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Abstract: The understanding of infectious diseases is a priority in the field of public health. This
has generated the inclusion of several disciplines and tools that allow for analyzing the dissemina-
tion of infectious diseases. The aim of this manuscript is to model the spreading of a disease in a
population that is registered in a database. From this database, we obtain an edge-weighted graph.
The spreading was modeled with the classic SIR model. The model proposed with edge-weighted
graph allows for identifying the most important variables in the dissemination of epidemics. More-
over, a deterministic approximation is provided. With database COVID-19 from a city in Chile,
we analyzed our model with relationship variables between people. We obtained a graph with
3866 vertices and 6,841,470 edges. We fitted the curve of the real data and we have done some
simulations on the obtained graph. Our model is adjusted to the spread of the disease. The model
proposed with edge-weighted graph allows for identifying the most important variables in the
dissemination of epidemics, in this case with real data of COVID-19. This valuable information
allows us to also include/understand the networks of dissemination of epidemics diseases as well
as the implementation of preventive measures of public health. These findings are important in
COVID-19’s pandemic context.

Keywords: edge-weighted graph; SIR model; network; disease; COVID-19

1. Introduction

Infectious diseases have been the object of study throughout the history of mankind.
Multiple disciplines have contributed to the understanding of these health phenomena,
in particular the sources and types of infections, as well as the negative consequences on
the population.

From an epidemiological and health perspective, humanity has experienced a series
of infectious disease events, including Cholera, Malaria, and AIDS [1]. Infectious dis-
eases have an epidemic potential due to the dissemination of microorganisms, generally
viruses that develop in a host and later seek another living being to continue with their
survival process [2,3]. Therefore, the spread of this type of disease occurs through contact
between living beings, humans or animals, which present significant loads of pathogenic
microorganisms. Consequently, when massive infections occur, we are facing an epidemic
outbreak. The concept of an epidemic is established when the infectious outbreak affects
a specific geographic area and a pandemic is related to an event spread over extensive
continental areas [4].

An example of the above is the current COVID-19 pandemic context, the study of the
spread of diseases being of interest [5,6]. The beginning of the pandemic was registered
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in the city of Wuhan, China [7]. The consequences of the COVID-19 pandemic have
been evidenced in a series of dimensions, including the collapse of health systems in some
countries, the stoppage of production, the impoverishment of communities, unemployment,
among other social and economical consequences [8].

In this sense, the current and historical contributions of mathematical models are
important. The compartmental models are useful to establish in a simple way the projec-
tions and evolution of infectious diseases. They are characterized by compartmentalizing
the population depending on whether the disease generates immunity or not [3]. One of
the classic compartmental mathematical models is SIR, developed by Kermack and Mc
Kendrick in 1927 for the understanding of epidemics [9], and the current use of computa-
tional simulations is of great relevance to analyze the behavior, in this case, of SARS-CoV2
(see, for instance, [10]). The SIR model compartmentalizes or divides the population
into Susceptible (S), Infected (I), and Removed (R). This compartmentalization allows
for analyzing the population with these states and is useful to determine projections in
relation to the total number of patients and the duration of the disease [11]. The SIR model
approach is eminently deterministic; however, it has also been used from a stochastic
perspective, improving the representation of the dynamics of infectious diseases through
the probability of the appearance of epidemic outbreaks [11]. There are other mathematical
models in epidemiology that have been developed from the SIR model, adding variables
such as exposure and the effect of quarantine measures such as the SEIR and SEQIJR
model, respectively [12]. With this, nations and governments can count on information to
establish mitigation measures for the consequences of the virus, such as: safeguarding em-
ployment, strengthening health system responses, developing community actions, among
other measures.

However, these models are limited when the extension and heterogeneity of the data
are wide, so they fail to detect changes in the population structure and the variation in
contact dynamics over time [12].

On the other hand, globalization and high population concentration have led to the
inclusion of other ways of representing the spread of infectious diseases. Models with
stochastic approximations have the advantage of establishing probabilities of person-to-
person contact [3]. One of them is the network model, which is based on the theory of
graphs studied from the observations of Leonhard Euler with the problem of the seven
bridges. The model proposes the formation of individuals (nodes) and their relationship
with others (edge), so the result is a network [12] (see, for instance, Figure 1).

Figure 1. Network model of brain functional coactivations.
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To build a network model, the variables that are relevant to the spread of a disease are
established. Among the multiple models developed, sociocentric studies stand out, which
allow a broad exploration of the complete network that is generated to understand the
spread of a pathogen. Therefore, network models are useful to understand the development
of different infectious diseases [13]. It is not new, especially if the spread of an epidemic
disease in network structures is studied, which in an abstract way is the main object of
graph theory; see, for instance, in [14], where the authors use the model as a predictive
tool, to emulate the dynamics of Ebola virus disease in Liberia, and in [15] where the
transmission connectivity networks of people infected with highly contagious Middle East
respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia were assessed to identify
super-spreading events among the infected patients between 2012 and 2016. The relevance
of these studies is related to the possibility of preventing nodes (people) from continuing
to infect, an issue that is treated in [16] with the graph protection methods proposed by
Wijayanto and Murata. Deepening in this line of studies, there have been included new
mathematical models with variables related to the behavior of people associated with
information and emotions during epidemics [17]. Likewise, dynamic models have covered
the influence of the infectious disease itself on the network of contacts and, therefore,
changes in the dynamics of spread of the epidemic over time [12].

