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In order to improve the resolution of magnetic resonance (MR) image and reduce the interference of noise, a multifeature
extraction denoising algorithm based on a deep residual network is proposed. First, the feature extraction layer is constructed by
combining three different sizes of convolution kernels, which are used to obtain multiple shallow features for fusion and
increase the network’s multiscale perception ability. Then, it combines batch normalization and residual learning technology to
accelerate and optimize the deep network, while solving the problem of internal covariate transfer in deep learning. Finally, the
joint loss function is defined by combining the perceptual loss and the traditional mean square error loss. When the network is
trained, it can not only be compared at the pixel level but also be learned at a higher level of semantic features to generate a
clearer target image. Based on the MATLAB simulation platform, the TCGA-GBM and CH-GBM datasets are used to
experimentally demonstrate the proposed algorithm. The results show that when the image size is set to 190 x 215 and the
optimization algorithm is Adam, the performance of the proposed algorithm is the best, and its denoising effect is significantly
better than other comparison algorithms. Especially under high-intensity noise levels, the denoising advantage is more prominent.

1. Introduction

With the rapid development of information technology and
computer vision, different digital imaging technologies
emerge endlessly. An image has become one of the most
common information transmission carriers in modern life.
Up to now, the research on medical imaging has made some
progress and achievements [1]. For example, methods such
as positron emission tomography (PET), computer tomogra-
phy (CT), magnetic resonance imaging (MRI), and func-
tional magnetic resonance imaging (FMRI) have been used.
They have become the main technical means for obtaining
medical images. They have been successfully applied in clin-
ical medical diagnosis [2]. These imaging technologies can
enrich the anatomical images of clinical symptoms and can
observe various lesions of the human body more clearly. It
is conducive to image postprocessing and provides an impor-
tant reference for clinical development. Image digital imag-
ing technology is based on computers; collects, displays,
stores, and transmits images to digitize image information;
and optimizes each part individually. Electronic information,

computer technology [3], and digital image processing
methods are the basis of the above imaging technology.
Using imaging technology to effectively complement the
image information can achieve the effect of easy access to
medical image information. It is helpful for clinicians to for-
mulate treatment plans through image diagnosis acquisition,
so as to accelerate the rapid development of medical research
and new medical technology [4].

Among many medical imaging technologies, MRI is a
high-resolution medical imaging technology for human tis-
sues and organs. It can image various parts of the human
body at multiple angles and in all directions and can obtain
relatively complete medical image information [5]. For a
complete image information processing system, it mainly
includes modules such as information acquisition, informa-
tion processing, information transmission, and information
reception. However, in each of these links, the image may
be polluted by the random noise of the Rician distribution.
These noises reduce the signal-to-noise ratio of the image,
which makes it difficult for doctors to distinguish the details
of the lesion from the background [6]. In addition, noisy
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images will not only affect the visual effect but also adversely
affect subsequent image analysis, such as image segmenta-
tion, target recognition, and edge detection. Therefore, it is
very necessary to remove the noise in an image. Due to the
lack of relevant research in the field of denoising, the post-
processing of an image is seriously affected, and the accuracy
and effectiveness of imaging are reduced. Therefore, image
denoising processing is particularly important [7].

An image denoising algorithm can effectively filter out
image noise and at the same time enhance the useful infor-
mation of the image [8]. That is, while eliminating image
noise, the details of the image are preserved as much as pos-
sible. Image detail information is selectively strengthened
and suppressed, and the edge of the image is highlighted,
thereby improving the visual effect of the image [9]. When
traditional image denoising methods filter medical MR image
noise, it is easy to lose the edge information of the image and
it is difficult to save the detailed information of the image,
which is far from meeting the needs of medical diagnosis
[10]. Therefore, there is an urgent need for new research
methods and means to solve this problem.

2. Related Research

Image denoising is a difficult problem in the field of image
processing. In order to get a clear image and effectively
remove the noise introduced in the process of image genera-
tion, many domestic and foreign researchers have done a lot
of research and put forward many very clever denoising algo-
rithms. Some of the traditional image denoising methods
have been proposed for a long time and have been widely
used. However, most algorithms will inevitably damage the
original useful information while denoising. And many algo-
rithms need to be improved in denoising performance and
model complexity [11]. How to strip out the noise and
achieve a good denoising effect even under high-intensity
noise has brought new challenges to the research of existing
denoising algorithms. For medical MRI denoising algo-
rithms, the more common ones are traditional image denois-
ing algorithms, dual-domain filtering image denoising
algorithms, and deep learning image denoising algorithms
[12].

