80–90 loop (purple) undergoes an outward movement, allowing open-
ing of the template exit channel during elongation. Direction of the 
exiting template is indicated with an arrow. E A surface representa-
tion of the replicating-encapsidating polymerase dimer of the influ-
enza C virus (ICV) polymerase in the complex with chicken ANP32A 
(PDB 6XZR). Residue numbering is as in ICV RNA polymerase. The 
corresponding IAV RNA polymerase residues are shown in parenthe-
sis. PB2 residue F228 of ICV (A221 IAV) is located in an RNA path 
(yellow arrow) between the product exit channel of the replicating 
polymerase and the 5′ binding site of the encapsidated polymerase. 
Hydrogen bonds between the PA E513 of ICV (D529 in IAV) and 
two lysines of ANP32A (K99 and K101) are shown. F A surface rep-
resentation of the bat H17N10 influenza A virus bound to the CTD of 
Pol II (PDB 5M3H). Two binding sites for Pol II CTD (orange) are 
shown. Residue numbering as in bat IAV, and corresponding human 
and avian residues are shown in parenthesis. PA residues, K630 and 
R633 of the bat IAV polymerase (corresponding to K635 and R638 of 
the human or avian IAV polymerase, respectively) are shown to form 
hydrogen bonds with phosphorylated Ser5 of the Pol II CTD. PA resi-
due C448 in the bat IAV polymerase (C453 in the human or avian 
IAV) is indicated in purple

◂
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RNA polymerase mutations that affect aberrant RNA 
synthesis

We can learn more about the potential mechanisms underly-
ing aberrant RNA generation and their role in innate immune 
activation by studying the RNA polymerase mutations that 
affect their formation. High levels of mvRNA production by 
the polymerases of highly pathogenic avian H5N1 and 1918 
pandemic viruses are in part determined by avian-adaptive 
mutations in the PB2 polymerase subunit of those strains 
[24]. Introducing such avian-specific PB2 mutations, e.g., 
N9D and M81T, into the lab-adapted A/WSN/33 (H1N1) 
strain significantly increased mvRNA production and IFN-β 
promoter activation [24]. Both these residues are located at 
the top of the RNA polymerase core, near the interaction 
interface of the PB1 C-terminus and the PB2 N-terminus 
(Fig. 4C). Of the two residues, PB2 residue 81 stands out 
as it is located within the PB2 80–90 loop that undergoes 
an outward conformational change to allow template egress 
during elongation (Fig. 4D) [41]. Because of the role of the 
80–90 loop in elongation, it is tempting to speculate that 
a mutation of residue 81 could trigger elongation defects, 
which may contribute to mvRNA production.

Synthesis of aberrant RNAs is also affected by the fidel-
ity of the viral polymerase. A V43I mutation in the PB1 
subunit, which reduces the mutation rate of RNA synthesis 
by approximately twofold in some genetic backgrounds, was 
also shown to lower levels of mvRNA synthesis by the poly-
merases of the 1918 pandemic and H5N1 strains [24, 115]. 
Interestingly, V43I change in H5N1 strain also decreased 
neurotropism and lowered lethality in mice [116]. V43I is 
located near the NTP entry channel of the polymerase and 
may increase polymerase fidelity by improving nucleoside 
selectivity [116]. However, it remains unclear whether the 
same mechanisms could also contribute to the production of 
aberrant RNA species.

Similar to mvRNA synthesis, DVG formation is affected 
by mutations in the RNA polymerase. Two of these muta-
tions, PB2 A221T and PA D529N, were identified in a 
virus isolated from a fatal case of pdm09 (H1N1) influ-
enza [114]. Interestingly, the two mutations demonstrated 
opposite effects on DVG generation and immune activation 
when studied in more detail. PB2 A221T increased DVG 
formation and enhanced protective antiviral responses, 
while PA D529N counteracted both effects [114]. Analysis 
of the localisation of PA A221 in various influenza virus 
RNA polymerase structures shows that this residue can be 
involved in the interaction between the N-terminal and the 
627 domains of PB2 (PDB: 6T0V) or it can be residing in 
the path that the nascent RNA takes when it emerges from 
the replicating polymerase to bind the encapsidating poly-
merase (PDB: 6XZR) (Fig. 4E). While it is not clear if those 
localisations are directly involved in DVG production, it is 

tempting to speculate that the A221T mutation could affect 
encapsidation of the nascent RNA, thereby reducing proces-
sivity. Alternatively, the mutation may lead to aberrant RNA 
formation by affecting NP recruitment to the nascent strand, 
which was proposed to occur near the RNA transition path 
[48]. By contrast, PA D529 resides above the Pol II binding 
interface of the transcriptionally active polymerase (PDB: 
6T0V), while in the ANP32A-supported dimer, PA D529, is 
located at the ANP32A interaction interface (Fig. 4E) [48]. 
Thus, in the dimer, PA D529N is ideally positioned to com-
pensate for defects in polymerase processivity or encapsida-
tion by stabilizing ANP32A binding and RNA polymerase 
dimer formation.