In general, network models can be analyzed through static graphics such as snapshots.
However, for an adequate approximation and correcting the loss of data generated by the
snapshot, data modeling techniques must be used including the weighting of the edges
and, consequently, better estimated, given the information obtained from the relationships
between individuals and the spreading of the disease [12].

In the current context, organized information has an important value for the man-
agement of epidemics. The databases elaborated from the information of individuals
can contribute in the characterization and knowledge of a determined area, which are
important in order to know the evolution of the diseases [18].

In the case of infectious pathologies, depending on the type of database, it is possible
to determine through the variables whether two or more individuals are linked to each
other, such as people who live in the same neighborhood or work in the same place.
Given the characteristics of network models and the obtaining of information through
complex databases, it is relevant to use these models, in particular, with approximations
that incorporate weighting on the edges.

For all the above, there are challenges around the possibility of representing and un-
derstanding the evolution of infectious diseases through a network model using databases.
The relevance of this type of research contribution is based on the possibility of having
tools that favor measures to prevent the spread of this type of disease, an issue that takes
on greater social and scientific value due to the context of the SARS-CoV2 pandemic. Con-
sequently, the aim of this article is to develop a spreading stochastic model of some disease
from a database, particularly using variables that link individuals in a given territory,
the probability of contagion among them, and, therefore, the spread of the disease through
edge-weighted graphs (or edge-weighted networks). For the purposes of this manuscript,
a database is understood as a matrix whose columns are the variables, while the rows
correspond to the responses of the subjects in relation to the variables consulted.

Our proposal provides an edge-weighted graph obtained from a database that contains
enough information about the individuals that belong to a population. With this graph,
we use a graph-based SIR model in which each individual is represented by a vertex in an
edge-weighted graph. At time t, each vertex vi is in a state vt

i belonging to S = {0, 1,−1},
where 0, 1 and −1 represent the three discrete states: susceptible (S), infected (I), and
recovered (R). We choose predetermined values for the parameters of the model changing
only one of them at a time, observing the effects on the epidemic. These parameters are:
the order of the graph, the mean degree of its vertices, the representative factor of the
disease, the numbers of relation variables of database, and the numbers of classes (for the
last parameters, see Section 3). The initial population contains one infected individual and
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all the simulations were done on a random and scale-free graph. The recovery rate is fixed

in δ =
1
15

. We have studied the effects of these parameters on two characteristics of the
disease: the number of total infected and the duration of the disease. Finally, we tested our
model with real COVID-19 data from Olmué City (Chili). The database was obtained from
the epidemiological surveillance system of the Chilean Ministry of Health.

The paper is organized as follows: Section 2 contains generalities about graph theory
and the SIR model. Section 3 is divided into two parts: first, we give the construction of
the graph from a database. In the second part, we describe the Graph-based SIR model.
In Section 4, we ran the different simulations of the spread of a disease on two different
types of graphs and analyzed the effects of each parameter on the end of the disease and
the number of infected. In Section 5, we give a deterministic approach to the Graph-based
SIR model. In Section 6, we tested our model with database COVID-19 from Olmué City
(Chili). Finally, in Section 7, we provide a discussion about the results of the Sections 4–6.

2. Basic Definitions
2.1. Graph

The following definitions come from [19,20].

Definition 1. A graph G is a finite nonempty set V of objects called vertices together with a
possibly empty set E of 2-element subsets of V called edges.

To indicate that a graph G has vertex set V and edge set E, we write G = (V, E).
To emphasize that V and E are the vertex set and edge set of a graph G, we often write V
as V(G) and E as E(G). Each edge {u, v} of G is usually denoted by uv or vu. If e = uv is
an edge of G, then e is said to join u and v.

If uv is an edge of G, then u and v are adjacent vertices. Two adjacent vertices are
referred to as neighbors of each other. The set of neighbors of a vertex v is called the open
neighborhood of v (or simply the neighborhood of v) and is denoted by N(v). If uv and vw
are distinct edges in G, then uv and vw are adjacent edges.

Definition 2. The number of vertices in a graph G is the order of G and the number of edges is the
size of G.

Definition 3. The degree of a vertex v in a graph G, denoted by d(vi), is the number of vertices in
G that are adjacent to v. Thus, the degree of v is the number of vertices in its neighborhood N(v).

Definition 4. Let G be a graph of order n, where V(G) = {v1, v2, . . . , vn}. The adjacency matrix
of G is the n× n zero-one matrix A(G) = [aij], or simply A = [aij], where

aij =

{
1 if vivj ∈ E(G)

0 if vivj /∈ E(G).

Remark 1. If we add the entries in row i (or in column i), then we obtain the degree of vi.