According to the denoising of traditional image denois-
ing algorithms in different domains, these methods are
divided into spatial domain and transform domain image
denoising algorithms. In the image denoising algorithm in
the spatial domain, the commonly used spatial domain filter-
ing methods mainly include mean filtering, median filtering,
and Wiener filtering [13]. The mean filter is a linear smooth-
ing filter, which can effectively deal with the additive white
Gaussian noise in the image. In Reference [14], an effective
image denoising method is proposed for images damaged
by salt and pepper noise. A modified mean filter (MMF) is
used to restore the image by processing the value. For serious
noise damage, the noise pixel value is replaced by the
weighted average value of MMF sum. The change of dam-
aged pixels can be minimized by convex optimization, and
two fuzzy systems are used to determine the weight of the
average value to achieve denoising. The mean filter is equiv-
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alent to a low-pass filter. Although the operation is simple
and the calculation speed is fast, the mean filter will lose the
details in the denoising process and make the image blurry
[15]. Median filtering was originally a nonlinear processing
technique used to analyze time series and was later used to
remove salt and pepper noise. Wiener filtering can better fil-
ter out salt and pepper noise through the local statistical
characteristics of the image according to the minimum mean
square error. In Reference [16], an improved Wiener filtering
method is proposed to denoise satellite images. Different
noise and filtering techniques are studied in detail, and the
results show that the denoising effect of the filter depends
on the type of noise present in the image. Compared with
the existing linear and nonlinear filtering methods, the per-
formance of the proposed improved Wiener filter in most
noise models is relatively better. But the Wiener filter needs
the spectrum information of the original signal and noise,
and it can only achieve good results when the signal is suffi-
ciently smooth [17]. The spatial domain denoising algorithm
directly performs corresponding processing on the image
pixels. According to the type of filter, it can be divided into
linear filters and nonlinear filters. Images generally have such
a property: the pixel value at any position in an image is
closely related to the pixel value in the neighborhood where
the pixel is located, such as spatial correlation or similar pixel
values [18].

For the transform domain image denoising algorithm,
the image is first transformed into other domains, and then,
the coefficients are processed by the properties in the trans-
form domain. Finally, the inverse transform is used to recon-
struct the coefficients to obtain the denoised image [19].
There are many ways to transform an image from the spatial
domain to the transform domain, such as Fourier transform,
cosine transform, and Walsh-Hadamard transform. One of
the most commonly used is wavelet transform. The wavelet
domain spatial adaptive FIR Wiener filtering method pro-
posed in [20] only performs Wiener filtering in each scale.
Although it can quickly remove noise, the processing of dif-
ferent types of noise needs to be strengthened [21].

In addition to traditional spatial and frequency domain
image denoising algorithms, literature [22] proposes a dual-
domain image denoising (DDID) algorithm, using the idea
of combining the space domain and the frequency domain,
combined with bilateral filtering and short-time Fourier
transform to denoise the image hierarchically. After the algo-
rithm is denoised, the image can retain the original image
details to a greater extent and obtain better visual effects.
The DDID algorithm divides the noisy image into the base
layer and the detail layer to process separately and realizes
the image detail enhancement with good effect. Therefore,
since the algorithm was proposed, it has been widely used
in image denoising. However, the boundary information on
the multimode image cannot effectively suppress the negative
ringing effect, and the detail preservation needs to be
improved [23].

In recent years, deep learning algorithms have been rap-
idly developed, and the convolution neural network (CNN)
method has been proposed to use a layer-by-layer initializa-
tion method to overcome difficult problems in the training
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process. CNN has been widely used in the field of computer
vision and has significant effects on solving image classifica-
tion, target detection, and image recognition problems [24].
With the needs of research, the neural network structure is
continuously deepened to build a higher and more accurate
deep learning network. Because CNN can directly input the
original image, it is simple and easy to use, is widely recog-
nized by the academic community, and has been successfully
used in the field of image denoising. Reference [25] compre-
hensively studies the most advanced image denoising
methods using CNN. A denoising prior driven network
(PDNN) is proposed to remove fixed-level Gaussian noise.
In the BSD-68 and Set-12 datasets, PDNN shows good
denoising results in terms of PSNR. In some cases, combin-
ing neural networks with traditional methods can achieve
better results. For example, literature [26] uses the powerful
nonlinear fitting ability of a neural network to combine a
neural network with a wavelet method. A neural network is
used to find the optimal coefficients of Gabor wavelet, and
a neural network can adaptively select wavelet parameters;
a combination of RBF network and wavelet is trained. This
method has a good effect in the field of sound signal detec-
tion, and the theoretical effect of image denoising needs fur-
ther practical verification.