Aberrant polymerase activity can also be the result of 
defects in viral transcription. Influenza virus transcription 
is dependent on cap-snatching and the binding of the C-ter-
minal domain of PA to a Ser5 phosphorylated CTD of Pol 
II. Mutations in key PA residues involved in this interaction, 
K635A and R638A (Fig. 4F), not only decrease the activ-
ity of the A/WSN/33 (H1N1) polymerase, but also promote 
DVG formation [108, 113, 117]. On the other hand, a PA 
C453R mutation at same site (Fig. 4F) reduces DVG forma-
tion, because it may restore the binding of PA to the Pol 
II CTD, as suggested by the structural analysis [113, 117]. 
What might be the mechanism behind DVG formation in 
this case? As mentioned above, elongation defects can be 
induced experimentally by limiting the availability of NP 
during viral replication [24, 110, 111]. Although not experi-
mentally confirmed, the transcriptional defects induced by 
reduced Pol II binding likely result in lower NP levels, which 
subsequently promote aberrant polymerase activity [24, 110, 
111].

Host‑adaptive polymerase mutations improve 
polymerase activity and increase innate immune 
activation

The influenza A virus RNA polymerase plays a major role in 
the adaptation of avian influenza virus strains to mammalian 
cells. Several major host-adaptive mutations induce a strong 
activation of innate immune responses which correlates with 
the improvement in viral replication.

One of the most well-studied polymerase adaptations is 
a E-to-K mutation at residue 627 of PB2 [118]. This muta-
tion is located in the PB2 627-domain (named after the 627 
mutation; Fig. 5) and able to improve the activity of avian-
adapted influenza A virus polymerases in mammalian cells 
[31]. This improvement results in higher viral loads, extra-
respiratory spread and enhanced virulence of the E627K-
containing avian viral strains in mice [119–123]. In the 
majority of cases, the increased virulence of the 627K-con-
taining avian viruses is also accompanied by an overpro-
duction of pro-inflammatory cytokines, persistent neutrophil 
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infiltration and delayed lymphocyte recruitment, which are 
all hallmarks of the cytokine storm [119–124].

Recent experiments have shown that a lysine at position 
627 is essential for a stable interaction of the viral RNA 
polymerase with mammalian host-cell protein ANP32A 
[50]. ANP32A had previously been proposed to be essen-
tial for the synthesis of vRNA from a cRNA template [53], 
but recent structural and biochemical evidence suggests 
that it brings together the replicating and encapsidating 
polymerases in a viral replicase complex that can syn-
thesise both vRNA or cRNA [48, 49]. The ANP32A-
supported dimer shows that the basic K627, but not the 
acidic E627, can efficiently interact with the C-terminal 
low-complexity acidic region of mammalian ANP32A 
(Fig. 5) [48]. By contrast, avian ANP32A homologs con-
tain an additional exon, and can interact with the polymer-
ase dimer when the polymerases in the dimer contain an 
E627 [50, 125].

In some avian influenza virus strains, a Q591K muta-
tion in the PB2 627 domain [G590S and Q591R in pdm09 
(H1N1)] can compensate for the absence of the E627K sig-
nature and support the activity of avian-adapted polymer-
ases in mammalian cells [126, 127]. Like PB2 residue 627, 
residue 591 is located at the binding site for the C-terminal 
region of ANP32A (Fig. 5) and introduction of a basic 
amino acid at this site is thought to improve the interaction 
between the polymerase and mammalian ANP32A [48]. 
By stabilising the replicase dimer, the Q591K mutation 
increases the replication of the avian H7N9 and H9N2 
viruses in murine lungs, inducing strong inflammatory 
responses and enhancing virulence as a result [122, 123, 
128].

PB2 mutation D701N has also been associated with 
improved replication and higher levels of innate immune 
activation [31, 123, 128]. However, unlike the mutations 
discussed above, amino acid 701 resides in the PB2 NLS 
and promotes replication by improving nuclear import of 
PB2 and vRNPs [129–131].

