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Porphyromonas gingivalis is an anaerobic bacterium commonly found in the oral cavity

and associated with the development of periodontal disease. P. gingivalis has also been

linked to several systemic vascular and inflammatory diseases including poor pregnancy

outcomes. Little is known about the changes in the oral flora during pregnancy in

connection to P. gingivalis infection. This pilot study aims to explore changes in the oral

microbiome due to P. gingivalis inoculation and pregnancy in an in vivo rat model of

periodontal disease. A metagenomic sequencing analysis targeting seven of the 16S

rRNA gene variable regions was performed for oral samples collected at the following

time points: baseline control (week 0), P. gingivalis inoculated (week 11), P. gingivalis

inoculated and pregnant rat at necropsy (week 16). A second set of animals were also

sampled to generate a sham-inoculated (week 11) control group. We found that the rat

oral microbiome profiles were more similar to that of the human oral cavity compared to

previous reports targeting one or two 16S variable regions. Overall, there appears to be

a relatively stable core microbiome in the oral cavity. As expected, P. gingivalis induced

periodontal disease resulted in oral microbiome dysbiosis. During pregnancy, some

aspects of the oral microbiome shifted toward a more baseline-like profile. However,

population analyses in terms of dissimilarity measures and especially metagenomic

based predictions of select characteristics such as cell morphology, oxygen requirement,

and major metabolite synthesis showed that pregnancy did not restore the composition

of the oral microbiome. Rather, a uniquely altered oral microbiome composition was

observed in pregnant rats with pre-established periodontal disease.
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INTRODUCTION

Periodontitis is currently considered a disease of dysbiotic
polymicrobial etiology in which oral microbial species capable
of thriving in inflamed microenvironments predominate
(Abusleme et al., 2013; Hajishengallis, 2015). Although the
pathogenesis of periodontal disease is complex, one view is that
dysbiosis is initiated by the presence of keystone species that
subverts the host immune defense, and this allows secondary
pathogens to thrive and ultimately dominate. Porphyromonas
gingivalis has gained notoriety as a keystone pathogen of
periodontal disease because even as a low abundance species, it
has profound effects on the oral microbial community structure
(Hajishengallis, 2011; Olsen et al., 2017). P. gingivalis is armed
with an array of virulence factors that subvert host innate
antimicrobial defenses without blocking inflammatory pathways;
referred to as “non-productive inflammation” (Zenobia and
Hajishengallis, 2015). This not only supplies P. gingivalis the
nutrient source it needs for growth, but also provides a selective
advantage for co-colonizing microbes able to tolerate and thrive
in an inflammatory environment (Zenobia and Hajishengallis,
2015).

Metagenomic studies of the oral microbiome also show
that pregnancy perturbs the composition of the oral microbial
community (Paropkari et al., 2016; Lin et al., 2018). In
pregnant women without periodontal disease, the supragingival
community structure is reported to shift toward a predominance
of bacteria within the genera Neisseria, Porphyromonas, and
Treponema (Lin et al., 2018). In particular, the increased
abundance of Prevotella and Treponema spp. is linked to
increasing concentrations of sex hormones associated with
pregnancy (Lin et al., 2018). Moreover, pregnancy can modify
the impact of environmental risk factors on the oral microbiome.
For instance, the subgingival microbiome of women who
smoke during pregnancy are reported to have significantly less
Gram-negative and Gram-positive anaerobes than non-pregnant
smokers (Paropkari et al., 2016). To date, it is unknown if or in
what manner pregnancy affects the dysbiotic oral microbiome
associated with periodontal disease in patients with preexisting
oral disease.

For this pilot study, we chose P. gingivalis as our model
organism since it has been implicated in promoting adverse
pregnancy outcomes (Barak et al., 2007; Chaparro et al., 2013;
Vanterpool et al., 2016). Our objective was to investigate
the interaction of pregnancy and the oral dysbiosis of
periodontal disease in a rat model of P. gingivalis-induced
periodontitis (Kesavalu et al., 2007; Verma et al., 2010) using 16S
metagenomic analysis.

MATERIALS AND METHODS

Periodontitis Model and Sample Collection
All procedures were conducted after approval from the
University of Wisconsin–Madison, Institutional Animal Care
and Use Committee. Specific pathogen free CD-IGS rats obtained
from the same colony (Charles River International Laboratories,
Inc., Kingston, NY; RGD ID 734476) were housed in the

same room under barrier conditions. Oral swabs and blood
were collected prior to antibiotic treatment and animals were
randomly assigned to sham control (inoculation with sterile
vehicle) or P. gingivalis strain A7UF, a lab adapted strain
expressing Type IV fim operon and with 99.2% whole genome
DNA sequence identity to A7436 (data not shown). At the onset
of the inoculation phase of the study and thereafter control
animals were always handled before infected animals.

Periodontitis was induced as previously described (Phillips
et al., 2018). Specifically, 7–8 week old female rats first received
kanamycin (20mg) and ampicillin (20mg) daily for 4 days in
the drinking water to reduce the number of commensal bacteria.
The oral cavity was then swabbed with 0.12% chlorhexidine
gluconate (Peridex: 3M ESPE Dental Products, St. Paul, MN,
USA) mouth rinse to inhibit endogenous organisms and to
facilitate subsequent colonization with P. gingivalis. Rats were
switched back to antibiotic free water and rested for 3 days
to allow clearance of antibiotics from their system before
beginning the inoculation phase of the study. An equal number
of rats were randomly assigned to the control or P. gingivalis
group. Each inoculate was prepared from an overnight culture
of P. gingivalis grown in supplemented Tryptic Soy Broth
(Phillips et al., 2018). Bacterial concentrations in broth were
determined by optical density readings taken at 550 nm with a
UV-6300 PC double beam spectrophotometer (VWR, Chicago,
IL, USA). Bacteria were pelleted by centrifugation at 3,000 ×

g for 5min and resuspended in sterile 2% (w/v) low viscosity
carboxymethylcellulose (CMC; Sigma, St. Louis, MO, USA) to
achieve a final concentration of 1 × 1010 CFU per ml. Each
animal received an oral inoculation containing 1 × 109 CFU
for 4 consecutive days per week on 6 alternate weeks totaling
24 inoculations over a 12-week period. Control animals received
sterile 2% CMC. In order to minimize disruption of bacterial
plaque, animals were fed a gamma-irradiated powdered rodent
diet (Teklad Global 18% protein rodent diet, Envigo, Madison,
WI) during the inoculation phase of the study. At the end of
the inoculation period (week 12), oral swabs were taken, blood
was collected for serology, and rats were switched back to the
same diet in a pelleted form. Animals were rested for 1 week
before breeding. Breeding was confirmed by the presence of
sperm in vaginal lavages that were performed the following
morning, which was considered gestation day GD 0. Dams were
euthanized at GD 18 oral swabs were taken, skulls were collected
for morphometric analysis of alveolar bone loss, and serum was
collected for detection of P. gingivalis specific IgM and IgG.

For the purposes of 16S metagenomic analysis, we were
interested in the oral samples collected from sham and P.
gingivalis treated CD rats. Specifically, we processed oral
specimens collected from the P. gingivalis (PG) treatment group
(six animals) at three time points for sequencing: baseline, 3-
months post P. gingivalis inoculation, and at necropsy (pregnant
at GD 18). In contrast, only oral specimens collected from the
sham treatment group (six animals) at the 3-months post sham
inoculation time point were used for sequencing. The animals
and specimen descriptions, including the sample IDs for the
24 sequencing libraries we generated and used for this 16S
metagenomic analysis pilot study, are listed in Table S1.
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Assessment of Alveolar Bone Resorption
Mandibles were disarticulated from the skull and most of the
tissue was removed by dissection. Remaining tissue was removed
by Dermestid beetles. Rat mandibles were then immersed in a
3% (v/v) hydrogen peroxide solution overnight, washed with
deionized water and air-dried. In order to delineate the cemento-
enamel junction (CEJ), jaws were stained with a 0.1% (W/V)
methylene blue for 1min, washed and air-dried. Specimens
were coded to prevent bias and calibrated images of both
the buccal and lingual side of each jaw were captured with
an EOS 650D RebelT41 camera (Canon, USA, Inc., Long
Island, NY). Morphometric measurements were performed by
two independent investigators that were blinded to treatment.
Calibrated digital images were analyzed with Image J 1.50b
analysis software (Rasband, National Institutes of Health, USA).
Area measurements (mm2) of both the lingual and buccal surface
of each mandible were determined by using the freehand tool to
manually trace the surface perimeter of the CEJ and alveolar bone
crest (ABC). The sum of both area measurements was recorded
and values from two independent investigators were averaged.

Maxillae were fixed in 10% buffered formalin, washed and
decalcified for 48 h before processing for histology. Excess tissue
was removed and the row of molars were transected through
the center of each molar so that interdental bone loss could be
evaluated. Calibrated images of maxillary tissue were analyzed
with Image J software as previously described (Phillips et al.,
2018). Briefly, a line was drawn to connect the mesial to the distal
aspect of each molar at the CEJ. A central line perpendicular
to this CEJ was drawn from the CEJ to the top of the alveolar
bone crest and the distance was recorded in mm. The distance
measurements of each interdental region were averaged.

