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Abstract: An intrabody nanonetwork (IBNN) is composed of nanoscale (NS) devices, implanted
inside the human body for collecting diverse physiological information for diagnostic and treatment
purposes. The unique constraints of these NS devices in terms of energy, storage and computational
resources are the primary challenges in the effective designing of routing protocols in IBNNs.
Our proposed work explicitly considers these limitations and introduces a novel energy-efficient
routing scheme based on a fuzzy logic and bio-inspired firefly algorithm. Our proposed fuzzy
logic-based correlation region selection and bio-inspired firefly algorithm based nano biosensors
(NBSs) nomination jointly contribute to energy conservation by minimizing transmission of correlated
spatial data. Our proposed fuzzy logic-based correlation region selection mechanism aims at selecting
those correlated regions for data aggregation that are enriched in terms of energy and detected
information. While, for the selection of NBSs, we proposed a new bio-inspired firefly algorithm
fitness function. The fitness function considers the transmission history and residual energy of NBSs to
avoid exhaustion of NBSs in transmitting invaluable information. We conduct extensive simulations
using the Nano-SIM tool to validate the in-depth impact of our proposed scheme in saving energy
resources, reducing end-to-end delay and improving packet delivery ratio. The detailed comparison
of our proposed scheme with different scenarios and flooding scheme confirms the significance of
the optimized selection of correlated regions and NBSs in improving network lifetime and packet
delivery ratio while reducing the average end-to-end delay.

Keywords: intrabody nanonetworks; fuzzy logic; firefly algorithm; energy-efficient routing protocol;
electromagnetic communication in the terahertz band

1. Introduction

The introduction of wireless technology in the healthcare environment is an effort to provide
significant convenience and accessibility. Wireless medical technology in medicine, such as body
area networks, has already made a significant impact on hospital systems, where placement of
sophisticated wireless devices around the body provides ambient assisted living, remote health
monitoring and telemedicine services [1,2]. Nanotechnology is further boasting the potential of
Intrabody Nanonetworks (IBNNs) for a wide range of medical applications such as healing spinal cord
injuries [3], detection of cancer bio-markers [4–6], drug delivery [7] and improved diagnosis [8].
IBNNs are composed of miniature size Nano Biosensors (NBSs) that are capable of obtaining
fine-grained data with unprecedented accuracy from specific anatomical areas for monitoring and

Sensors 2020, 19, 5526; doi:10.3390/s19245526 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6537-7691
https://orcid.org/0000-0001-5424-915X
https://orcid.org/0000-0001-9497-5738
https://orcid.org/0000-0002-6095-4557
http://dx.doi.org/10.3390/s19245526
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/24/5526?type=check_update&version=2


Sensors 2020, 19, 5526 2 of 26

diagnosis purposes. Due to their small size and better electronic properties, these NBSs have the
potential to operate inside the human body without interrupting cellular biological function. One of
the types of these NBSs is surface plasmon resonance sensors, which have already been deployed for
effectively diagnosing various types of cancers and cardiovascular diseases [9,10].

The tremendous potential of IBNNs in revolutionizing healthcare structure is confined by
several fundamental limitations including, Nanoscale (NS) communication challenges and inadequate
resources of NBSs in terms of energy, storage and computation [9,11]. In the last few years, research
communities focused their attention on addressing these primary challenges for realizing the broader
scope of IBNNs. In the context of enabling NS communication, electromagnetic communication in
the Terahertz Band (THz) has received significant consideration [10,12]. The immense opportunities
brought by electromagnetic communication in THz band such as extremely high data communication
speed are leading to the development of new electromagnetic-based communication schemes [13,14].
The development of novel schemes for IBNNs also requires an in-depth comprehension of the intense
energy constraint of these NBSs for effective outcomes. The extreme energy constraint of these NBSs
are elaborated as- a single NBS has a maximum energy of 800pJ and during single transmission of a
120-bit long data packet it consumes about 10% of its available energy [15]. Thereby NBSs are capable
of transmitting only 8 data packets with the maximum energy they may harvest. Therefore, energy
efficiency is regarded as the key attribute of the communication protocol for prolonging the lifetime
of IBNNs. However, fulfilling the demand for increased network lifetime while ensuring continuous
data monitoring and transmission for effective diagnosis and treatment is a laborious challenge for
severe energy constraint NS devices.