Because the image is often contaminated by noise and
becomes blurred, the image obtained by the above algorithm
still has the problem of a blurred image and unsatisfactory
effect. Therefore, a multifeature extraction algorithm based
on the depth residual network is proposed for medical MR
image denoising. The innovation of the proposed method is
as follows:

(1) In order to improve the learning ability of the image
denoising algorithm and reduce the time of model
training, multifeature extraction technology is
adopted. Three different convolution kernels of dif-
ferent sizes are used to extract features from the input
image in a way that the center position is unchanged
and synchronized to obtain richer image features and
achieve a better denoising effect

(2) Due to the large number of layers of the deep neural
network, backward propagation easily leads to the
disappearance of the gradient, making the training
result poor. The proposed algorithm introduces
residual learning and learns image noise residuals
based on function mapping, thereby achieving image
denoising and accelerating and optimizing the deep
network. Especially under high-intensity noise levels,
the denoising advantage is more prominent

3. Denoising Network

3.1. Multifeature Extraction Residual Network Denoising
Framework. Since image denoising is a typical restoration
problem, the proposed denoising network model uses a fully
convolutional layer network, which removes the pooling
layer in a conventional network. The function of dimension-
ality reduction and parameter reduction is accomplished by

learning residual mapping. The multifeature extraction resid-
ual network denoising framework is shown in Figure 1.

The first layer uses multiple feature extraction layers to
extract different feature information and map the input
image from image space to feature space. After that, a series
of residual units are connected in series to form a chain struc-
ture, and then the residual image containing only noise infor-
mation is generated by the last convolution layer
reconstruction. Finally, the final denoising result is calculated
by the global skip connection. For the loss function in train-
ing, the joint loss function which combines the traditional
mean square error loss and the perceptual loss is used. The
perceptual loss is defined and calculated by a pretrained net-
work [27].

3.2. Residual Learning. For the general convolution neural
network, image denoising problems are adopted by learning
the clean image way. The image result calculated by the net-
work is compared with the standard image, and the cost
function is to minimize this error. The formula is as follows:

1(6) = %i(% [ () = 2), (1)

where x stands for the standard image, y represents the image
after network calculation, and m represents the number of
images. For the entire network, the cost function obtained
by learning noise images is determined by h,,, (x?) — y1).

For the whole model, residual learning is a very impor-
tant technology. Many network models predict a clean image
without pollution by learning mapping functions [28]. For
residual learning, it is based on R(y) = v function mapping
learning image noise residual and then realizes image denois-
ing. Finally, by using the expected noise residual value and
the estimated noise residual value calculated by the convolu-
tional network, the mean square error is obtained, and the
cost function of the entire network is obtained. The formula
is as follows:

L) = LY R 9) - 0~ )12 @)
2n

where 9 represents the training parameter and »n represents
the image block divided into the entire input image. In the
network model, this residual learning strategy is selected
because it is easier to be optimized by convolutional neural
networks and can be very well applied to deep networks.
Deep networks face many difficulties, and they are generally
very difficult to train. It is mainly reflected in the fact that
when the number of layers increases, the backward propaga-
tion easily causes the gradient to disappear, making the train-
ing result very poor. And this deep residual network solves
this problem in the neural network structure, so that the net-
work can be very deep, and the gradient will not disappear.
When the noise level is relatively low, the feature map F(y)
=x of learning clean images is closer to the initial identity
map than the feature map R(y) = v of residual learning. It is
equivalent to the mapping relationship of F(y)=x during
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FiGure 1: Multifeature extraction residual network denoising
framework.

deep network training, which will make the gradient disap-
pear more easily. Therefore, the residual training will be
more conducive to the acceleration and optimization of the
deep network.

3.3. Batch Normalization. Batch normalization (BN) is an
adaptive heavy parameter method, which is mainly used to
solve the problem of internal covariate shift (ICS) in deep
learning. The model is shown in Figure 2.

The BN model selects m inputs because the whole is
approximately the same distribution, and h obtained as a
whole is put into the neural network for batch training. This
batch processing method is very beneficial for deep learning,
making the model simpler, and solving the problem of diffi-
culty in training after the number of network layers becomes
deeper.

For ICS problems that appear in deep network training,
the conditional probabilities are consistent, and the marginal
probabilities are inconsistent. For all x € X, the relationship
between the conditional probability P, and the marginal
probability Py, is

P,(Y[X =x) = P,(Y|X =x),

3)
Py(X) # P,(X).

Before passing the input vector x to the neuron, it should
be noted that x here not only refers to the input of the input
layer but also refers to any input layer or hidden layer in the
network. X can also be understood as a small batch activation
function of a certain layer that needs to be standardized.
Translate and scale it first, so that the distribution of x
becomes a standard distribution normalized in a fixed inter-
val. For the general change framework, it is as follows:

h=f(g- =L +v), @)

where y is the translation parameter, « is the scaling factor, v
is the retranslation parameter, and g is the rescaling param-
eter. Through the scaling and translation transformation of
y and «, we get the following results:

z= 1. (5)
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FiGURE 2: The structure of BN model.