An emerging role of the Mid‑link domain of PB2 
in innate immune activation

To explore the distribution of published polymerase muta-
tions that affect innate immune responses and identify poten-
tially novel clusters of interest, we mapped those mutations 
to the polymerase subunits (Fig. 6, Supplementary Table 2). 
The PB2 subunit contained the majority of the identified 
immunostimulatory or immunoinhibitory mutations (Fig. 6). 
In particular, a number of these mutations cluster in the Mid-
link domain of PB2 (residues 247–320/482–538). This clus-
tering indicates that Mid-link might play an important role 
in polymerase’s function and innate immune recognition of 
the viral infection, yet this region has presently not been 
assigned a specific role in viral genome replication or tran-
scription. What could the role of the Mid-link domain and 
its mutations be?

The PB2 Mid-link domain might play a key role in sta-
bilizing the conformational rearrangements of the RNA 
polymerase as it transitions from one state to another or in 
encapsidation of the nascent RNA strand. It forms exten-
sive, transient interactions with the flexible domains of PA 
and PB2 in various conformations of the viral polymerase. 
In addition, analysis of the ANP32A-supported replicase 
suggests that the Mid-link domain may play a role in nas-
cent strand egress or encapsidation. In the dimer, residues 

Fig. 5  Host-adaptive immunostimulatory mutations. A surface rep-
resentation of the replicating-encapsidating polymerase dimer of the 
ICV polymerase in the complex with chicken ANP32A (PDB 6XZR). 

PB2 residues 614 and 649 of ICV are highlighted in red and corre-
spond to residues 591 and 627 of IAV shown in parenthesis



7248 E. Elshina, A. J. W. te Velthuis 

1 3

252–273 and 519–523 (influenza C virus PB2 residues 
259–280 and 538–542, respectively) of the replicating 
polymerase face the encapsidating polymerase but are not 
directly interacting with it. Instead, these residues face a 
groove that separates the two polymerases in the dimer and 
which the emerging 5′ terminus of the nascent strand must 
bridge to reach the promoter binding pocket of the encap-
sidating polymerase (Fig. 7A). It is tempting to speculate 

that these residues of the Mid-link domain play a role in NP 
recruitment or the encapsidation of the nascent strand [48].

Mid-link domain might also play a role in adaptation as 
several mutations in the Mid-link domain were shown to 
improve polymerase activity and the replication of avian 
influenza virus strains in mammalian cells. For instance, 
the well-documented adaptive mutation Q591K in the 627 
domain occurs together with the Mid-link mutation D253N 

Fig. 6  Immunostimulatory and immunoinhibitory mutations in the 
influenza A virus RNA polymerase. Polymerase mutations that 
affect innate immune activation (Supplementary Table  2) were 
mapped to the polymerase subunits of the influenza A virus. Muta-
tions that induced higher innate immune activation in comparison 
to the background strain are shown in red and those that decreased 
innate immune activation are shown in blue. Mutations that did not 
affect innate immune responses in comparison to the background 

virus strain are shown in grey. Combinations of mutations are marked 
with Greek symbols. The structural domains in each subunit are indi-
cated in different colours. Additionally, functional regions involved 
in importin binding [131], RNA Pol II interactions [117] (RNA Pol 
II binding sites differ for influenza B and C viruses [44]), formation 
of polymerase dimers [48, 56] and ANP32A-binding [48] are high-
lighted in the bottom half of each segment
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in an avian H9N2 virus [132]. In this strain, D253N improves 
polymerase activity, enhances viral replication in mice, and 
stimulates interferon and pro-inflammatory cytokine produc-
tion [132]. Similarly, Mid-link mutation T271A in the RNA 
polymerase of an avian H7N9 isolate partially compensates 
for the lack of a PB2 E627K mutation in mammalian cells, 
improving polymerase activity and viral replication, while at 
the same time increasing pro-inflammatory cytokine expres-
sion [128]. Moreover, in H5N1 isolates, a M283L mutation 
was shown to increase polymerase activity, viral replication 
and innate immune activation in mice, whereas a M283I 
mutation decreased these properties [133]. Similarly, the 
reverse I283M mutation in the combination with K526R 
in the avian H5N8 virus significantly upregulated innate 
immune activation in murine lungs [134]. Thus, mutations 
in the Mid-link domain might induce innate immune activa-
tion by improving polymerase activity, similar to the other 
adaptive mutations.

The Mid-link domain could also have a stand-alone 
immunomodulatory function. Several mutations in this 
region supressed innate immune activation despite improv-
ing polymerase activity. Two of them, V249A and I503V, 
arose in a recombinant A/PR/8/34 (H1N1) virus, which 
contained a dysfunctional NS1 of the bat influenza A virus 
[135]. The mutations were able to compensate for the 

absence of innate immune modulation by NS1, reducing IFN 
induction, despite simultaneously increasing viral replica-
tion [135]. The I292V mutation in the avian H9N2 virus, 
which increases binding to MAVS, also suppressed innate 
immune activation despite higher activity of the mutant 
polymerase [86]. All three mutations reside in the solvent-
exposed region of the Mid-link domain (Fig. 7B) and may 
thus be able to inhibit innate immune activation by interact-
ing with the components of the host innate immune system.