Detection of P. gingivalis-Specific IgM and
IgG
Humoral responses to P. gingivalis were determined by ELISA
as previously described (Phillips et al., 2018) with the following
modifications. Briefly, a whole cell lysate of P. gingivalis
was sonicated (Sonic Dismembrator, Thermo Fisher Scientific,
Waltham, MA) and the total protein concentration of the
lysate was measured by Bradford Protein Assay (Thermo Fisher
Scientific,Waltham,MA). Stock aliquots of the lysate were stored
at a concentration of 2 mg/ml at −20C. For the ELISA assay,
whole cell lysates were diluted with 50mM bicarbonate coating
buffer pH 9.4 (Thermo Fisher Scientific, Waltham, MA) to yield
a final concentration of 20µg/ml. Goat anti-rat IgM (Southern
Biotech, Birmingham, AL) and donkey anti-rat IgG (Thermo
Fisher Scientific, Waltham, MA) conjugated to horse radish
peroxidase (HRP) were used for detection (1:4,000 and 1:2,500,
respectively). Pooled sera from P. gingivalis infected rats and
uninfected animals were used to establish serumdilutions that fell
within the linear range of a dilution curve. Subsequent ELISAs
were batched and each plate contained a positive and negative
control. In order to minimize plate to plate variation, each 96
well plate contained serum samples from each group. All samples
were run in duplicate and readings were obtained with a Model
680 microplate reader (Biorad Laboratories, Hercules, CA).

Statistical analysis of alveolar bone loss measurements and
serology data were performed with unpaired student’s t-test using
Prism 7.03 Software (GraphPad Software Inc.). For all testing P<

0.05 was considered significantly different.

DNA Isolation and Enrichment for Bacterial
DNA
The specimens for each sampled time point were collected on
either rayon swabs (sham-inoculated) or cytological brushes
(baseline, PG-inoculated, pregnant) and flash frozen and stored
at −80◦C until they were batch processed. At the time of
processing, collection devices were thawed, immersed in sterile
200 µL of 1× phosphate buffered saline (PBS; pH 7.4), vortexed
for 30 s, and the solution was transferred into sterile 2mL sample
extract tube. The swab/brush was centrifuged at 15,000 × g
for 5min to collect the residual liquid that was trapped in the
collection device, then pipetting it into the appropriate sample
extract tube. This washing process was repeated twice more for
a total of three rinses for each swab. All extracted liquids from
each sample were combined into one tube per specimen. Each
sample extract tube was centrifuged at 21,000 × g for 10min to
pellet cells and detritus. The PBS was removed from the pellet
and 40 µL of resuspended Dynabeads from the Dynabeads DNA
DIRECTUniversal Kit (Invitrogen: Cat. No. 63006) was added to
each sample pellet and mixed. The Dynabead/sample mixtures
were processed according to the manufacturers’ protocol and
the concentration of the isolated total DNA in the eluent
was estimated using a NanoDrop 2000C Spectrophotometer
(Thermo Scientific: Cat. No. ND2000C). The total DNA isolated
from each oral specimen contains a large proportion of rat
DNA, thus it is essential to enrich for bacterial DNA to
optimize downstream 16S metagenomic analysis. The chemistry
provided in the NEBNext Microbiome DNA Enrichment Kit
(New England BioLabs: Cat. No. E2612L) enriches for bacterial
DNA by selectively binding and removing CpG-methylated host
DNA while maintaining microbial diversity after enrichment.
Cytosine methylation occurs in bacteria in very low frequency
across bacterial genomes while it is common across eukaryotic
genomes. Validation studies, referenced by the manufacturer,
using this enrichment method have shown that bacterial species
with unusual methylation density of its DNA are rare and
bind at a very low level to the enrichment beads (e.g.,
Neisseria flavescens). The enrichedmicrobial DNA purified by the
ethanol precipitation and the DNA concentration was estimated
using a NanoDrop 2000c spectrophotometer. Semi-quantitative
verification of enrichment was performed using qPCR (CFX-
Connect Real-Time PCR detection system; BioRad Laboratories
Inc.), SsoAdvanced Universal SYBR Green Supermix (BioRad
Laboratories Inc.: Cat. No. 1725270), and NEBNext 16S
Universal Control Primers (New England BioLabs).

PCR Amplification of Microbial 16S rRNA
Gene Variable Regions
16S rRNA libraries of each microbial DNA enriched sample
were generated by PCR using the Ion 16S Metagenomics
Kit (ThermoFisher Scientific: Cat. No. A26216) and a PCR
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thermocycler (Mastercycler nexus gradient; Eppendorf AG).
Briefly, two primer sets are used to generate amplicons from
six different regions of the 16S rRNA genes. Primer Set One
targets variable regions 2, 4, 8 and Primer Set Two targets
variable regions 3, 6–7, 9. PCR amplification was performed
according to the manufacturers’ protocol for each sample,
along with negative and positive controls. The amplicons from
20 µL of each PCR reaction were then purified using the
Axygen AxyPrep Mag PCR Clean-up Kit (Fisher Scientific:
Cat. No. 14-223-151) and eluted in elution buffer (EB; 10mM
Tris-Cl, pH 8.5). The amplicons generated for each pair of
reactions (two primer sets) for each sample were pooled and
their DNA concentration was estimated with a NanoDrop
2000c spectrophotometer until confirmation that each sample
pool consisted of 100 ng−1 µg of DNA, as required for
adaptor ligation. The final concentration of amplicons in
each sample pool was determined using a Qubit dsDNA hs
Assay Kit (Invitrogen: Cat. No. Q32851) according to the
manufacturers’ protocol.

16S Barcoded Library Preparation for
Multiplexed Sequencing
Sequencing-ready16S rRNA gene libraries were prepared using
the NEBNext Fast DNA Library Prep Set for Ion Torrent (New
England BioLabs: Cat. No. E6270S) and DNA barcode-adapter
oligonucleotides specific for the Ion Torrent system. All 16s
rRNA libraries were prepared according to the manufactures’
recommendations with modifications to maximize yield. Briefly,
purified 16S amplicons were first end repaired and blunt-end
ligated to sample specific barcode-adapters (Table S2) in order
to generate three groups for downstream pooling. We estimated
that the maximum number of libraries to load in equal-molar
concentrations per 318TM Ion Chip in order to generate a
sufficient number of reads for metagenomic analysis was 13.
Adaptor ligated DNA was size selected to obtain fragments
between 200 and 400 base pairs long using the Agencourt
AMPure XP PCR Purification system (Beckman Coulter: Cat.
No. A63880). DNA fragments below 200 base pairs in length
would likely consist of free adaptors and empty adaptor-adaptor
products, whereas fragments over 400 base pairs would likely
have multiple copies of the adapters ligated to their ends.

The size selected amplicons were PCR amplified using primers
to the ION torrent P1 adapter and A adapter sequences,
to generate at least 1 µg of unbiased amplicons of all the
barcoded-adapter-ligated DNA fragments. PCR amplifications
were performed using the following parameters: (1) initial
denaturing at 98◦C for 30 s; (2) 8–11 cycles of 98◦C for 10 s,
58◦C for 30 s, and 65◦C for 30 s; (3) 65◦C for 5min; and (4)
a final hold at 4◦C. After amplification, the amplicons in each
sample were purified using Agencourt AMPure XP and the DNA
concentration was determined by qPCR using the Ion Universal
Library Quantitation Kit (ThermoFisher Scientific: Cat. No.
A26217) according to the Ion 16S Metagenomics Kit User Guide
(pgs. 18–22). Each sample was assayed in replicates of three. The
calculated average concentration for each sample was used for
subsequent library pooling calculations.

Each 16S barcoded library were diluted and pooled in equal
molar concentrations into one of three pools: Pools A, B, and
C (Table S2). Each pool was PCR amplified using the P1 and A
adaptor primers from the NEBNext Fast DNA Library Prep Set
for Ion Torrent with the following modified PCR parameters: (1)
initial denaturing at 98◦C for 30 s; (2) 30 cycles of 98◦C for 10 s,
58◦C for 30 s, and 65◦C for 30 s; (3) 65◦C for 5min; and (4) a final
hold at 4◦C. After amplification, DNA in each pool was purified
using the Agencourt AMPure XP. Our yield was ∼1,000×
higher than needed and contained a higher proportion of short
fragments, which led to the need to modify the templating
procedure. We created Pool D to re-sequence a subset of sample
libraries which had the fewest number of reads (Table S2),
described in more detail in the supplementary sequencing pool
section below. For that run, we shortened the number of cycles at
this amplification step to 25, significantly improving the library
quality (proportion of full-length fragments). We also modified
our dilution method to generate more accurate equal-molar
pooling. The final concentrations of the pooled libraries were
verified by qPCR using the 16S Metagenomics Kit User Guide
protocol as already described.

Template Preparation, Enrichment, and
Sequencing
The first step required to sequence our DNA amplicons
using the Ion Torrent platform (Thermo Fisher Scientific Inc.,
Waltham, MA USA) is to template each of our pooled DNA
libraries. Templating involves loading appropriately diluted
pooled libraries onto ion sphere particles (ISPs) using the
Ion PGM Hi-Q View OT2 Kit (ThermoFisher Scientific: Cat.
No. A29900) and the Ion OneTouch-2 and OneTouch-ES
Instruments (Thermo Fisher Scientific: Cat. No. 4474779)
according to the manufactures’ protocol for 400 base pair read
length templating. The manufactures’ protocol for templating
lists a suggested concentration for each type of library in order
to acquire a target range of template positive particles. Successful
templating is achieved when the sample passes a quality control
test, which is explained in more detail below. The concentration
of the freshly diluted pooled libraries that were successfully
templated and subsequently sequenced in this study were as
follows: Pools A and C at 26 pM each, Pool B at 23 pM, and Pool
D at 10 pM.