Concerning the requirement of enabling energy-efficient communication in IBNNs past recent
years witnessed a few works that explicitly addressed the communication challenges of IBNNs [15–18].
However, since routing protocols within IBNNs for efficient data collection are at its infancy, therefore,
more efforts are required. The presented work is also an effort towards realizing energy-efficient
communication for prolonging the lifetime of IBNNs. In this work, we have considered the well-known
fact that sensor node consumes their maximum energy during data transmission. Correspondingly,
as mentioned before that NBSs consume about 10% of their available energy during one single
transmission and accumulating energy consumption of all the NBSs in response to single request
messages consequently results in almost 50% consumption of energy resources. The presented work
considers this immense decrease in network energy and proposes an alternative approach for the
energy-efficient data collection.

In our proposed protocol, we have clustered NBSs into spatially correlated regions and instead of
collecting data from all implanted NBSs, an optimum number of NBSs are selected. Avoiding collecting
data from all spatially correlated NBSs and selecting the optimized number of NBSs leads to low energy
consumption during the data aggregation process. Moreover, ensuring the involvement of enough
NBSs for data reporting also helps in achieving a high level of data accuracy. The selection of correlated
regions is performed through the Fuzzy Logic-Based Decision System (FLBDS). The underlying
motivation behind using fuzzy-based controlled decisions is its high potential for making energy-aware
decisions without using complex mathematical modeling. While the selection of NBSs from nominated
correlated regions is performed using the bio-inspired firefly mechanism. Firefly algorithm is a
meta-heuristic algorithm inspired by the flashing pattern and behavior of fireflies; it determines the
optimum solution with low complexity that supports in realizing the goal of low energy consumption
during the data collection in IBNNs. The main contributions of our proposed work are underlined as:

1. In this work, we proposed a new FLBDS selection mechanism for correlated region selection.
Our proposed FLBDS technique ensures the selection of those correlation regions for data
aggregation that has updated information and maximum residual energy. The proposed FLBDS
selection resulted in improved information accuracy and stabilized energy consumption in the
event area.
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2. We proposed a novel bio-inspired firefly algorithm selection mechanism for evading spatial
correlation in the reported data. Our proposed bio-inspired firefly algorithm regulates the
nomination of NBSs based on their fitness value. The proposed fitness criteria prevent exhaustion
of individual NBSs and consume maximum energy resources of NBSs in transmitting crucial
information while preventing the transmission of redundant information.

3. Our proposed work is evaluated by carrying out extensive simulations using the Nano-SIM tool
that is an emerging tool integrated into NS3 for simulating electromagnetic-based nanonetworks
in the THz band [19]. The detailed simulations investigate the performance of our proposed
scheme in comparison with different scenarios and the flooding scheme [19]. The different
scenarios opted for comparison are briefly explained as; in the first scenario, we involved all the
correlated regions (i.e., without employing FLBDS correlated region selection) and only selected
optimum number of NBSs using bio-inspired firefly algorithm. Whereas in the second scenario,
we selected only information and energy enriched correlated region with the involvement of all
the NBSs in response message generation.

We have organized the rest of the paper as follows: Section 2 discusses FLBDS, bio-inspired
and existing routing schemes for IBNNs in detail. In Section 3, we thoroughly demonstrate the
proposed fuzzy logic and bio-inspired firefly algorithm based routing scheme. Section 4 deals with
the performance evaluation, simulation results and provide an extensive comparison with different
scenarios and flooding scheme. In Section 5, we finally draw up the conclusion.

2. Related Work

Over the past decade, the need for realizing IBNNs has gained considerable attention. The existing
work emphasized on the development of novel low-complexity communication protocols for IBNNs.
In this section, we briefly discuss the feasibility and scope of FLBDS and bio-inspired firefly algorithms
for IBNNs as our proposed protocol combines these concepts for realizing low-complexity routing
protocol. Further, we have discussed the advantages and limitations of existing routing protocols in
the rest of this section.