On the other hand, an important generalization is that the simple graph consists
of the definition of weighted graph, more specifically edge-weighted graph. Informally,
an edge-weighted graph is a graph whose edges have been assigned weights.

Definition 5. An edge-weighted graph a pair (G, W), where G = (V, E) is a graph and W : E→
R is a weight function. If vivj ∈ E, then W(vivj) = wij.
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Definition 6. The strength of a vertex vi, denoted S(vi), is defined as the sum of the weights of all
edges incident to it, this is to say

S(vi) = ∑
vj∈N(vi)

wij.

2.2. Graph Classes and Basic Network Models

In this work, random and scale-free graph are used.
The first theoretical model of random networks is the classical random graph model,

the most famous one being the Erdös and Rényi in [21]. On the other hand, the scale-
free graphs (or networks) are graphs whose distribution degree follows a power law
distribution with an exponent between 2 and 3. This paper uses the model proposed by
Albert-László Barabási and Réka Albert in [22].

2.3. SIR Model

In the entire spectrum of epidemiological models that currently exist, the SIR model is
the basis or the simplest of all these.

The classical Kermack–McKendrick SIR model [9], developed in the early 1900s
(see [23,24]), consists of a system of nonlinear ordinary differential equations, which ex-
presses the spread among the population of a constant size, denoted by N, for all time
t. The population is divided into three groups: susceptible individuals, infected individ-
uals, and recovered (or removed) individuals. The sizes of these groups at time t are
denoted by S(t), I(t), and R(t), respectively, such that N = S(t) + I(t) + R(t). The model
is the following:

Ṡ(t) = −βS(t)I(t) (1)

İ(t) = βS(t)I(t)− δI(t) (2)

Ṙ(t) = −δI(t), (3)

t ∈ [0, T], subject to the initial conditions S(0) = S0, I(0) = I0 and R(0) = R0. where the
disease transmission rate β > 0 and the recovery rate δ > 0 (the duration of infection δ−1).

In summary, the above system describes the relationship between the three groups,
this is to say, a susceptible individual changes its state to infected with probability β, while
an infected changes its state to recovered with probability δ.

3. Model Description

This section is divided into two parts. A part dedicated to build a graph from a
database and the second one to describe the dynamics of the disease on the graph-based
SIR model.

To begin, we need some basic elements to understand what follows. First, we will
understand by variable the characteristic assigned to a person from a predetermined set
of values which can be a numerical measure, a category or a classification—for instance,
income, age, weight, occupation, address, etc. Second, we will understand by database a
matrix whose columns are variables, while the rows correspond to the responses of the
subjects in relation to the variables consulted.

3.1. Graph from a Database

Let us consider a database, denoted by D, that stores information on N individuals of
a population. Let V be the set of the persons registered in the database, equivalent

V = {v1, v2, . . . , vN},

where vi is a person registered in D for i = 1, . . . , N.
Let vi be a person registered in D for i = 1, . . . , N. We set

EPI = {X1,X2, . . . , XK},
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where K is the number of elements of the set EPI. (K is the number of variables in D), Xk
is a variable in D for k = 1, . . . , K, and EPI(i, k) is the response of the person vi to the
variable Xk.

As we want to study the link between the people who are registered in D through
the variables of this database, we must identify which are the variables that allow us to
establish these links that promote the spread of the disease. For example, if two people are
the same age, they do not necessarily meet and spread the virus unlike two people who
live in the same city.

Definition 7. We will say that X ∈ EPI is a relationship variable if and only if it allows us to
assume that some person meets another. In another case, we will say thatX is a characteristic variable.

The above allows us to define the following sets:

REL = {X ∈ EPI : X is a relationship variable}

CHAR = {X ∈ EPI : X is a characteristic variable}.

Let us denote by K1 and K2 the cardinality of REL and CHAR, respectively. Notice that
K1 + K2 = K.

Definition 8. We will say that a person vi is related to a person vj if and only if there exists
Xk ∈ REL for k ∈ {1, 2, . . . , K1} such that EPI(i, k) = EPI(j, k) and i 6= j.

It is clear that, if vi is related to vj, then vj is related to vi, this is to say that the relation
is a symmetric relation.

The previous definition allows us to construct a graph G of links given by the rela-
tionship variables of the D. G will be considered as an undirected graph without loops or
multiple edges.

On the other hand, it is possible that k ∈ {1, . . . , K1} is not unique because more than
one variable may coincide. This induces us to define the weight of the link between vi
and vj.

3.2. Weighting Variables

In order to define the weight of each link between two vertices, we assume that each
X ∈ REL has an associated inherent weight; this is to say, it is possible to discriminate
some hierarchical order between the variables. Let pk be the weight associated with the
variable Xk ∈ REL for k = 1, . . . , K1.

On the other hand, to better understand the definition that follows and its conse-
quences, suppose that X is a set of 100 people. If we define the relationship in the set: person
Q is related to person W if and only if they are the same age, then we could group the people in
the set by age. In addition, an interesting fact is that thanks to this relationship everyone
would be part of a group and no one could be in two groups at the same time. These types
of relations defined on a set are called equivalence relations and each defined group is called
equivalence class.