To determine the percentage of ISPs with bound template
DNA (pooled library), a PCR thermocycler, a Qubit 3.0
Fluorometer (Thermo Fisher Scientific: Cat. No. Q33216), and
the Ion Sphere Quality Control Kit (Thermo Fisher Scientific:
Cat. No.4468656) were used according to the manufactures’
protocol found in the Ion PGM Hi-Q View OT2 Kit manual.
The acceptable level of templated ISPs is 10–30% with an ideal
range from 20 to 25%. The percent templated ISPs for each pool
were determined to be as follows: 31% for Pool A; 18% for Pool
B; 22% for Pool C; and 16% for Pool D. Though the percent
templated ISPs for Pool A was 1% higher than the acceptable
level, we have found that the percentages generated tend to
have a variation of a few percentage points when performed
in replicate, so we deemed Pool A to be sufficiently close to
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acceptable levels. Templating preparations of pooled libraries
that passed the quality control assay were then enriched for
template positive ISPs using the Ion OneTouch ES Instrument
and Ion PGMEnrichment Beads (DynabeadMyOne Streptavidin
C1 beads; Thermo Fisher Scientific: Cat. No. 4478525) which
function to selectively bind to the template positive ISPs.

The Ion Torrent PGM system preparation, sequencing run,
and post-run cleanup were performed using the chemistry
and supplies provided in the Ion PGM Hi-Q Sequencing Kit
(Thermo Fisher Scientific: Cat. No. A25592) and Ion PGM Hi-Q
Wash 2 Bottle Kit (Thermo Fisher Scientific: Cat. No. A25591)
according to the sequencing protocol in the Ion PGM Hi-Q
Sequencing User Guide as follows. First, the sequencing run
plan was created on the Ion Torrent Server with the following
criteria: (1) Application—Metagenomics; (2) Target technique-
−16S Targeted Sequencing; (3) Library Kit—Ion Plus Fragment
Library Kit; (4) Template Kit—Ion PGM Hi-Q View OT2 Kit-
−400; (5) Sequencing Kit—Ion PGM Hi-Q Sequencing Kit;
(6) Flows −850; (7) Chip Type—Ion 318TM Chip v2; and (8)
Barcoded Set—IonXpress. Second, the sequencing primers were
annealed to the template positive ISPs using a PCR thermocycler
(95◦C 2min, 37◦C 2min). Third, the sequencing polymerase
was added to the primer annealed template positive ISPs and
loaded onto an Ion 318TM Chip v2 (Thermo Fisher Scientific: Cat.
No. 4484354). Fourth, the loaded Ion chip was placed into the
cleaned and initialized Ion Torrent PGM instrument (Thermo
Fisher Scientific: Cat. No. 4462921) and the sequencing run
was initiated.

After sequencing Pools A, B, and C, and preliminary analyses,
we found that some of the individual libraries within each pool
had low numbers of mapped reads. This was not unexpected
considering other studies using the equal-molar pooling method
of combiningmultiple samples into one sequencing run have also
reported widely varying numbers of read sequences generated
among samples within a pool (Lemos et al., 2011). To address
this potentially problematic issue, an additional sequencing run
was performed. Using the following predetermined criteria,
specific samples were chosen for a supplementary sequencing
pool (Pool D): Samples that generated 2,500 mapped reads or less
and generated a metagenomic profile with low species diversity
compared to other samples of the same treatment group. The
samples meeting these criteria were C31, C35, 44, 46, N43, N45,
and N47 (Table S2). Though meeting the above criteria, one
sample, C34, had no mapped reads despite using all of the P1/A
adaptor PCR reaction when pooling (pool A), thus this sample
was not reamplified. After preliminary analysis of Pool D, the new
sequencing data were combined with the previous data collected
for each sample.

16S Metagenomic and Statistical Analysis
Using the Ion Reporter Software, the sequencing data for
each individual sample were organized into their appropriate
test group: Baseline, PG-inoculated, sham-inoculated, or
pregnant. These groups were then analyzed using a stringently
designed workflow to generate the 16S Oral Microbiome
Profiles. The workflow included the following criteria: (1)
Application—Metagenomics; (2) Sample Groups—Single/Multi;

(3) References—Curate MicroSEQ R© 16S Reference Library
v2013.1 and Curate Greengenes v13.5; (4) Primers—Default;
(5) Primer(s) Detected—Both ends; (6) Minimum Alignment
Coverage −90.0%; (7) Read Abundance Filter −10 copy
minimum; (8) Genus Cutoff−97.0%; (9) Species Cutoff−99.0%;
and (10) Slash ID Reporting Percentage −0.2%. This workflow
was used to map the sequencing data (i.e., assign reads to
Operational Taxonomic Units) for each individual sample, as
well as the collective (consensus) data for each group, against
multiple curated reference microbial genome databases to
generate individual microbiome population profiles (OTU data
sets) for each sample as well as consensus profiles for each
treatment group. The similarity BP (base-pair) cutoff was set to
150 for all data reported here. Each individual sample was also
analyzed to determine if there were any microbiome profiles
that appeared unusual or as outliers when compared to the rest
of the profiles within their experimental group. The consensus
microbiome profiles were then compared between treatment
groups and/or time points to identify shifts in the microbial
population in response to P. gingivalis inoculation or pregnancy
and for analyses of other descriptors associated with the
identified community members at the family, genus, or species
level (i.e., Gram stain characteristic, oxygen requirements,
predictive metabolic profiles). R software (R Core Team, 2013)
was used to graphically display the population percentage of
identified community members within in each microbiome
profile in context of the selected group descriptor.

Themapped output data (microbiome population profiles) for
each treatment group were assessed and graphically displayed by
performing alpha and beta diversity analysis using the QIIME
bioinformatics pipeline (Caporaso et al., 2010) on the Ion
Reporter Software Suite (Thermo Fisher Cloud). These analyses
produce descriptive community statistics. We report alpha
diversity intra-group analysis of the consensus microbiomes,
comprising of all samples belonging to a group, for each of our
four groups. The alpha diversity pipeline generates rarefaction
curves which reflect the species (community) abundance
(number of OTUs) and evenness (population proportion) within
the group, and thus if the sequencing data output was deep
enough to accurately characterize the microbiota present at
the time of sampling they will generate rarefaction curves
(phylogenetic diversity plots) that plateau when only the rarest
species remain to be sampled. Four different nonparametric
statistical analyses were completed to create rarefaction curves:
(1) Observed Species, (2) Simpson index, (3) Shannon index,
and (4) Chao1 index. The Observed Species and Choa1 analyses
measure sample/community richness. Simplistically, the output
based on these measures depends on the presence or absence
of species observed in samples within a group. Chao1 index
also reflects population proportion (evenness) to a degree by
taking in account the number of times a species occurs. However,
these methods are strongly affected by sample size, which can
lead to an underestimation of sample richness (Colwell and
Coddington, 1994), and thus are not as popular a measure when
performing analyses on 16S metagenomic data generated using
short read platforms like Ion Torrent PGM or MiSeq when the
number of OTUs identified are low in a study. That said, after
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reaching plateau, the estimation of diversity becomes relatively
independent of sample size (Hughes et al., 2001).Moreover, using
six 16S regional targets rather than one or two would compensate
for small sample size leading to poor coverage common to 16S
metagenomic analysis performed on these small read platforms
that commonly use only one or two regional targets. Using six
regional targets would also diminish the occurrence of false
positive that reportedly (Edgar, 2017) plagues QIIME analysis
of 16S metagenomic data generated from short read platforms
when using a single variable region target. The Simpson and
Shannon analyses reflect population diversity (abundance and
evenness). More precisely, the Simpson index reflects species
dominance and the probability of two individual organisms that
belong to the same species being randomly chosen. Similar to
the Chao1 index, it is weighted toward the abundance of the
most common species. For the Simpson Index, a measure of 1
indicates complete evenness in species proportions within that
sample or group. In contrast, the Shannon Index measures the
average degree of uncertainty in predicting as to what species an
individual organism will belong when chosen at random, thus
this measure is affected by both the number of species identified
and their population proportion (evenness).

Bray-Curtis beta diversity analyses was used to compare
individual sample or group microbiome profiles to each other
to identify community dissimilarities. This is a distance based
statistical analysis used to identify sources of variance within
individual sample communities or among groups. This method
uses abundance of an OTU but not the phylogeny it belongs to,
unlike the UniFracmethod to estimate beta diversity. To visualize
beta diversity, Principal Coordinate Analysis (PCoA) plots were
used. PCoA is a multidimensional scaling computation that
converts the microbiome population profile data into correlated
similarities variables, then transforms them into a dissimilarity
or distance matrix that can then be spatially plotted on a set
of three orthogonal axes as a data point such that a maximum
amount of variation for that data point is explained by the
first principal coordinate axes, the second largest amount of
variation is explained by the second principal coordinate axes,
etc. (Caporaso et al., 2010).