The data obtained satisfy the standard distribution with a
mean of 0 and a variance of 1. Substituting formula (5) into
formula (4), it is easier to get further transformation:

y=g-X+uv. (6)

Finally, a distribution that satisfies the mean v and the
variance g° is obtained.

This normalization of BN is for a single neuron. When

training the network, train a small batch of overall data and
then calculate the mean and variance of neuron x; as

1
Hi= in’

_ /L 2
0;= %Z(xi i)~ +&

where m is the size of the small batch and ¢ is a very small
positive value.

(7)

3.4. Multiple Feature Extraction. In the neural network
model, usually in the first layer of connection, multiple iden-
tical convolution kernels are generally used to extract shallow
features of the image. There are more commonly used convo-
lution kernels such as 1x1, 3x3, 5x5, 7x7, and 9x9.
These convolution kernels are all odd convolution kernels,
because this kind of convolution kernel has a common fea-
ture. They all have a center point, and even-numbered con-
volution kernels do not have this property. In shallow
feature extraction, usually a larger convolution kernel can
learn richer feature information. But the cost is that once
the convolution kernel increases, it will adversely affect the
training efficiency and speed of the deep network [29].

The proposed algorithm integrates several convolution
kernels of different sizes, and its principle is shown in
Figure 3. Use multifeature extraction technology to scan the
input image block. Since different convolution kernels can
extract image features with different information, the one
with the largest convolution kernel is used as the moving ref-
erence for synchronous movement. In this way, a variety of
different feature information will be obtained, and the size
of this output is also the same. In the first layer, this feature
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FiGURE 3: Structure of multifeature extraction model.

information is connected in series. Because more feature
information is obtained, this multifeature extraction technol-
ogy greatly improves the training speed in actual model
training and greatly improves the convergence speed of the
model.

In the first layer of the network, three convolution kernels
of different sizes are used, 3x 3, 5x5, and 7 x 7, and the
numbers of these three convolution kernels are 12, 20, and
32, respectively. The number has increased sequentially
because the 7x7 convolution kernel can learn relatively
richer features. There are a total of 64 convolution kernels
of three different sizes. The three convolution kernels of 3
x 3,5x%5,and 7 x 7 are used to scan to the right with a slid-
ing step of 7 in a way that the center position is superim-
posed. According to this rule, three mapping feature maps
with the same size should be obtained [30]. The proposed
algorithm passes through the first layer and obtains 64 fea-
ture maps of the same size. In the first-level feature extrac-
tion, the design of such multiple feature extraction can
extract richer image features, which greatly improves the
convergence speed and training speed of the network model.

3.5. Activation Function. At present, most deep neural net-
works use a Rectified Linear Unit (ReLU) activation function
to accelerate the convergence of the network. The ReLU acti-
vation function is not a symmetric function, and the average
response of the sequence in ReLU will be less than 0. In addi-
tion, even if the input or weight obeys a symmetrical distribu-
tion, the response distribution is still asymmetrical. These
properties will directly affect the convergence and perfor-
mance of the network. Therefore, an improved activation
function Parametric Rectifier Linear Unit (PReLU) is used.
PReLU function is defined as follows:

VY1 >0,
i) = { (8)
kiy;y; <0,

where y; is the input of the nonlinear activation function
f on the ith channel and k; controls the slope of the negative
part. When k; is equal to 0, it becomes the ReLU activation
function.

3.6. Joint Loss. The pixel-by-pixel loss is usually used as loss
function, and the difference between the pixels between the
output image and the input image is calculated as the mini-
mization target to obtain a higher signal-to-noise ratio index.
However, the output image using the method of comparing
the difference pixel by pixel is prone to problems such as
excessive smooth and blurry edges. In response to this prob-
lem, there are currently many studies showing that compar-
ing the perceived loss of semantic feature level with the
image quality perceived by the human eye shows a good uni-
formity. More edge texture details in real images can be
reconstructed, thereby improving some of the problems of
the pixel-by-pixel method. However, simply using this loss
may also cause problems such as slight color artifacts due
to uneven pixel space coverage. Therefore, by combining
the two losses to obtain better results, the joint loss Lg is pro-
posed as

Lg = Lysg + ALyge 9)

where Ly and Lygg, respectively, represent the mean
square error (MSE) function of pixel-by-pixel comparison
and the perceptual loss of feature comparison.

3.6.1. MSE Loss Function. The pixel-by-pixel loss function
uses the traditional MSE method to calculate the MSE of
the real target and the predicted target. By comparing each
pixel to learn the difference between the two, the optimal
solution is obtained. The formula is as follows:

e = 5 - IFC) ~ (=) (10)

where N is the total number of training samples, x is the noise
input, y is a clean real label, and F is the optimal mapping
function obtained after training.