Definition 9. We will say that, for Xj,Xt ∈ REL, Xj is related to Xt, denoted by XjRXt, if and
only if pj = pt.

Lemma 1. The relationR defined on REL is an equivalence relation.

Proof. Directly.

Thanks to the relationR, we can consider the different equivalence classes which are
composed of the variables that have the same weight. Hence, we have the same number of
classes as different weights.
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Definition 10. Let A1, A2, . . . , Ac be the different classes that are defined by the different weights
p1, p2, . . . , pc and α1, α2, . . . , αc its respective cardinalities. Hence,

pj =
αj

K1
, (4)

for all j ∈ {1, 2, . . . , c}.

3.3. Weighted Link

The aim in this subsection is to introduce the definition of weight link.
Let vi, vj ∈ V such that vi is related to vj. We set

H = {k ∈ {1, . . . , K1} : EPI(i, k) = EPI(j, k)}. (5)

We denoted by hi,j the cardinality of the set H. Notice that hi,j is simply the number
of times that one person is related to another (or the number of variables that matches
between them). Since our proposal considers undirected graph, we have that hi,j = hj,i.

Definition 11. Let vi, vj ∈ V be such that vi is related to vj and pkr the weight of the variable in
which vi and vj match, for r = 1, . . . , hi,j. We will say that

w̃ij =

hi,j

∑
r=1

pkr , (6)

is the weight of the link between vi and vj.

Finally, the weighted adjacency matrix of G is the n× n matrix A(G) = [aij], where

aij =

{
w̃ij if vivj ∈ E(G)

0 if vivj /∈ E(G).

The idea of having a graph with weights in its edges is to be able to differentiate or
measure, in some way, the strength or closeness between individuals. For example, it is not
the same saying that two individuals share the same city than saying they share the same
house they live in; it follows that the latter makes the relationship closer and consequently
the contagion of the disease is intuitively more likely.

Example 1. In the following example, Table 1 simulates a database with 20 registered people.
The data hosted correspond to the city in which they live (City), workplace (considering school and
university as a workplace), gender (Gen.), age, extracurricular activity (EC activity), address, if they
drink alcohol (Drin.), if they are smokers (Sm.), and marital status (MS). Let us consider A and B
two different cities, x, y, z, w, u, v, r, s, q, t, p, k, d, g and h different people’s addresses. Moreover,
in the table, Y = Yes, N = No, IC = in couple, M = married, S = single, W = widower.

From Table 1, we have that EPI = {X1,X2,X3,X4,X5,X6,X7,X8,X9}, where X1 = City,
X2 = Workplace, X3 = E.P. activity, X4 = Address, X5 = Sm., X6 = Dri., X7 = Gen., X8 = M.S.
and X9 = Age. Then, by Definition 7, we obtain the sets:

1. REL = {X1,X2,X3,X4} and
2. CHAR = {X5,X6,X7,X8,X9}.

In our criteria, the hierarchical order of the variables X1,X2,X3,X4 in descending form is
X4,X2,X3, and X1. Moreover, we consider that the variables X4 and X2 have the same weight.
Hence, A1 = {X2,X4}, A2 = {X3}, and A3 = {X1} are the different classes that are defined by
the different weights. Hence, by Definition 10

p1 =
1
2

, p2 =
1
4

, p3 =
1
4

.
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Table 1. Database D.

Person City Workplace E. C. Activity Address Sm. Dri. Gen. M. S Age

1 A Workplace 1 Theater y Y Y F IC 35
2 A Workplace 3 Cinema y Y Y M IC 35
3 B School B Football z N N F S 10
4 B Workplace 1 Photography x N N F M 48
5 A Workplace 5 Does not have u Y N F W 65
6 A Workplace 4 Does not have v Y Y M IC 27
7 B Workplace 2 Does not have x Y N M M 46
8 A University 1 Photography v N N M IC 29
9 A University 2 Does not have w Y Y M IC 19
10 B School B Karate x N N M S 10
11 A Workplace 4 Ping-pong r Y Y F M 54
12 A School A Football s N N M S 8
13 A Workplace 5 Dance r Y Y F M 57
14 B School A Handball q N N M S 11
15 A University 1 Does not have t N N F S 25
16 A Workplace 7 Singing p Y Y F S 60
17 A Workplace 8 Music k N Y F S 28
18 A Workplace 3 Does not have d N N M S 47
19 B School A Music g N N F S 8
20 A Workplace 6 Does not have h Y Y M S 30

To construct the graph, we must resort to Definition 8. For instance, person 17 is related
to all the people who live in city A or who work at Workplace 8 or who have music as an extra
curricular activity or whose address is k. With respect to the weights of the edges, Equation (6) in
Definition 11 gives us the answer. For instance, person 6 matches person 11 in the answers of the
variables X1 and X2, this is to say, both people live in city A and have the same workplace. Then,
the edge v6v11 has weight w6 11 = 0.5 + 0.25 = 0.75. Figure 2 shows the obtained graph.