Predicted Microbial Metabolome Profiles
A predictive analysis of morphological classification, oxygen
requirement, and major metabolite synthesis profiles was
performed. To identify the capacity to produce major metabolites
in the oral cavity in response to P. gingivalis inoculation
and then pregnancy, the consensus microbiome profiles were
analyzed using KEGG mapper (www.genome.jp/kegg/) and
further reviewed using the Substrata database (www.datapunk.
net/substrata) and STRING (string-db.org). In order to be
classified as belonging to a select metabolite group, themetabolite
must be identified as a major end product rather than just
having the genetic capacity to generate themetabolite in question.
Bergey’s manual of systematics of archaea and bacteria was also
used to support appropriate metabolite classification of each
genus (Whitman, 2015). When classification was unclear due to
lack of strong evidence to support inclusion, or if strong evidence
supported being excluded as a major producer of any one of these

select metabolites, these identified members were classified as
Other. All predictive qualitative metabolic outcome designations
were plotted as percent OTU at the genus level.

RESULTS

Impact of P. gingivalis Infection on Alveolar
Bone Loss and Humeral Immunity
All baseline and sham-inoculated samples were negative for P.
gingivalis by PCR. All specimens from the PG and pregnant
groups were positive for P. gingivalis by PCR. All P. gingivalis
inoculated animals had significantly greater alveolar bone loss
than aged-matched sham-inoculated controls confirming that
these animals had periodontal disease (Figure 1).

We also measured P. gingivalis specific IgM and IgG
before (baseline), after inoculation, and during pregnancy to
assess microbial exposure (Figure 2). None of the animals had
detectable P. gingivalis specific IgM at any time point in the
study (data not shown). There was no difference in the level of P.
gingivalis specific IgG between baseline and sham control groups.
Both PG inoculated and pregnant groups had greater amounts of
P. gingivalis specific IgG than the baseline group (P < 0.0001).

The Effect of P. gingivalis Infection and
Pregnancy on the Oral Microbiome
We first looked for shifts in the native oral ecology by evaluating
the intra-group richness, diversity, and relative depth of coverage
at each collection time point and condition. Sequences (reads)
with more than 10 copies (abundance) and a sequence match
that mapped at 90% or greater accuracy to the reference genomes
are assigned a specific OTU. These are standard criteria to
maximize the confidence that the identified bacteria are all
significant contributors to microbiome community. For our data,
the specific mapping cutoff was 97% sequence match at the
genus level and 99% sequence match at the species level for
all qualifying reads. All specimens, with the exception of one
sham-inoculated control sample (ID# 34), generated OTUs that
met these criteria. To visualize our data, consensus microbiome
profiles, graphed as OTUs at the family level are shown in the
Figure S1. Consensus microbiome profiles at the family, genus,
and species levels, sorted by 16S variable region, were also
visualized using Krona charts generated using the Ion Torrent
software suite and are shown in the Figures S2, S3.

Alpha diversity was evaluated by four different statistical
analyses including: Observed Species, Simpson Index, Shannon
Index, Chao1 index (Figure 3). The rarefaction curves plateaued
for all groups, indicating that our data sets had adequate coverage
and only the rarest species may not have been identified. Both
Observed Species and Choa1 rarefaction curves showed that
abundance was similar among PG-inoculated, pregnant, and
baseline groups, while the sham-inoculated group, which had the
lowest number of OTUs, had the least abundance. In contrast,
the Shannon and Simpson rarefaction curves, which also reflect
population evenness, showed that PG-inoculated group had the
greatest diversity. Specifically, the average Shannon and Simpson
diversity indices at the species level were, respectively, 3.24 and
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FIGURE 1 | All P. gingivalis inoculated animals had significantly greater alveolar bone loss than aged-matched sham-inoculated controls (baseline) confirming that

these animals had periodontal disease. Morphometric assessment of mandibular and maxillary bone loss in pregnant control and PG-inoculated rats. Values in each

graph represent the extent of horizontal bone loss, labeled as CEJ-ABC area measurements (mm2 ), on the lingual (A) and buccal (B) sides from each mandible. (C)

Representative images of the lingual aspect of the rat mandible illustrating the extent of horizontal bone loss. Yellow lines demarcate the CEJ-ABC junction that was

used to determine extent of bone loss. Representative images of maxillary interdental papilla from control (D) and PG-inoculated rats (E) demonstrating how CEJ and

ABC measurements were taken for histomorphometry (F). Bars in all graphs show the mean ± SD. Data were analyzed by unpaired student’s t test.

0.84 (PG-inoculated), 2.45 and 0.67 (pregnant), 2.47 and 0.63
(baseline), and 2.35 and 0.66 (sham-inoculated), where a higher
value indicates greater diversity in that group.

Community variance was visualized though 3-dimensional
Bray Curtis PCoA plots. Each data point was sorted and color
coded by experimental group, oral infection status, or pregnancy
status, and plotted across three primary variation distance
measures. The lack of clustering along PC1 indicated that
experimental treatment was not the primary source of variation
(Figure 4). However, experimental groups did contribute to
community variance at the family, genus, and species level.
For example, at the species level, baseline, PG-inoculated, and
pregnant groups clearly clustered within their group along PC2,
which accounted for 16.55% of community variance (Figure 5).
These distance measures data also showed that the pregnancy

group was positioned most distant from zero along PC2,
indicating that pregnancy in each infected animal exerted a
greater degree of oral microbial community variance than P.
gingivalis infection alone at the species level. At the genus and
family level, the baseline, PG-inoculated, and pregnant groups
clustered within their groups along PC3: 10.91% at the genus
level and 10.90% at the family level (Figure 6). When sorted by
infection status (Figure 7), the data sets clustered within their
groups along PC5 at the species level (8.31%), PC6 at the genus
level (6.14%), and PC9 at the family level (3.86%).

Beta diversity analysis was also performed to determine group
dissimilarity between each collective consensus microbiome at
the family, genus, or species level and plotted as four data points
in PCoA plots. By merging data sets within each group, more
rare members identified in each sample have less impact on
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FIGURE 2 | We also measured P. gingivalis specific IgM and IgG before

(baseline), after inoculation, and during pregnancy to assess microbial

exposure.

the distance measures, thus generating plots in an alternative
context, similar to alpha diversity measures. Example graphs
are shown in Figure 8. When Bray Curtis metrics were used
and the data points were visualized along the first three axes of
variation, both baseline and pregnant group plotted positions
were found close together while PG-inoculated and sham-
inoculated were both positioned away. Though PG-inoculated
and sham-inoculated clustered together along PC2, they were
the most distantly plotted points from each other when viewed
with respect to PC1. In contrast, when Euclidian metrics of
community dissimilarity were used, which only take in account
presence-absence and not abundance, sham-inoculated, baseline,
and pregnant microbiomes clustered closely together while PG-
inoculated microbiome plotted distantly.

Similarities and Differences in the Oral
Microbial Composition in Healthy
Non-pregnant Uninfected Rats
Specimens collected prior to inoculation (baseline) as well
as specimens collected from sham-inoculated animals were
used as uninfected controls for this study. Baseline profiles
represent the normal oral flora in 2-month old female rats
prior to antibiotic treatment, whereas the sham-inoculated
group represents age-related 5-month old socially mature rats
previously treated with antibiotics and sterile vehicle. When
comparing the microbiome profiles between baseline and sham-
inoculated groups, the two dominant families identified were
Pasteurellaceae and Streptococcaceae (Figure S1). Pasteurellaceae
made up 39.55% of the population observed for the baseline
group, and 44.32% of the population in the sham-inoculated
group. The dominant species identified within the Pasteurellaceae
(75–85%) was Haemophilus parainfluenzae at 75–85%.

Notable differences at the family level between the sham
and baseline groups were a relatively larger population
of Lactobacillaceae in the sham-inoculated group (15.81%)
compared to the baseline group (1.13%) and the relatively
larger population of Staphylococcaceae in the baseline group
(43.56%) compared to the sham group (17.83%). A lesser but
notable difference was also observed for Veillonellaceae (8.14%
sham-inoculated; 2.95% baseline) and Micrococcaceae (0.37%
sham-inoculated; 6.20% baseline).

Roughly half of all mapped reads (OTUs) in each test group
derived from the same animals could be identified down to the
species level (i.e., 50.0% of baseline; 54.6% of PG-inoculated;
58.0% of pregnant) while a larger percentage of Sham-inoculated
OTUs could be mapped to the species level (68.8%).

It was difficult to evaluate changes in the Streptococcus at
the species level among all groups due to the high level of
species level slash calls for this genus (Figures S2, S3). Slash
calls are sequences (OTUs) that aligned with more than one
possible reference sequence, and where the percentage difference
between these top hits is ≤0.2% of the sequence. For example,
only 11.04% of the Streptococcus population could be further
identified to the species level in the baseline group while
53.73% of the Streptococcus population in the sham-inoculated
group could be identified to the species level. However, we
could specifically review select species, for example: 3.52% of
the microbial population in the baseline group and 1.67%
in the sham-inoculated group were identified as Streptococcus
sanguinis. Overall, our data illustrates that Streptococcus species
are typically diverse in the rat oral cavity and that the majority of
the OTUs that mapped to Streptococcaceae family are currently
unmappable to the species level.