3.6.2. Perceptual Loss Function. The realization of the percep-
tual loss needs to effectively extract the rich and abstract
semantic feature information in the image. A pretrained clas-
sification network Visual Geometry Group (VGG) is con-
nected in series as a loss network to extract the required
feature map definition Ly. After the loss network is deter-
mined, the loss comparison learning method can input the
output x — F(x) and the real noise-free label image y through
the initial processing of the front-end multifeature extraction
residual network into the VGG network. Extract the feature
images of the two from one of the convolutional layers ¢
and calculate the Euclidean distance between the semantic
features of the two according to the formula. The formula is
as follows:

Ivao= g 2 I Feo) =05 (11

where ¢ is the PReLU function after the ith convolutional
layer in the loss network. It is used to extract feature maps,
using rich edge texture features and semantic information



for comparison. The application of joint perception loss in
the algorithm is shown in Figure 4.

For joint perception loss, first input the noise image to be
processed into the built VGG and train the network through
MSE loss. Compare the difference between the learning pre-
diction result and the true label map from the pixel level. At
this time, the image output by the network has completely
removed the noise points, but the edge information is fuzzy
[31]. So, the fuzzy denoising result and label are passed
through the pretrained VGG again. The feature maps of the
two are obtained from the activation function after the spe-
cific convolutional layer for comparison. Minimize the per-
ceptual loss as the training goal for network training, so
that the output image contains more edge information fea-
tures. It is possible to restore the originally blurred area dur-
ing reconstruction, obtain clearer and sharper image edges,
and obtain clearer image denoising results.

4. Network Parameter Setting

In the process of neural network training, it is necessary to
learn a set of optimal parameters to minimize the result of
loss function, so a suitable optimization algorithm needs to
be added. So far, the commonly used neural network optimi-
zation algorithm is the gradient descent algorithm, which is
used to find the minimum parameter of the loss function.
In the training process, the error is gradually reduced and
the local minimum of the function is found. Differentiate
the loss function to get the gradient of a given point [32].
The positive and negative values of the gradient indicate an
increase or decrease in the value of the loss function. Select
the direction that reduces the cost function value, that is,
the negative gradient direction, multiply the updated amount
of the parameter calculated by the learning rate, and update
the parameter.

The single-step weights and biases are updated as follows:

w W, =w 88C
kT W =W~ 00—,
)
8;" (12)
bl_)blzbl_aé‘_bl'

The main problem of the gradient descent algorithm is
that if the location of the initial point is unreasonably
selected, the network is easy to fall into a local optimum,
and it is difficult to find the global optimum. In addition, if
the step size of the single step down is too small, the calcula-
tion amount will be too large, and if the number of iterations
is too large, the step size may be too large to skip the optimal
solution. And the gradient descent algorithm is not fast
enough when the amount of data is large. Therefore, the sto-
chastic gradient descent (SGD) algorithm is used to calculate
the gradient using a single sample to speed up the calculation.
However, the SGD method uses individuals to represent the
overall change trend and cannot ensure that each iteration
tends to the global optimal solution, and it cannot guarantee
that each iteration will reduce the loss function result. There-
fore, an adaptive moment estimation (Adam) optimization
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algorithm is proposed to replace the SGD algorithm [33].
The SGD algorithm maintains a single learning rate, updates
all weights, and keeps the learning rate during the training
process unchanged. And Adam iteratively updates the neural
network weights by calculating the first-order moment esti-
mation and the second-order moment estimation of the gra-
dient. The adaptive learning rate is calculated for each
parameter to solve the problem of high-intensity noise or
sparse gradient [34]. The basic steps of the Adam optimiza-
tion algorithm are as follows:

Step 1. Suppose f(0) is the noise objective function, which is a
random scalar function with differentiable parameters 0.

Step 2. Update the exponential moving average s, and
squared gradient v, of the gradient. The moving average is
estimated using the first-order moment and the second-
order original moment of the gradient, and the step size { is
selected reasonably.

Step 3. Initialize the deviation correction term to obtain the
gradient of the random objective function f. Then, use the
exponential moving average of v, and the decay rate 7, to
estimate the second-order original moment. That is, elimi-
nate v;:

t
v=(1-1,) ) 75" g (13)

where 7, is the exponential decay rate estimated by the
second moment, ¢ is the time step, and q,, -+, g is the gradi-
ent on the time step sequence. In order to understand how
the expected value penalty E[v,] of the exponential moving
average at time step ¢ is related to the true second moment,
the deviation between these two quantities is corrected, as
follows:
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-1, ZTZ +e=E[q]- (1-15) +e.

Elv]=E {(1 —Ty) YT qf} =

i=1

(14)

If the second moment E[q?] is static, then & =0.