Figure 2. Graph obtained from D.

3.4. Graph-Based SIR Model

Having described a population with a network model, the spreading of an epidemic
is modeled by a dynamic system that uses the graph (in our case an edge-weighted graph)
as its support. The class of chosen model is the probabilistic cellular automata (see [25]),
this is to say, the model in which the events happen at times t = 0, ∆t, 2∆t, . . ., where ∆t is
the discretization interval. In this work, we use a graph-based SIR model in which each
individual is represented by a vertex in an edge-weighted graph. At time t, each vertex vi
is in a state vt

i belonging to S = {0, 1,−1}, where 0, 1 and −1 represent the three discrete
states: susceptible (S), infected (I), and recovered (R).

Let G be the edge-weighted graph obtained from a database D and vi ∈ V(G). We set

NI(vi) = {v ∈ N(vi) : v ∈ I}. (7)

At time t + ∆t, the vertex vi will change state according to probabilistic rules:
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1. The probability (PI(vi)) that a susceptible vertex vi is infected by one of its neighbors
is given by

PI(vi) = ∑
vj∈NI(vi)

ρ∆t · w̃ij, (8)

where ρ is a purely biological factor and representative of the disease.
2. The probability (PR(vi)) that a infected vertex vi at time t will recover is given by

PR(vi) = δ∆t, (9)

where δ is the recovery rate.

Moreover, we assume that the disease is present for a certain period of time and, when
individuals recover, they are immune.

Remark 2. Notice that the expression (8) can be deduced from the infection model called q-influence,
assuming q = ρ. (see [26,27]).

4. Simulation of Disease Spread

In this section, we choose predetermined values for the parameters changing only one
of them at a time, observing the effects on the epidemic. For a given type of graph, these
parameters are: the order of the graph (n = 1000), the mean degree of its vertices (m = 6),
the representative factor of the disease (ρ = 0.015), the amount of relation variables of
database (K1 = 20), and the amount of classes (c = 6). The initial population contains one
infected individual and all the simulations were done on a random and scale-free graph and

considering δ =
1

15
. Moreover, the software in which the simulations were run correspond

to Matlab in its R2020b version. Finally, the source code of our analysis and network files
are accessible through the Github link: https://github.com/RonaldManriquez/Spread-of-
disease.git (accessed on 20 February 2021).

We want to study the effects of these parameters on two characteristics of the disease:
the number of total infected and the duration of the disease. We have reparameterized the

number of total infected
(

I(T)
N

)
while the duration of the disease is simply the end of it,

this is to say, when the infected are 0.
We simulated 30 epidemic spreadings on two graphs: a random graph and a scale-free

graph to see how epidemics differ from each other (see Figure 3a,b).

(a) Random graph (b) Scale-free graph

Figure 3. Epidemic spreading on random and scale-free graph simulation.

https://github.com/RonaldManriquez/Spread-of-disease.git
https://github.com/RonaldManriquez/Spread-of-disease.git
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In both cases, the number of total infected is between 600 and 750 individuals and
the duration of the disease around 150–200 time units. We concluded then that epidemics
do not differ from each other. In a simple analysis, the peak in the scale-free graph occurs
before the case of the random graph. Perhaps the above is because, in the scale-free graph,
the disease spreading is faster.

4.1. Order of the Graph

To study the graph size influence on the duration of the disease and the fraction of
infected, we have considered six different sizes of graphs, these are 100, 500, 800, 1000,
1500, and 2000. In each one of them, we did 200 simulations. The results are shown in
Figures 4 and 5.

(a) Random graph (b) Scale-free graph

Figure 4. Duration of the disease in random and scale-free graph.

(a) Random graph (b) Scale-free graph

Figure 5. Fraction infected in random and scale-free graph.

Figure 4 shows that the end of the disease is farther for the random graph than the
scale-free graph. The random graph has around 350 time units as a maximum, while the
scale-free graph has around 250 time units. This is to say, in the last case, the disease
epidemic is shorter. This is a constant for each size of the graph.

With respect to the fraction of the infected, the random graph is more homogeneous
in the numbers of individuals that get infected with a little influence from the size, while,
in the scale-free graph, the fraction of infected is decreasing when the size is increasing.



Int. J. Environ. Res. Public Health 2021, 18, 4432 11 of 25

4.2. Representative Factor of the Disease (ρ)

In this subsection, we study how the representative factor of the disease (ρ) affects the
two epidemic parameters we are interested in. We did 1000 simulations with values of ρ
randomly sampled from a uniform distribution between 0 and 0.03. In Figure 6a, we show
the change of the fraction of infected in function of ρ and in Figure 6b the variation of end
of the disease according to ρ.

(a) (b)

Figure 6. Fraction of infected for different values of ρ (a); end of the disease for different values of
ρ (b).

Notice that, from ρ = 0.015, the fraction of infected tends more clearly to 1, while near
ρ = 0.005, close to 1% of the population is infected. On the other hand, when ρ is close to
0.01, the disease has a longer duration (very close to the value by settings).