Similarities and Differences in the Oral
Microbial Composition in Healthy
Non-pregnant Rats in Response to
P. gingivalis Inoculation
To determine P. gingivalis-induced changes in the normal oral
microbiome, we compared their consensus microbiome profiles
collected post-inoculation (PG-inoculated) to samples collected
prior to infection (baseline).We found that Porphyromonadaceae
was present in the PG-inoculated group, albeit a at 0.02% of the
total mapped microbiome population, confirming animals were
indeed colonized.

At the family level (Figure S1), Streptococcaceae and
Pasteurellaceaewere themost dominant; however, the proportion
of Pasteurellaceae decreased after P. gingivalis inoculation from
39.5% at baseline to 14.4% in the infected non-pregnant animals
(PG-inoculated). In contrast, the Streptococcaceae population
slightly increased from 43.6% at baseline to 55.4% in the
PG-inoculated group.

Again, comparative analyses of Streptococcus species were
incomplete due to the high level of slash calls that mapped to
this genus (Figures S2, S3). Nevertheless, our data indicate that
the population proportion distribution of Streptococcus species
altered in response to P. gingivalis colonization. Specifically, we
identified the following species in the baseline group, in order
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FIGURE 3 | Alpha diversity was evaluated by four different statistical analyses including: Observed Species, Simpson Index, Shannon Index, Chao1 index.

FIGURE 4 | Bray Curtis PCoA plot of beta diversity measures of dissimilarity shows at the species level, baseline, PG-inoculated, and pregnant groups clearly

clustered within their group along PC2 not PC1.

of decreasing population proportion: S. sanguinis, S. mutans, S.
hyointestinalis, S. infantis, S. oralis, S. australis, S. danieliae, S.

suis, S. lactarius, and S. pneumoniae. Whereas, the species that

could be specifically identified in the PG-inoculated group, in
order of decreasing population proportion, were S. mutans, S.

sanguinis, S. infantis, S. oralis, S. lactarius, S. australis, S. sinensis,

S. pneumoniae, S. merionis, S. parasanguinis, S. anginosus, and

S. pseudopneumoniae.
Other changes noted in the PG-inoculated microbiome

profile were an increase in proportion of Proteus mirabilis and
Enterococcus faecalis species as compared to controls. Overall,

these data suggest that P. gingivalis inoculation perturbed the oral
microbiome, leading to a shift in the microbiome profile with
increased microbial diversity, which corroborates with our alpha
and beta diversity statistical analyses.

Shifts in the Oral Microbial Composition of
P. gingivalis Infected Rats in Response to
Pregnancy
In order to evaluate the interaction of pregnancy and periodontal
disease, we compared the consensus oral microbiome profiles
prior to inoculation (baseline), at the end of the inoculation phase
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FIGURE 5 | Bray Curtis PCoA plot of beta diversity measures of dissimilarity shows at the species level, baseline, PG-inoculated, and pregnant groups clearly

clustered within their group along PC2 and PC4 but not PC3.

FIGURE 6 | Bray Curtis PCoA plot of beta diversity measures of dissimilarity shows that at the genus level, the baseline, PG-inoculated, and pregnant groups

clustered within their groups along PC3 at the (A) genus level and (B) family level.
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FIGURE 7 | Bray Curtis PCoA plot of beta diversity measures of dissimilarity shows, when the data sets were sorted by infection status, they clustered within their

groups along PC5 at the species level (A), PC6 at the genus level (B), and PC9 at the family level (C).

FIGURE 8 | Collective consensus microbiome at the family, genus, or species level and plotted as four data points in PCoA plots using (A) Bray Curtis or (B)

Eucledian of beta diversity measures of dissimilarity.
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FIGURE 9 | Population proportion of identified community members in terms

of predicted Gram stain classification and cell morphology for baseline,

PG-inoculated, and pregnant groups.

(PG-inoculated), and at GD 18 (pregnant). As in the baseline
and PG-inoculated groups, Streptococcaceae and Pasteurellaceae
remained the two most dominant families in the pregnant group
microbiome (Figure S1). There were however, some distinctive
differences and notable shifts in the pregnant group. For example,
Streptococcaceae and Pasteurellaceae, appear to be reverting
toward baseline levels. A similar trend was observed among
the other less common families with the following notable
exceptions. First, Porphyromonadaceae, which was present only
in PG-inoculated and pregnant groups, increased from 0.02% in
the PG-inoculated group to 0.74% in the pregnant group. Second,
Corynebacteriaceae population notably increased to 13.49% in
the pregnant groupmicrobiome from 1.93% in the baseline group
and 3.13% in the PG-inoculated group.

At the species level (Figures S2, S3), Haemophilus
parainfluenzae rebounded and became the dominant single
species identified in the pregnant group. Similarly, many of
the minor species that appeared in the PG-inoculated time
point reverted to near baseline levels during pregnancy. Notable
exceptions included Corynebacterium mastitidis which made up
98.96% of identified Corynebacterium species. Again, changes in
Streptococcus at the species level could not be fully assessed due to
the high level of slash calls. The fraction of the population within
the Streptococcus genus that could be positively identified down
to the species level in the pregnant group was 10.78%, which
was similar to the 11.04% at baseline, but less than the 47.49%
of the PG-inoculated group. Though a large proportion of
StreptococcusOTUs could not be mapped down to single species,
the standardized methodology used prohibits group specific bias
so species comparisons among groups are valid. To illustrate

how consistent the data was, allowing group profile comparisons,
we assessed relative population proportions of S. mutans relative
to all OTU categories. For example, S. mutans made up 2.18% at
baseline, 28.61% at PG-inoculated, and 2.75% at pregnancy of
all Streptococcaceae family OTUs. These numbers correlate with
the population proportion of S. mutans relative to all identified
species level OTUs (1.83% baseline; 29.05% PG-inoculated;
1.63% pregnant), as well as the percent proportion of all OTUs
(0.91% baseline; 15.85% PG-inoculated; 0.95% pregnant) that
mapped to any microbial family. Overall, this genus appears
to be consistently diverse with S. sanguinis, S. mutans, and S.
infantis being the most dominant members identified.

Metagenomic Shifts Relative to
Morphological Classification, Oxygen
Requirement, and Major Metabolite
Profiles
In addition to assessing the changes in microbiome profiles in
terms ofmicrobial identity, we also performed predictive analyses
of select microbial cellular functions. The oral microbiome
has classically been sorted by morphological characteristics and
Gram’s classification so the first step in our functional analysis
was to sort our consensus data in these terms. Though no
spirochetes were detected, shifts were observed in the consensus
profiles of Gram-positive and Gram-negative bacteria (Figure 9).
For example, when the conditions in the host shifted from
baseline to PG-inoculated, there was an increase in Gram-
positive bacteria, most notably, there was over a 3-fold increase
in Gram-positive rods and a 2-fold decrease in Gram-negative
rods. The pregnant group showed an even larger increase
in Gram-positive rods, reflecting an almost 5-fold increase
relative to baseline. In contrast, the population proportion of
Gram-negative rods shifted back toward baseline levels during
pregnancy. The population proportion of Gram-negative cocci
was similar between the baseline and PG-inoculated groups,
but decreased from ∼3% down to 0.1% in the pregnant group.
The observed changes become more interesting when the
oxygen requirements of the detected members of the consensus
population were considered in our following analysis.

We then profiled microbial populations based on their oxygen
requirement (Figure 10A). While the proportion of facultative
anaerobic bacteria remained relatively constant between baseline
and PG-inoculated, the proportion of strictly anaerobic bacteria
shifted down and the proportion of aerobes shifted up by 0.6%
of the total population (Figure 10B). In contrast, the population
proportion of facultative anaerobes shifted down from 93.7 to
81.5% in response to pregnancy. This change was accompanied
by a decrease in strict anaerobes (2.8–1.7%) and an increase
in strict aerobes (3.4–16.8%), reflecting an overall increase in
oxygen requirement of the oral microbiota.

We next profiled the predicted microbial metabolomes of all
groups. Among the wide variety of metabolites that could be
identified, 2, 3-butanediol, butyrate, lactic acid, and propionate
were found to be the most population defining products by
which most members of each microbiome could be differentially
sorted. Anaerostripes is the only genus that we determine should
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FIGURE 10 | Population proportion of identified community members in terms of predicted (A) oxygen requirements alone, or (B) oxygen requirements in context of

Gram stain classification, for baseline, PG-inoculated, and pregnant groups.

FIGURE 11 | Population proportion of identified community members in terms

of predicted metabolic characteristics as a major generator of target microbial

metabolites for baseline, PG-inoculated, and pregnant groups.

be categorized as belonging to both the butyrate and lactic
acid major metabolite groups. All others could be sorted into
one of these four metabolite groups or placed into the “Other”
group as not a major producer of these metabolites (Figure 11).
The predicted population proportion of lactic acid producers
decreased from 92.57% (baseline) to 85.15% (PG-inoculated)
to 80.50% (pregnant). The proportion of propionate producers
decreased from 3.44%, (baseline) to 2.81% (PG-inoculated)
to 0.30% (pregnant). In contrast, the proportion of butyrate
producers progressively increased from 0%, (baseline) to 0.02%

FIGURE 12 | Population proportion of identified community members in terms

of predicted metabolic characteristic as a major generator of acetate for

baseline, PG-inoculated, and pregnant groups.