In addition, for the parameter settings during training,
the input of the network is to randomly cut out 45 x 45 image
blocks from the training set images. The first layer of the net-
work consists of convolution kernels of multiple sizes.
Among them, there are 12 convolution kernels of 3 x 3, 20
convolution kernels of 5 x 5, 32 convolution kernels of 7 x 7
, and a total of 64 channels. For the convolutional layer in
the following residual module, 64 convolution kernels of 3
x 3 are uniformly used. The last reconstruction layer uses ¢
convolution kernels of 3 x 3 (¢ =1 for grayscale images, c =
3 for color images). The algorithm to optimize the regression
target uses the Adam method, and the momentum parameter
is 0.9. When the training function is joint loss, the training
batch size is smaller than 18, and the initial learning rate is
10-4. The learning rate is halved after every 2.0x 105
iterations.

In the batch normalization used, a sufficient comparison
experiment was done on the settings of the minibatch param-
eters. In the comparative experiment, the minibatch size is set
to 32, 64, and 128, respectively, and the model convergence
speed and the final denoising effect achieved under these
parameters are compared. It is found from the experimental
results that the overall effect of image denoising is the best
when the minibatch value is 64. Therefore, in the training
process of the denoising model, the value of batch-
normalized minibatch is set to 64.

5. Experiment Scheme and Result Discussion

In order to evaluate the proposed algorithm, we must first
have an evaluation standard and do different experiments
on different test datasets, fully contrast with other excellent
image denoising algorithms, and finally draw a conclusion.

5.1. Experimental Dataset. Since the use of the deep residual
network algorithm requires a large amount of training image
data, the experimental data selected by the proposed algo-
rithm uses the internationally published glioblastoma multi-
forme (GBM) multimodal MR image dataset TCGA. Among
them, the foreign population GBM experimental test library
(TCGA-GBM) and the Chinese population GBM experimen-
tal test library (CH-GBM) are established. Some image exam-
ples of the dataset are shown in Figure 5.

In the experiment, 227 images were randomly selected
from the TCGA-GBM dataset, of which 200 were used as
training images and the remaining 27 were used as test
images. The image size is set to 180 x 215 and 64 x 77. 115
images were randomly selected from the CH-GBM dataset,
100 were used as training images, and the remaining 15 were
used as test images. The image size is set to 180 x 215 and
64 x 77. The image block size is set to 32 x 32, and the image
block step size is 10. A total of about 86,000 training image

blocks can be obtained. Then, the tested images are evaluated
using the Peak Signal Noise Ratio (PSNR) and Structural
Similarity Index (SSIM).

In the proposed algorithm, the size of the training set is
artificially increased by methods such as image translation
and flipping. Because in the training process, when the
amount of data is small, it will cause the model to overfit,
so that the training error is small and the test error is large.
Therefore, the occurrence of overfitting can be effectively
suppressed by adding a regular term after the cost function.

5.2. Evaluation Standard of Denoising Effect. The proposed
algorithm mainly uses two objective evaluation indexes:
PSNR and SSIM. Given a reference image, it is represented
by f, and the test image is represented by d. The size of these
two images is (M x N); then, the PSNR between the images is
defined as

2552
10 log,, MSE(, )

M%fdzﬁwfi( )

i=1 j=1

PSNR(f, d) =

When MSE tends to zero, the value of PSNR tends to
infinity. This means that the higher the PSNR value, the bet-
ter the image quality. The smaller the PSNR value, the greater
the difference between the two images.

SSIM is a quality evaluation model that takes into
account the brightness distortion, contrast distortion, and
related loss of the image. It is defined as

SSIM(f, d, 1) = I(f, d)c(f, d)s(f, d),
2 +C
i(f.d) = I
up+pg+ Gy
2040, +C, (16)
0j+03+Cy

c(f.d)=

C
S(f, d) — Gfd + 3

0704+ G5

where I(f, d) is the brightness comparison function, used to
calculate the similarity of the average brightness 4, and p,

of the two images. When y = p,, I(f, d) takes the maximum

value. ¢(f,d) is the contrast comparison function. Measure
the similarity of the contrast of two images. Contrast is mea-
sured by standard deviation o, and o,. It is only when o
equals o, that c(f, d) has a maximum value of 1. s(f,d) is a
structure comparison function, used to represent the correla-
tion between f and d pixels of two images. o, is the covari-
ance between f and d, and the value range of SSIM is [0,1]. A
value of 0 means that there is no correlation between the two
images, and a value of 1 means that f is equal to d. Constants
C,, C,, and C; are used to avoid the phenomenon of a zero
denominator.
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FIGURE 5: Partial image examples of the dataset.