Conclusions and outstanding questions

The influenza A virus RNA polymerase plays multiple roles 
in the innate immune response to influenza virus infection. 
Not only can the subunits of the RNA polymerase affect 
innate immune activation by interfering with the compo-
nents of the cellular signalling pathways, the enzyme can 
also produce immunostimulatory RNA species. These activi-
ties of the RNA polymerase are not unique to influenza A 
viruses, as RNA polymerases of viruses belonging to Fla-
viviridae, Picornaviridae and Coronaviridae families are 
also known to specifically target and inhibit innate immune 
signalling [136–139], while production of aberrant RNA 

Fig. 7  Mid-link domain mutations. A A surface representation of the 
encapsidating-replicating polymerase dimer of ICV (PDB 6XZR). 
The Mid-link domain of PB2 is shown in violet. The movement of 
the 5′ end of the nascent RNA from the product exit channel of the 
replicating polymerase to the 5′ binding site of the encapsidating 
polymerase is shown with a yellow arrow. Mid-link residues, whose 

alteration affects innate immune activation, are shown as red spheres 
(residue numbering is as in ICV, corresponding IAV amino acids are 
shown in parenthesis). B Localisation of the IAV Mid-link residues 
249, 292 and 503 (shown in red) on the structure of the human H3N2 
influenza A virus RNA polymerase (PDB 6RR7)
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species has been described for the majority of RNA viruses 
as well [140].

Despite recent advances in our understanding of the 
structure and the immunostimulatory and immunoinhibi-
tory activities of the influenza A virus polymerase, many 
fundamental questions about the molecular mechanisms 
involved remain unanswered. These include, but are not 
limited to, (i) how does RIG-I gain access to viral RNA 
(and the viral RNA termini in particular) in the context of 
a fully assembled RNP; (ii) what is the molecular mecha-
nism underlying the generation of DVGs and mvRNAs; 
(iii) why do aberrant viral RNAs trigger innate immune 
responses more efficiently than full-length viral RNA seg-
ments; (iv) does aberrant RNA synthesis confer any evo-
lutionary advantage, and (v) are the immunosuppressive 
and enzymatic activities of the viral polymerase separated 
in space and time? To find answers to those questions, 
existing and novel RNA polymerase mutants can be used. 
Screening approaches in combination with next genera-
tion sequencing have proven to be particularly powerful 
for the identification of such immunostimulatory RNA 
polymerase mutants [33, 141]. However, biochemical and 
molecular research is still needed to better understand how 
such mutations affect polymerase function.

The immunomodulatory or -stimulatory activity of the 
viral polymerase could also guide the development of novel 
antiviral treatments. Even though current drugs targeting 
the influenza virus polymerase primarily focus on blocking 
its activity, targeting its immunomodulatory function could 
potentially have an added benefit of activating the host’s nat-
ural immune defence during infection. However, care must 
be taken to not over-stimulate the innate immune response. 
Additionally, DVG-containing influenza viruses or cloned 
DVGs have been proposed as both influenza-specific and a 
broad-spectrum antiviral treatment due to their interfering 
and immunostimulatory activity [106, 142].

The knowledge of the processes by which influenza virus 
polymerase stimulates or inhibits innate immune responses 
can also be used in rational vaccine design. Several PB1, 
PB2 and NP mutations in the current live-attenuated influ-
enza vaccine confer its cold-adapted, attenuated and tem-
perature-sensitive phenotype [143], while alterations in NS1 
protein have been explored as a novel approach to improve 
efficacy of the live-attenuated vaccines [144, 145]. Recent 
studies also showed that addition of immunostimulatory pol-
ymerase mutations, for instance in combination with muta-
tions or deletions in NS1, improves vaccine immunogenicity 
and protection against infection [141, 146]. DVG-containing 
(interfering) vaccines were also shown to protect mice and 
ferrets from severe influenza infection [147, 148]. However, 
the presence of DVGs in the live-attenuated vaccines has 
been suggested to reduce their immunogenicity by interfer-
ing with the replication of the vaccine strain [149, 150], 

suggesting that a careful balance may need to be found for 
some of the above approaches. Understanding the viral and 
host molecular determinants of DVG production can there-
fore help to regulate aberrant polymerase activity of the vac-
cine strains. In this way, the multifunctional role of the viral 
RNA polymerase in innate immune activation represents an 
important area of future research.
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