(PG-inoculated) to 0.86% (pregnant). The proportion of 2, 3-
butanediol producers increased from 1.15% (baseline) to 8.59%
(PG-inoculated) in response to PG-infection but then decreased
to 1.70% during pregnancy. The remaining population portion
of bacteria designated as “Other” increased over 5-fold during
pregnancy, reflecting the increase in obligate aerobes in the oral
cavity of pregnant rats at GD 18. The ability to produce acetate as
a major metabolite was also assessed but plotted independently
because it was typically co-produced with one of the select four
metabolites (Figure 12). The proportion of acetate producers
decreased from 42.03% (baseline) to 15.34% (PG-inoculated) but
increased in response to pregnancy to 38.38%.

Because the ability to synthesize riboflavin (Vitamin B2)
is associated with gastrointestinal (GI) health (Yoshii et al.,
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FIGURE 13 | Population proportion of identified community members in terms

of predicted ability to synthesize riboflavin for baseline, PG-inoculated, and

pregnant groups.

2019) and many of the species identified in the oral cavity also
colonize the GI, we performed an independent assessment
of riboflavin producers within the consensus microbiome
profile of each group (Figure 13). Riboflavin biosynthesis
capability was determined by the genomic presence of the
complete pathway, using the KEGG pathways database. The
oral microbial population’s predicted collective capability
to synthesize riboflavin dramatically decreased from 85.4%
(baseline) to 43.1% (PG-inoculated) in response to infection, but
this ability recovered during pregnancy by GD 18, increasing to
95.8% (pregnant). Notably, a small proportion of the population
(∼1% of the pregnant group and 0.1% of the PG-inoculated
group) could not be positively or negatively categorized due
to limitations in the reference KEGG database at the time of
analysis. A cursory analysis of all groups showed that ≤0.2% of
each consensus microbiome profile had the predicted ability to
feed into the porphyrin metabolism pathway, using riboflavin as
an early precursor metabolite, to ultimately synthesize vitamin
B12 (data not shown).

DISCUSSION

The Oral Microbiome of Healthy Rats
Compared to Previously Published Human
and Rat Profiles
The Forsyth Institute created a publicly available human
oral microbiome database (www.homd.org). Using whole
16S rRNA gene sequencing, they reported that 96% of the
human oral microbiome consists of six phyla (Firmicutes
36.7%, Bacteroidetes 17.3%, Proteobacteria 17.1%, Actinobacteria

11.6%, Spirochaetes 7.9%, Fusobacteria 5.2%) (Dewhirst et al.,
2010). In contrast, we found that the bacteria we identified at
baseline in the oral cavity of rats belong to only three phyla
(Firmicutes 48.10%, Proteobacteria 43.64%, Actinobacteria
8.26%). The undetected phyla of Bacteroidetes, Spirochaetes,
and Fusobacteria include key periodontopathogenic bacteria
associated with human periodontal disease and implicated in
adverse pregnancy outcomes (e.g., P. gingivalis, Treponema
denticola, Tannerella forsythia, Fusobacterium nucleatum)
(Aagaard et al., 2014; Prince et al., 2016; Lin et al., 2018).
After P. gingivalis inoculation, the consensus oral microbiome
included four phyla (Firmicutes 72.22%, Proteobacteria 24.61%,
Actinobacteria 3.15%, Bacteroidetes 0.02%) with the family
Porphyromonadaceae making up 100% of the identified
Bacteroidetes phylum population, consistent with experimentally
induced oral infection. By GD 18, the orally infected pregnant
rat oral microbiome consisted of the same four phyla, but with
notable population shifts (Firmicutes 41.69%, Proteobacteria
40.11%, Actinobacteria 15.54%, Bacteroidetes 2.66%). The
Bacteroidetes phylum in the pregnant group now consisted of
four families, including Porphyromonadaceae, Bacteroidaceae,
Cytophagaceae, and Flavobacteriaceae.

We found that the most abundant genus in the oral cavity
of our rat model at baseline was Streptococcus, similar to the
reported findings of the human oral microbiota (Dewhirst et al.,
2010). With regards to the two most abundant genera at baseline,
Streptococcus and Haemophilus are known to specifically adhere
to each other (co-aggregate) during biofilm development due to
outer membrane adhesions found on some Streptococcus species
that recognize specific polysaccharide receptors on Haemophilus
parainfluenzae (Lai et al., 1990; Heller et al., 2016). Interestingly,
the large percentage of highly diverse Streptococcus species and
the high percentage of Haemophilus parainfluenzae observed in
these rat oral microbiomes was also observed in the development
of early human dental biofilm (Heller et al., 2016), suggesting
that the periodontitis and pregnancy rat model used in this
study could be considered an appropriate translational model
for oral pathology as it represents a relatively similar oral
flora to that of a human, but with the notable absence of
periodontopathogenic bacteria. Rather than a shortcoming, we
view this absence as a critical advantage of this model in
that it allows controlled colonization of the oral cavity with
periodontopathogenic bacteria to investigate their role in oral
and extra-oral disease development.

Due to few previously completed studies in the area of oral
microbiomes of rats, it was difficult to compare our results to
other published data. The only study we believe to be somewhat
equivalent to ours for comparison was the Manrique et al. study
that characterized the normal oral flora of healthy Sprague-
Dawley rats by collecting the supragingival plaque of the upper
molars (Manrique et al., 2013). However, the Manrique study
found that Rothia dominated the oral cavity at 74.43% and the
next most abundant bacterial genus were Streptococcus (4.67%).
Though OTUs that mapped to the Micrococcaceae family was
identified in all of our experimental groups (6.2–0.02%), Rothia
was not universally found in our study. Rothia OTUs were
found in the baseline consensus microbiome of our study at a
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very low proportion (1.4% total oral microbial population). The
proportion found in the other groups were even lower, with
0.5% in the pregnant group and 0% (undetected) in both the
PG-inoculated and sham-inoculated groups. Instead, our study
found that the twomost dominant genus at baseline, representing
normal oral floral of healthy rats, were Streptococcus (41.77%)
and Haemophilus (32.69%).

Though microbiome profiles reflect population variation
among different animal groups, the observed differences between
studies are also impacted by differences in animal colonies,
sampling technique and differences in microbiome profile
generation analysis parameters, such as stringency criteria and
the reference databases used. We believe a major source of
variation between our outcomes relative to recent publications
are the differences in how the 16S libraries were generated.
Most published studies that have reported loci specific 16S
microbiomes of rats typically use sequencing libraries targeting
only one or two variable regions of the 16S rRNA gene. The
Manrique et al. study, for example specifically targeted the 5-
6 variable region of the 16S rRNA gene, while we had more
complete coverage of the target gene by sequencing seven of the
nine variable region amplicons in each library (Manrique et al.,
2013). Although they had a larger depth of read by using the 454
pyrosequencing platform, and thus were likely able to identify
very rare species (Manrique et al., 2013), we had much better
coverage of the target gene. Targeting seven sites of the 16S gene
generates microbiome profiles that are reportedly comparable to
full length 16S gene sequencing microbiomes, while targeting
a single or only a few variable regions results in incomplete
microbiome profiles (Bolchakova et al., 2015). Our data supports
this observation when we viewed primer specific microbiome
profiles generated from our data sets. For example, when viewing
the consensus baseline microbiome profile with respect to each
primer set, OTUs that could positively map to Rothia species
only occurred for sequences derived from the V4, V6-7, and
V8 primers among the seven sets used. Similarly, we found
that Streptococcaceae dominated the oral microbiome profile
(66.74–85.29%) when using the same technique in Sprague
Dawley rats (Reyes et al., 2018). This suggests that our consensus
profiles more accurately reflect the population proportions of the
identified family, genus, and species than studies using only one
or two variable regions for analysis.

Oral Community Diversity in Pregnant Rats
With Periodontal Disease Was Relatively
Similar to Uninfected by GD 18 in Terms of
Abundance and Evenness
While the relative diversity of an individual’s microbiome does
not necessarily indicate disease (He et al., 2015), there is reported
evidence that the oral microbiome from patients with periodontal
disease typically display greater diversity (Griffen et al., 2012;
He et al., 2015), while data reported for other diseases such
as data reported for dental caries typically display a reduction
in diversity as a consequence of an increase in abundance of
certain species in the flora isolated from the affected sites that
are contributing to pathology (He et al., 2015). Among methods
used to determine diversity, alpha diversity measures that take

into account both abundance and evenness are reported to
be better predictors of biologically relevant diversity (McCoy
and Matsen, 2013). In our study, the Shannon and Simpson
indices seem to indicate that the alpha diversity between the two
control groups (baseline and sham-inoculated) were very similar.
However, the Shannon and Simpson diversity indices estimated
for the pregnant group was likewise similar to the controls. In
other words, collectively, the population proportion of positively
identified species were similar between pregnant, baseline, and
sham-inoculated groups, despite sham-inoculated group having
the fewest number of positively identified species, while PG-
inoculated group had the greatest diversity. Considering the
pregnant animals had periodontal disease, as indicated by their
level of alveolar bone loss, our data illustrates the limitations of
using alpha diversity analysis as a strict independent indicator of
disease. A possible explanation for our observations that would
be consistent with previous reports is that by GD 18, periodontal
disease progression may have arrested and was on a trajectory of
healing and perhaps the diversity indices reflect a state in which
the oral microbiome is shifting back toward health.