5.3. Analysis of Network Iteration Algorithm. For the pro-
posed network, the training iterations are all 50. When image
denoising, the learning rate that is too small will lead to
slower convergence speed, and the long-term slowness in fea-
ture learning will cause weak noise in the parameter update
process, which will affect the quality of the denoised image.
However, when the learning rate is large, the network system
will be unstable. Considering comprehensively, the learning rate
of the proposed network model is 0.01. The MatConvNet
toolkit is used to train the model in the network. Since the train-
ing time of each model is different, the proposed training model
runs for two days on average when different noises are added.

In order to effectively obtain the spatial information of
the image, a 15-layer network is set up, including the convo-
lutional layer, activation function, pooling layer, and BN
layer. Under the condition that the basic parameters of the
experiment remain unchanged, the influence of the two opti-
mization algorithms of Adam and SGD on the denoising
results is studied. When the image is added with 7% noise,
the average PSNR value of the test image after denoising
using the model optimized by Adam and SGD algorithm is
shown in Figure 6.

It can be seen from Figure 6 that the proposed network
model using the Adam algorithm optimized model to remove
the noise in the medical MR image is better than the SGD
algorithm optimized model. The average PSNR value has
increased by about 1 dB, and the denoising result is relatively
stable. When the number of iterations is 20, the average
PSNR value tends to be stable. Therefore, in the proposed
network model, the optimization algorithm uses Adam.

5.4. Qualitative Comparison of Denoising Effects. In order to
compare the effect of medical MR image size on the denois-
ing effect, the same TCGA-GBM dataset images with sizes
of 190 x 215 and 62 x 77 were selected in the experiment.
Train the denoising algorithm by manually adding 7% of
noisy images. Finally, four different MR images are selected
as test images to obtain the final denoising image. Figure 7
shows the average PSNR curve after denoising the two differ-
ent sizes of test images.

It can be seen from Figure 7 that image training models of
different pixels have a relatively large impact on the denois-
ing effect. When training the model with images with larger
pixels, the PSNR of the denoised image is significantly higher
than that of images with smaller pixels. When the pixels are
small, the average PSNR of the training model after denoising
the image is relatively low, the whole process is unstable, and

the convergence speed is slow. When the pixels are small, this
is equivalent to reducing the amount of training image data.
This leads to overfitting of the model, which makes the train-
ing error smaller and the test error larger. Therefore, when
training the model, choosing a larger amount of data will
help improve denoising performance of the algorithm.
Through analyzing the influence of the above-mentioned
selected network parameters on the image denoising perfor-
mance, in the verification experiment of the proposed algo-
rithm, both the training image and the test image are
selected in the size of 190 x 215, and the optimization algo-
rithm is Adam.

In order to further visually demonstrate the denoising
effect of the proposed algorithm on the TCGA-GBM and
CH-GBM datasets, compare it with literature [14, 20, 26].
The result is shown in Figure 8.

It can be seen from Figure 8 that, compared with the
other three denoising algorithms, the image after denoising
by the proposed algorithm is more thorough and the edge
preservation effect is better. In contrast, the image denoised
by the algorithm in literature [14, 20] obviously has some
residual noise, and the noise removal is not very thorough.
In the literature [14], the image edge blur after denoising
using the improved MMF algorithm is larger. In particular,
the blurred residual noise can be clearly seen around the edge
of the brain image. And for the smoother part of the original
image, the image becomes unsmooth after denoising, and
fuzzy noise blocks of varying degrees appear. However, in
the literature [20], the adaptive FIR algorithm is used to
denoise the denoised image twice, and the phenomenon of
filtering will appear. But for the Rician noise in medical MR
images, the denoising image produces blurring, which makes
the image noise removal incomplete. The main manifestation
is that there are noise points around the edges of the image,
but it is improved compared to the improved MMF algo-
rithm. In Reference [26], combining the neural network
and wavelet method, the image after denoising is significantly
improved compared with the previous two methods. How-
ever, this method smoothes the details of the image, espe-
cially the contour area of the brain image, and the
phenomenon of excessive filtering occurs, thereby losing use-
tul information in the details. The proposed algorithm has a
relatively good effect on removing noise in medical MR
images, avoids the problem of incomplete denoising of the
first two denoising methods, and can also reduce over-
smoothing. Compared with the three comparison algo-
rithms, it has a better overall effect on noise removal.
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5.5. Quantitative Comparison of Denoising Effects. Aiming at
the problem of denoising in medical MR images, the denois-
ing effects of different denoising algorithms are clearly ana-
lyzed. The proposed algorithm and the algorithm in
literature [14, 20, 26] are quantitatively evaluated in two indi-
cators: average PSNR and SSIM. Among them, the average
SSIM of the four denoising algorithms after denoising the
medical MR image with different noise intensities is shown
in Table 1.