4.3. The Mean Degree of Vertices

The next variable to study is the mean degree of each vertex of the graph. For this
purpose, we ran 500 simulations for each graph with a mean of degree equal to 2, 4, 6, 8,
10, and 15. Figures 7 and 8 show the fractions of infected and the duration of the disease.

(a) Random graph (b) Scale-free graph

Figure 7. Duration of the disease in random and scale-free graph.
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(a) Random graph (b) Scale-free graph

Figure 8. Infected fraction in random and scale-free graph.

For the random graph, in the fraction of infected, it is clear that, the larger the average
number of contacts, the more infected we will have. This should not be strange because
the more contacts, the more likely you are to be infected. The case for d = 4 is curious since
it presents greater heterogeneity in the simulations.

In the case of the scale-free graph, something similar happens to the case of the random
graph. The case d = 4 is also the most heterogeneous, but to a lesser degree than in the
case of the random graph. We calculate the medians of each simulation for each d to better
see the influence from the mean value of the vertices on the infected fraction, as shown in
Figure 9. (We choose the median to reduce the bias of extreme data close to zero).

Regarding the duration of the disease, we have in the scale-free graph that, as the
average number of neighbors (d) increases, the duration of the disease decreases, but not
as fast as in the case of the random graph and also the duration is lower in each vertex
average with respect to the random graph.

Figure 9. Median for random and scale-free graph in fraction of infected.

4.4. Amount of Relation Variables

Studying the effects of this parameter is important because it is a factor that is not
always considered when it comes to modeling the spread of diseases on networks. It is clear
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that, by changing the amount of variables, the weights assigned to them and consequently
the weights assigned to the links of the graph also change. To see this effect, first let’s see
how the link weights change when modifying the amount of variables.

As this assignment is independent from the type of graph, we have only made
the changes on a random graph. Our focus was placed on the variation of the av-
erage strength that each vertex has, considering 10 different values for K1, these are
6, 8, 12, 20, 30, 45, 55, 70, 90, and 100. To properly observe the effect on the strength of the
vertices, we calculate the average strengths of the vertices for each value of K1. Figure 10
shows the results. It can be clearly seen that increasing the amount of variables increases
the strength of each vertex.

Figure 10. Average strength of vertices for each value of K1.

As the probability of being infected depends on the strength of the neighbors, it is
clear that this parameter has effects on the spread of a disease in a graph. One hundred
simulations were run on each graph. Figures 11 and 12 show the duration of the disease
in random and scale-free graph for each value of K1. Figure 13 shows the effects of this
parameter on the fraction of infected.

(a) K1 = 6 (b) K1 = 8

Figure 11. Cont.
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(c) K1 = 12 (d) K1 = 20

(e) K1 = 30

Figure 11. End of disease for different K1 in random and scale-free graph.

(a) K1 = 45 (b) K1 = 55

Figure 12. Cont.



Int. J. Environ. Res. Public Health 2021, 18, 4432 15 of 25

(c) K1 = 70 (d) K1 = 90

(e) K1 = 100

Figure 12. End of disease for different K1 in random and scale-free graph.

To better understand the figures above, we compute end-of-disease averages for each
K1 value. It can be observed in Figure 14 that scale-free graph has a shorter duration on
average (as it has been verified when studying the effects of other parameters). There is
also a tendency to stabilize around 120 time units on average.

Figure 13. Average infected for the different values of K1 in random and scale-free graph.
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Figure 14. Average end of disease for different K1 in random and scale-free graph.

On the other hand, in the same way, to better study and see the effects of this parameter
on the fraction of infected, the means of each simulation were calculated for each value of
K1. Figure 13 shows the results.

Notice that the number of infected is slightly higher in random graphs.

4.5. The Amount of Classes

The amount of different classes is also a parameter that our proposal considers. Al-
though this is a factor that is determined exclusively by the researcher, we want to study its
direct influence on the two characteristics of the disease. Notice that, only by changing the
amount of variables, their weights’ assignment change and, consequently, the weights of
the links in the graph change as well. The same happens if the amount of classes changes.
To see this effect, let’s first see how the weights link change when the amount of classes
changes. We have considered the following values for c: 1, 3, 6, 15 and 20. The average of
these strengths is seen in Figure 15.

It is clear that, if the amount of classes tends to be the number of variables, then
the average strength of the vertices decreases. It is also observed that the decrease is
possibly exponential.

On the other hand, we have done 200 simulations for each one of these different values
of c on each type of graph used throughout this work and, with this, to see the effects on
the fraction of infected and the end of the disease. Figures 16 and 17 show the results.

Figure 15. Average strength of vertices for each value of c.
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Figure 16. Infected average for the different values of c in random and scale-free graph.

Figure 17. Average end of disease for different c in random and scale-free graph.

5. Deterministic Approximation

Despite the previous conclusions, with respect to the different simulations, we will
show an approximation of Susceptible, Infected, and Recovered curves through a dif-
ferential equation system. The idea is to obtain a differential equation system with the
parameters that define the graph.