While alpha diversity rarefaction curves reaching plateau
reportedly indicate that that all but the rarest species were
identified, this interpretation is based on some assumptions
with respect to sample collection and processing. Due to some
uncertainty that there was enough template sequenced for some
of our libraries to comfortably claim that the data collected
accurately represent the oral community found since there were
differences between the number of reads each sample generated,
we chose to create Pool D for a subset of samples identified as
having the fewest number of reads from Pools A, B, and C. When
comparing the data sets generated from each repeated sample, we
found that their individual microbiome profiles, as analyzed by
Bray Curtis beta diversity and visualized in PCoA plots, remained
tightly clustered to each other and within their experimental
group, thus all consensus data reported here included all the
collected sequence data from all four pools A–D. This outcome
also supports our belief that our samples, including those samples
that had the fewest OTUs after their first sequence run in pools A–
C, were of adequate sample size to create representative profiles
of the microbiome found in the oral cavity of each animal, within
the limits of the reference databases used.

Oral Community Diversity in Terms of
Species Composition Dissimilarities Were
Conditionally Dependent, Shifting in
Response to Both PG-Inoculated and
Pregnancy
The advantage of using beta diversity analysis, as our approach
to community analysis, is that PCoA allows discovery of the
most important axes along which samples vary (dissimilarity).
When using an appropriate beta diversity metric, PCoA plots
also identifies similar samples as clustered points along an ax(s)
of variance through visual examination of the plots. Bray-Curtis
dissimilarity was selected because it is one of the most well-
known approaches to quantify the difference (distance) between
samples. This metric is also based on OTU abundance rather
than just presence-absence data; thus the “size” and “shape”
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of the count vectors are taken into account in this statistical
measure, which ranges from zero to one with zero defined
as identical. Because the potential sources of variance (e.g.,
variables of interest) are not pre-defined before performing
this type of statistical analysis, identifying the source of the
data variance (why they cluster) may not be obvious. It can
be particularly challenging for complex, multifactorial, non-
categorical, or longitudinal data.

Intra-animal Bray-Curtis beta diversity analysis between
baseline, PG-inoculated, and pregnancy appear widely scattered
along PC1 when each animal’s microbiome was plotted
individually (Figure 4), but when the consensus data of each
group was plotted as single points, this metric suggests that
P. gingivalis infection was the greatest source of population
variation in this study (Figure 8). Each individual sample point
from baseline, PG-inoculated, and pregnant groups did clearly
cluster within their groups along the PC2 axis at the species level,
indicating that collectively, the experimental group conditions
were the second greatest source of species variation (Figure 4). At
both the genus and family level, however, the ability to distinctly
discriminate between experimental groups shifted from PC2 to
PC3, indicating that the core population proportions of member
family and genus were more resistant to perturbations at each
collection time-point over the course of the study than were
specific species identity. Together, all distance measures data
reported in our results (Figures 4–8) suggest that community
variance in terms of member composition was most influenced
by oral infection. This outcome is supported by the alpha indexes,
which showed that the greatest diversity in terms of abundance
and community evenness was observed in the PG-inoculated
group prior to breeding and that the population became more
even during pregnancy by GD 18.

When Bray-Curtis beta diversity analysis of consensus data
included the sham-inoculated group, this point was positioned
furthest from the center and was most distant from the baseline
control point relative to PC1 (Figure 8), suggesting that the
core consensus communities were most similar between groups
sampled from the same animal set. In contrast, Euclidean beta
diversity analysis showed that PG-inoculated group was the most
dissimilar among the four groups along PC1 and PC3 axes, while
the consensus points of the other three groups clustered together.
Along PC2, however, the Sham-inoculated point was more
dissimilar, particularly at the species level. Reported comparisons
of different beta-diversity metrics used to compare community
data (Legendre and de Caceres, 2013) suggest that Euclidean
matrix is not appropriate when visualizing dissimilarity between
individually plotted communities derived from complex samples
(e.g., microbiomes from animals) since absence-presence data
(without abundance) may put too high or low a value on each
community member identified within each individual sample;
however, it is useful to visualize dissimilarities between collective
consensus community group data. It is important to recall that all
of the animals used in this study came from the same colony and
were housed the same way.

These data suggest that health and P. gingivalis inoculation
induced periodontal disease guides microbial composition at the
species level, that species level shifts are often reflective of their

condition, and that species level dissimilarities typically become
more pronounced during disease, irrespective of whether the
samples were collected from the same animals (intra-group) or
from a different set of animals. These data also support the
concept that there are common core site-specific microbiomes
among host species and that established microbiomes within
an individual animal are resistant to gross dysbiotic shifts
in response to host conditions when reviewed at higher
taxonomic levels.

Analyzing Baseline vs. Sham-Inoculated
Groups Suggest a Less Diverse but
Recovering Core Microbiome 12-Weeks
Post-antibiotic Treatment
The standard protocol for inducing periodontitis in rats is to
first prophylactically treat animals with antibiotics, then allow
for a short microbial recovery time before starting inoculations
(Kesavalu et al., 2007; Verma et al., 2010; Phillips et al.,
2018). Prophylactic antibiotics are known to cause a chemically
induced dysbiosis (Rogers et al., 2010; Manrique et al., 2013).
Hence, we included pre-antimicrobial treatment samples in our
study to potentially identify such perturbations. Despite there
being overall similarities in the oral communities of baseline
and sham-inoculated groups in terms of alpha diversity, we
identified a larger population proportion of Staphylococcaceae
and Lactobacillaceae in both the baseline and PG-inoculated
group animals relative to the non-pregnant sham group animals,
suggesting intra-animal microbiome stability and inter-animal
differences would make it difficult to perform meaningful inter-
animal group profile comparisons. Consequently, we primarily
focused on intra-animal time course microbiome comparisons in
this report. However, we did draw some basic conclusions from
our inter-animal comparisons as follows.

Baseline was used as our pre-antibiotic, uninfected group
while sham-inoculated was our time-matched vehicle control
of an oral community recovering from antibiotic induced
dysbiosis since it had 12 weeks of recovery time without addition
of further stressors. As shown in Figure S1, Pasteurellaceae
populations were similar between our control groups but the
Staphylococcaceae family shifted from 43.56% at baseline to
55.4% at PG-inoculated but was only at 17.83% in the sham-
inoculated group. Moreover, there was altered Streptococcus
species diversity in the sham-inoculated group. As stated in our
results, our alpha diversity findings as measured by Shannon
and Simpson indices for overall community species richness
(abundance and evenness) indicate that sham-inoculated and
baseline were more similar to each other than to PG-inoculated
group consensus profiles. This result agrees with the findings
of Manrique et al. which indicated that while antibiotics reduce
the overall abundance of bacteria, the core microbial community
structure remains the same when given time to recover from the
perturbation (Manrique et al., 2013). Overall, our data suggests
that the oral flora in the sham-inoculated group, while not
the same as baseline group was likely recovering its “normal”
microbiome core profile characteristics by the end of the 12-week
sham inoculation period.
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Infection and Pregnancy Produced an
Altered Community Metabolic Profile
Unique to Each Condition
When alpha and beta diversity analysis of the collective consensus
microbiome of each group were compared (Figures 3, 8),
we observed a shift in response to P. gingivalis inoculation
that induced periodontal disease that seemed to then revert
toward baseline during pregnancy. A broad survey of population
proportions among a wide variety of identified families, including
the top 5 most dominant families, supported this trend. Thus
overall, this data suggests that the rat oral microbiome has a
family level commonality at its core. However, between animal
variability, particularly at lower taxonomic levels, indicates that
the oral microbiome at pregnancy was actually not that similar to
baseline, making comparative analyses challenging.

Notable trends, microbiome shifts, and predicted associations
were discovered that suggest certain broad characteristics (e.g.,
Gram classification, cell morphology) traditionally used to
describe oral microbial populations “typical” of health or disease
were relatively inadequate indicators overall of dysbiosis when
compared to our assessment of the metagenomic changes in the
population in context of predicted metabolic shifts. For example,
the oral community progressively became more populated with
Gram-positive rods and less populated with Gram-negative
cocci. In contrast, Gram-positive cocci and Gram-negative rod
population proportions shifted in response to infection then
shifted back in response to pregnancy. Altered microbiome
diversity and dysbiosis was still evident in the pregnant group
when assessed in context of oxygen requirements and predicted
major metabolite production, the latter of which is covered
in more detail in the next section. Although the population
proportion of the obligate anaerobe P. gingivalis was larger in the
pregnancy group, we observed that by GD 18 that the now orally
infected and pregnant rats had a more aerobic oral community
overall (Figure 10). We also identified oral colonization of
previously undetected opportunistic and commensal bacteria
(Supplementary Material). Considering both pregnancy and
periodontal disease impact the inflammatory and immune
response (Guncu et al., 2005; Wu et al., 2015), these conditions
would likely result in the host being much more vulnerable to
colonization by these previously undetected organisms.