It can be seen from Table 1 that the SSIM value of the
proposed algorithm is significantly higher than that of the
algorithm in [14, 20], and the denoising effect is consistent
with the subjective observation results. Comparing the pro-

posed algorithm with the algorithm in [26], both have
improved. Especially when the noise intensity is relatively
weak, the SSIM value of the proposed algorithm has been
greatly improved, showing a very obvious advantage. There-
fore, the proportion of useful information in the denoised
image of the proposed algorithm is closer to that of the orig-
inal noise-free image. When 1% noise is added, SSIM can
reach 0.9941 after denoising. Compared with other algo-
rithms, the values are improved, and more satisfactory results
are obtained, with less information loss.

On the TCGA-GBM and CH-GBM datasets, for different
noise levels, the proposed algorithm is quantitatively com-
pared with the MR image denoising effect of the algorithms
in [14, 20, 26]. The average PSNR and SSIM curves obtained
are shown in Figures 9 and 10.

It can be seen from Figures 9(a) and 10(a) that under dif-
ferent noise intensities, the average PSNR of the image after
denoising using the proposed algorithm is significantly
higher than that of the image processed by other denoising
algorithms. And when denoising weakly noisy images, the
average PSNR of the proposed algorithm and other contrast-
ing algorithms are relatively small. In the case of strong noise
denoising, the average PSNR is quite different, indicating that
the proposed algorithm has better effect on removing strong
noise in MR images. The denoised image has a very high sim-
ilarity to the original noiseless image.

At the same time, it can be seen from Figures 9(b) and
10(b) that the four denoising algorithms have little difference
in the average SSIM of the image after denoising when the
noise intensity is weak. When the noise intensity is high,
the average SSIM of the proposed algorithm after denoising
shows obvious advantages. In terms of structural similarity,
it is closer to the original image.

In summary, the proposed algorithm is better than the
other three denoising algorithms in denoising simulated
medical MR images. Especially under strong noise, it can
effectively remove the noise in the simulated medical MR
image.

6. Conclusions

Currently, medical image information can be obtained
through a variety of technical means, among which MRI is
a relatively common medical image acquisition technology.
However, MR images will be interfered by random noise dur-
ing the acquisition process, which reduces the useful infor-
mation in images. Decreasing the accuracy and effectiveness
of imaging will directly affect the correct diagnosis and treat-
ment of clinicians. Therefore, a denoising algorithm for med-
ical MR images based on multifeature extraction based on a
deep residual network is proposed. The feature extraction
layer is constructed by combining three convolution kernels
of different sizes to obtain multiple shallow features for
fusion and combined with batch normalization and residual
learning technology to accelerate and optimize the deep net-
work. In addition, a joint loss function is defined by combin-
ing the perceptual loss and the traditional mean square error
loss to generate a clearer target image. Based on the
MATLAB simulation platform, the TCGA-GBM and CH-
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FIGURE 8: Comparison of denoising effects of different algorithms.

TaBLE 1: SSIM comparison of different denoising algorithms.

Dataset Algorithm 1% 4% 7% 10% 13%
Ref. [14] 0.9903 0.9584 0.9153 0.8612 0.8109
Ref. [20] 0.9901 0.9592 0.9276 0.8928 0.8529
TCGA-GBM
Ref. [26] 0.9918 0.9643 0.9374 0.9022 0.8657
The proposed algorithm 0.9941 0.9668 0.9417 0.9152 0.8893
Ref. [14] 0.9829 0.9622 0.9238 0.8874 0.8378
Ref. [20] 0.9923 0.9637 0.9246 0.8984 0.8557
CH-GBM
Ref. [26] 0.9935 0.9626 0.9415 0.9043 0.8736
The proposed algorithm 0.9978 0.9689 0.9426 0.9037 0.8809
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F1GUure 9: Comparison of denoising effects of different algorithms in the TCGA-GBM dataset.
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F1GUrEe 10: Comparison of denoising effects of different algorithms in the CH-GBM dataset.

GBM datasets are used to experimentally demonstrate the
proposed algorithm. The results show that the performance
of the proposed algorithm is the best when the image size is
set to 190 x 215 and Adam is selected as the optimization
algorithm. And the two indexes of PSNR and SSIM of the
proposed algorithm are significantly higher than other com-
parison algorithms. As the noise level increases, the differ-
ence between the values becomes larger, which shows that
it is suitable for processing high-intensity noise MR images.

Regardless of whether it is in the classification or denois-
ing of deep residual learning, the parameter adjustment of
the deep network has always been a key step, and it is more
difficult. Therefore, further research is needed. In addition,
the deep residual network can achieve better results when
the amount of training data is large. But when the amount
of data is small, the denoising effect needs to be improved.
At the same time, the amount of data is large, which is slower
than traditional algorithms. Therefore, the training speed of
the network needs to be further improved while ensuring
the denoising effect.
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