Let I(t) ∈ [0, N] be the number of infected individuals between two consecutive
(discrete) times, i.e.,

I(t + ∆t) = I(t)− δ∆tI(t) + ρ∆tϕ(t)(N − I(t)− R(t)), (10)

where ϕ(t) is an estimate of the mean value of strength of infected neighbors for every
susceptible individual. In order to get ϕ(t), we assume that m is the neighbors average and

that a proportion of these neighbors, we say
I(t)
N

, is infected. On the other hand,

S =
∑N

i=1 S(vi)

N
=

∑N
i=1 ∑vj∈N(vi)

w̃ij

N
(11)

is the average strength of the graph. Then,

ϕ(t) = S · I(t)
N

. (12)

Replacing the Equation (12) in (10) and as N = S(t) + I(t) + R(t), then

I(t + ∆t) = I(t)− δ∆tI(t) + ρ∆t · S I(t)
N

S(t). (13)
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Dividing by ∆t and taking the limit as ∆t→ 0, we obtain

İ(t) =
ρ · S

N
I(t)S(t)− δI(t). (14)

In the same way, we obtain the equations

Ṡ(t) = −ρ · S
N

I(t)S(t) (15)

Ṙ(t) = −δI(t). (16)

We can see that the Equations (14)–(16) are the same as those defined for the SIR model.

From there, we can see that β =
ρ · S

N
.

If the previous deductions are done on a not edge-weighted graph, then we obtain

that β =
ρ ·m

N
. If w is the average of weights, then S = w ·m. It is clear that, if w = 1, then

we are in the case where the graph is not an edge-weighted graph.
The above is valid only if the population is mixed, the graph has a fixed contact struc-

ture, and all vertices have approximately the same number of neighbors and approximately
the same strength. However, the last condition is a stronger condition and certainly; it
is not true, even to assume S = w ·m can be a mistake because w could be unrepresenta-
tive. For instance, in Section 4, the average strengths are not representative in the initial
simulation since the strengths are strongly heterogeneous (see Figure 18).

Figure 18. Strength of each vertex.

When the strength and weight average are not representative, there is an overestima-
tion of the infected individuals and the duration of the disease is lower. (see Figure 19a).
Moreover, if we consider w = 1 like in the case of the non edge-weighted graph, we have
a sub-estimation of the infected individuals and the duration of the disease is upper (see
Figure 19b). Certainly, without considering S = w ·m, the fit is better, but not really good
(because S is not a good representative) (see Figure 20).
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(a) Fit for S and w not representative. (b) Fit for w = 1.

Figure 19. Different fit for w.

Figure 20. Curves fitted without considering S = w ·m.

After many simulations (1000), we have noticed that a simple approximation to β is
the average between S and m, in the case where the strength of vertices is not strongly

homogeneous (see Figure 21). Thus, if ψ =
S + m

2
, we have

Ṡ(t) = −ρψ

N
I(t)S(t) (17)

İ(t) =
ρψ

N
I(t)S(t)− δI(t) (18)

Ṙ(t) = −δI(t). (19)



Int. J. Environ. Res. Public Health 2021, 18, 4432 20 of 25

Figure 21. Fitted curves in a random graph with ψ =
S + m

2
.

A similar problem is treated in [28] in the case of a non edge-weighted graph, where a
graph has a heterogeneous distribution degree of vertex (scale-free graph).

6. Modeling

The modeled data were obtained from the database of the Epidemiological Surveil-
lance System of the Chilean Ministry of Health, with the approval of the ethics committee
of the Faculty of Medicine of the University of Valparaíso (Act No. 15/2020). This system
is the official system of the country and allows health management of notifiable diseases,
including COVID-19. For the purposes of this study, the database from Olmué city (Val-
paraíso Region) was used, which included reported cases (positive or negative) and their
contacts from 3 March 2020 to 15 January 2021 with n = 3866 registered persons. Figure 22
shows the evolution of the infected per week.
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Figure 22. Infected from March 2020 to January 2021, Olmué city (Chili).

To fit a curve to the data following the SIR model, we used the classic method of
least squares. The values for the β and δ parameters are 0.4349 and 0.0937, respectively.
Figure 23 shows the fitted curve.
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Figure 23. Fitted curve from real data of Olmué city, Chili.

On the other hand, from the total of variables included in the database (K = 279),
seven of them are relationship variables (K1 = 7). They are: full address (X1), the street
where the people live (X2), town (X3), place of work (X4), workplace section (X5), health
facility where they were treated (X6), and the region of the country where the test was
taken to confirm, or not, the contagion (X7).

In our criteria, the hierarchical order of the seven variables in descending form is
X1,X2,X3,X4,X5,X6,X7. Moreover, we consider that the variables X1,X2 and X3 have the
same weight. In the same way, we also consider the variables X4 and X5 with equal weight.
Hence, A1 = {X1,X2,X3}, A2 = {X4,X5}, A3 = {X6} and A4 = {X7} are the different
classes that are defined by the different weights. Hence, by Definition 10,

p1 =
3
7

, p2 =
2
7

, p3 =
1
7

, p4 =
1
7

.