Insights and Limitations of the Predicted
Morphological Classification, Oxygen
Requirement, and Major Metabolite
Production Profiles of Baseline, Infected,
and Pregnant Animals
We found that the predicted population proportion of both
lactic acid producers and propionate producers progressively
decreased while butyrate producers progressively increased over
time in response to P. gingivalis inoculation then in response
to pregnancy by GD 18. Lactic acid production is generally
associated with carbohydrate fermentation by oral Streptococci
and other genera of the oral microbiome (McLean et al., 2012)
which, combined with diet, contributes to excessive biofilm

formation, low pH, and caries development in humans. When
lactic acid production is reviewed in context of periodontal
disease, our findings agree with consensus observations reported
in the literature. Specifically, in a normal oral cavity during
health, oral Streptococci typically dominate the oral microbial
population but lose their foothold to periodontal pathogens,
especially Gram-negative anaerobes (Takahashi, 2015).

Acetate, propionate, and butyrate are all short chain fatty
acids (SCFAs), are produced by many bacteria by a variety of
mechanisms, and have complex contextual associations with both
health and disease. For example, propionate is a weaker acid
than lactic acid, often generated though conversion of lactic
acid, and is typically produced in the oral cavity by genera such
as Veillonella and Lactobacillus (found in all of our groups),
and Clostridium (absent in our control groups). Lactic acid
conversion to propionate contributes to acid neutralization,
and is believed to facilitate dominance of the more acid
sensitive Streptococci species associated with dental health as well
as facilitating growth of acid sensitive periodontal pathogens
such as Porphyromonas (Takahashi, 2015). Both butyrate and
propionate are major metabolites produced by oral bacteria
such as Porphyromonas and Clostridium that use proteins and
amino acids as a primary carbon source, typically co-generating
ammonia though amino acid deamination, further contributing
to acid neutralization (Takahashi, 2015). SCFA production is
generally associated with health when produced in the gut by
colonic bacteria, typically through fermentation of dietary fiber.
Specific metabolites such as butyrate, when provided in a dietary
supplement, have shown beneficial health effects in the host (van
Immerseel et al., 2010; Herrema et al., 2017). In contrast, butyrate
production in the oral cavity is reported to be cytotoxic in
patients with oral disease, such as periodontal infection, and has
been shown to be responsible for the release of reactive oxygen
species in chronic periodontitis (Anand et al., 2016). These
reported associations highlight the importance of site-specific
studies in context of host-pathogen interactions. When delving
into the particulars of microbial butyrate production among
pathogens and commensals, Anand et al. showed that these
organisms have evolved distinct pathways where, unlike typical
commensal species, species that are recognized as pathogens
typically co-generate harmful byproducts like ammonia along
with butyrate, which explains how butyrate production could be
associated with both health and disease (Anand et al., 2016).

Themicrobial metabolite 2, 3-butanediol is typically produced
during carbohydrate fermentation. Major production of this
metabolite by certain commensal oral Streptococci, when in
association with the opportunistic environmental pathogen
Pseudomonas aeruginosa in the lungs of cystic fibrosis patients,
is associated with chronic disease and it is generally considered
to be cytotoxic to human cells at high concentrations and
long term exposure (Whiteson et al., 2017). Interestingly, in
vitro work with dendritic cells showed that 2, 3-butanediol
has an anti-inflammatory affect when co-incubated at below
toxic concentrations, but it was suggested that inhibition of
the immune response in tissues such as the mucosa may
ultimately be detrimental, contributing to chronic infection
(Whiteson et al., 2017). There is no known health benefit
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of 2, 3-butanediol in humans, whether it is synthesized by
bacteria or formed in mammalian cells, especially in the
liver after ethanol consumption. Our data showed that the
predicted population proportion of 2, 3-butanediol producers
relative to baseline increased in response to oral PG-inoculation
then decreased during pregnancy by GD 18. This outcome is
consistent with having a dysbiotic or “unhealthy” microbiome
post PG-inoculation.

Riboflavin (Vitamin B2) is an essential precursor used to
form the major coenzymes flavin mononucleotide (FMN) and
flavin adenine dinucleotide (FAD), leading to the synthesis of
vitamin B3 and B6 respectively, as well as other forms of Vitamin
B and numerous flavoproteins. Riboflavin is synthesized by
a wide variety of bacteria. Some bacterial species (e.g., most
Firmicutes and Bacteroidetes) are high producers of riboflavin,
secreting excess into their environment. Because riboflavin is
essential for growth of all living cells, some bacterial species
import riboflavin synthesized by other bacteria because they are
either poor or non-producers. Humans cannot synthesize or
store these water-soluble B vitamins and are dependent on diet
and on biosynthesis by resident bacteria (Magnusdottir et al.,
2015). Because bacterial non-producers compete with host cells
for available riboflavin, understanding the mechanisms the host
uses to preserve health in the face of microbial mechanisms
used to survive in the host, in context of microbially produced
essential metabolites like riboflavin, may provide insights into the
etiology of observed microbiome shifts. For example, bacterially
produced riboflavin is believed to play a direct role in immune
function in the host though at least two mechanisms. Riboflavin
is associated with reactive oxygen species generation in innate
immune cells through priming of NADPH oxidase (Yoshii
et al., 2019). Intermediates formed during microbial riboflavin
biosynthesis also activateMAIT (mucosal-associated invariant T)
cells through binding to the MR1 protein of MHC-I molecules
on antigen presenting cells (Eckle et al., 2015; Yoshii et al.,
2019). However, stimulation by commensal microorganisms
are insufficient to fully elicit MAIT cell effector function
(Berkson and Prlic, 2017). Thus, commensal bacterial mediated
priming of MAIT cells is proposed to contribute to their
immunological role in pathogen surveillance, which are then fully
activated in the presence of pathogens at sufficient microbial
load. Consequently, the presence of riboflavin biosynthesis
intermediates has reportedly been used as a biomarker for
microbial infection (Eckle et al., 2015).

Although we inoculated the oral cavity of rats with P.
gingivalis, a robust and self-sufficient riboflavin producer,
the consensus microbiome post-inoculation in animals with
periodontal disease did not reflect overall increased community
riboflavin production. Rather, we observed that the oralmicrobial
population’s predicted ability to synthesize riboflavin decreased
by ∼50% in response to infection and then rebounded to
surpass baseline levels during pregnancy by GD 18. With
shallow understanding, this outcome would seem to contradict
an expectation of high riboflavin production due to infection
by P. gingivalis. However, presuming riboflavin production is
generally beneficial in mammalian mucosa as reported in the
literature for the GI tract, our data would be consistent with
development of an “unhealthy”microbiome followed by recovery

to a more beneficial microbial profile when viewed in terms
of riboflavin production. This highlights how the consensus
microbiome profile and its metabolome may better reflect
important aspects of microbial health or dysbiosis that would
not be revealed if only targeted characterization of a specific
metabolic contribution of individual pathogens identified within
a community was performed. Yet in this context, knowing the
site-specific host response to individual pathogens increases our
overall understanding of the disease process.

It is worth noting that the levels of MAIT cells found in
different tissues sites differ, presumably impacting the local
inflammatory response outcomes. Specifically, the abundance of
MAIT cells in human apical periodontal tissues are reported
to be similar to levels found in peripheral blood but markedly
higher than levels found in gingival tissues (Davanian et al., 2019)
and lower than levels found in the walls of the large intestine
(epithelium and lamina propria) (Hama et al., 2019). Overall,
microbial species that act as pathogens at sufficient microbial
load, such as P. gingivalis, and that are also efficient riboflavin
producers would presumably contribute to the localized chronic
inflammatory response characteristic of periodontal disease.
However, riboflavin producing pathogens may induce a more
robust MAIT cell response in the intestines compared to the
gingiva, or perhaps have a lower pathogen load threshold, due
to the higher levels of resident MAIT cells. How increased
or decreased riboflavin availability may further modulate the
microbiome profile or disease development due to inherent
differences in the environment, microbial load, and site-specific
tissue characteristics of the gingiva are unknown and should be
further investigated.

Collectively, our outcomes and current understanding shined
a light on certain metabolic characteristics in the context of the
observedmicrobiome profiles that we believe should be the target
of future studies, including directly assessing select metabolic
shifts of the oral microbial population in context of oral infection
and pregnancy. However, we recognize that there are several
limitations to this pilot study that may have negatively impacted
our interpretations. A key limitation in interpreting microbiome
data in general lies in the dependence on reference databases
to create each microbiome profile. Because unmapped OTUs
(Figure S3) are essentially discarded, metagenomic analyses can
only “discover” and infer characteristics about the microbial
community relative to what is already “known.” In the future,
when more reference genomes become available, these data can
be reanalyzed to map the un-mapped reads. Similarly, in this
study, we observed a large number of slash calls, thus limiting the
level of the taxonomic hierarchy we could confidently compare
between microbiomes. This is likely due to similarities of the
particular 16S variable region sequence between closely related
species. However, it is possible that with additional reference
genomes, these slash calls might be differentiated.

When we designed this project, we opted to focus our pilot
study on determining the longitudinal intra-animal shifts in the
oral microbiome in response to P. gingivalis inoculation and
pregnancy and did not assess the oral microbiome of sham-
inoculated pregnant rats. It would be interesting to parse out
the impact of pregnancy alone on the oral community in a
future study.
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