Figure 24 shows the obtained graph.

Figure 24. Graph obtained from database of Olmué city, Chili, with 3866 vertices and 6,841,470 edges.
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We have run some simulations of the spread of the disease on the graph obtained from
the data base of the city of Olmué, considering the recovery rate δ = 1

14 and ρ = 0.00125.
The results are in Figure 25.
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Stochatic approach

Figure 25. Simulations on graph obtained in Figure 24.

Figure 26 shows the real data, the fitted curve, and the stochastic approach.
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Figure 26. Real data (black), stochastic approach (blue), and fitted curve (red).

Notice that, in this case, it is not possible a deterministic approximation like in
Section 5 because the average strength is not a good representative.

7. Discussion

Our proposal confirms the possibility of obtaining an edge-weighted graph from
individuals registered in a database. The decision to incorporate weights on its edges
is an attempt to quantify the ties between individuals. An important assumption for
the quantification of these weights is to recognize a certain value in each variable or a
certain hierarchical order between them, that is, to identify which variable (s) is (are)
more important than others and defining an order. In this way, it is possible to define
the so-called classes of variables (that is, each class is defined by variables that have the
same value or defined hierarchical order), since it is possible that two or more variables
have the same value or hierarchical order. This is similar to the stated by Enright &
Raymond, who hold that the weighting of the edges is relevant for a more comprehensive
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understanding of the disease dissemination processes, without losing information provided
by the network [12]. In particular, this research provides an approach that relates population
groups and discrimination variables of greater or lesser force for the spread of diseases,
which allows for understanding the level of interaction between people. This, for Keeling
& Eames, is paramount for understanding infectious diseases [29].

Consequently, for the case study (Olmué city), the model was adjusted to the spread of
the disease, both in the number of people with COVID-19 and the duration of the disease.
This shows that both the theoretical and practical development are useful from a public
health perspective. This is relevant due to the weighting of the relationship variables.

Likewise, our proposal of weighted graphs obtained from a database would be useful
for health organizations and scientific teams as a tool for the modeling of infectious diseases
through a database in order to establish priority variables in the understanding of these
health events, in public health surveillance, and in the establishment of measures for the
prevention of infections with greater certainty [16,30]. For this reason, it is important to
have standardized databases that allow the evolution of health problems to be analyzed
with a greater degree of complexity [31]. As an example, the COVID-19 database could
contain other relationship variables that would allow us to know the interaction between
people who are susceptible to get infected or who are sick with SARS-COV2. In summary,
we believe it is relevant to continue with data collection efforts in a systematic way by
scientific and governmental organizations [32].

Our work coincides with the stated by Keeling & Eames regarding the integration of
complex networks and their limitations in relation to having an adequate volume of data
to represent infectious diseases [29]. However, the limitations that the authors mention
are diminishing, since, for the management of infectious diseases, most of the countries
make greater efforts in the systematization of information [33], as well as the COVID-19
pandemic has reaffirmed these actions.

After performing simulations to study each effect of the parameters described, we
can point out that, regardless of the parameter that is intervened, the durations of the
diseases are shorter on scale-free graphs than on random ones. This may be due to the
heterogeneity and recognition of infectious disease propagators provided by free-scale
graphs [29]. For its part, the number or fraction of infected is always greater on random
graphs than on scale-free graphs. The only parameter in which this was not evident is for
the purely biological disease factor ρ. This would be generated because the random network
does not discriminate the level of targeted contacts and gives the chance of contagion [29].
An interesting fact is the case where we vary the amount of classes. If the class number
tends to be the same as the amount of variables, the average strength increases, and this
means that the fraction of infected also increases.

We believe that it would be very interesting, and complementary to our proposal,
to carry out simulations on other types of graphs, for example graphs of small worlds
and their different variations. It is very likely that the spread of diseases on these graphs
differ from the results obtained on the graphs used in this work. Studying the effects of
other parameters on the disease would also be beneficial. For example, we believe that an
interesting factor would be the number of initial infected and what it happens if they are
neighbors or to what extent the disease spreads more with respect to the distance between
them. In this same sense, varying the strength of the infected vertex would also give us
new information.

The deterministic approach is undoubtedly a useful tool, but it lacks being generic,
in the sense that in order to make use of it, some fairly strong assumptions are necessary,
they are the homogeneity in the number of neighbors and the average strength for each
vertex. Therefore, in scale-free graphs, we cannot use this approximation since the average
of neighbors by vertices is not representative from the reality of the graph.

The importance of having accurate models able to explain the spread of epidemics and
resemble reality lies in understanding it for the development of effective defense strategies
against contagious diseases. Current demands drive progress in this field, which will
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undoubtedly continue to grow. It is important to mention that these types of contributions
are only one dimension in the understanding of epidemic events. In this sense, for a
holistic approach, it is necessary to include analyses of different disciplines such as the
social, biological, and health sciences and, above all, the meanings that populations give
to pandemics.
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