2.1. Fuzzy Logic-Based Decision Systems (FLBDS)

After FLBDS was proposed in 1965 [20], researchers adapted them in various directions, including
expert systems and artificial intelligence. FLBDS are based on simple concepts, consisting of an input
stage, a processing stage and an output stage. The input stage maps inputs to the suitable membership
functions. The processing stage invokes a set of rules, which generates a result for each input and
combines the results of the rules. Finally, the output stage converts the combined result back into a
specific control output value [21]. The most common membership functions used in the literature are
triangular, trapezoidal and bell curves [22]. FLBDSs attributes such as low complexity, high flexibility
and applicability for an uncertain environment raise its support in Wireless Sensor Networks (WSNs).
In WSNs, FLBDSs have been used to improve forwarding decisions and quality of service. In the state
of the art literature, the use of FLDBS in developing a clustering-based routing algorithm handles
more effectively the challenge of routing associated with an uncertain environment. Besides, it also
optimizes the selection of routing metric used by enabling the combination and evaluation of diverse
parameters in an efficient manner [23–25].

In Table 1, we further shed more light on the contribution of the FLBDS on strengthening the
performance of WSNs. From Table 1, we comprehend that the low complexity decision process of
FLBDS advocates it as a perfect choice for improving the decision process in IBNNs.
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Table 1. The impact of employing a Fuzzy Logic-Based Decision System (FLBDS) in improving
performance of Wireless Sensor Networks (WSNs).

Protocol Name Purpose of Using FLBDS Impact on Performance

Fuzzy-Logic-Based Energy Optimized Routing
for WSNs [23].

Optimize next-hop selection
considering the energy of
the next-hop and closeness
to the shortest path and the sink.

Extended network lifetime,
energy efficiency and energy
balance.

Cluster-head Election using Fuzzy Logic for
WSNs [24].

Selection of cluster heads on the
basis of energy and concentration.

A significant increase in
network lifetime.

Multi-Sensor Data Fusion in Cluster-based WSNs
Using Fuzzy Logic Method [25].

Data processing and fusion is carried
out using fuzzy rule-based system.
Cluster heads process collected information
using the fuzzy rule-based system.

Reduce false alarm rate
by improving the reliability and
accuracy of the sensed information.

A Fuzzy Logic-Based Clustering Algorithm
for WSN to Extend the Network Lifetime [26].

Appropriate cluster head selection
based on residual energy, base station
mobility and cluster centrality.

Improved network lifetime and
stability.

Cluster Head Selection in WSNs
under Fuzzy Environment [27].

Cluster head selection on the basis of
residual energy, neighbors density,
and the distance.

Prolonged network lifetime.

Swarm intelligence based fuzzy routing
protocol for clustered WSNs [28].

Balanced clustering of nodes and
efficient selection of cluster head
based on residual energy, distance,
and cluster centroid.

Support heterogeneous applications,
improved network lifetime and
balanced cluster generation.

Improving on LEACH Protocol of WSNs
Using Fuzzy Logic [29].

Sink calculates the chance of each
node to become a cluster head.

Make a better selection of
cluster head for energy saving.

CHEF: Cluster Head Election mechanism using
Fuzzy logic in WSNs [30].

Optimize cluster head selection based
on the residual energy and local
distance.

Prolonged network lifetime

Fuzzy-Logic-Based Clustering Approach for
WSNs Using Energy
Predication [31].

Improved cluster head selection
on the basis
of its residual energy and expected
energy for the next round.

Energy efficiency

Energy Efficient Cross-Layer Routing Protocol
in WSNs Based on Fuzzy Logic [32].

Fuzzy logic-based
next-hop routing decision. Maximize network lifetime

A clustering routing protocol for WSNs
based on type-2 fuzzy logic and ACO [33].

Fuzzy logic-based cluster head selection
based on residual energy, neighbor
nodes density and distance.

Improved load balancing
and network lifetime

An energy-aware fuzzy approach to unequal
clustering in WSNs [34].

Using fuzzy logic approach to handle
uncertainties in cluster-head radius estimation. Energy-efficient data aggregation

MOFCA: Multi-objective fuzzy clustering algorithm
for WSNs [35].

Energy-based fuzzy competition is
carried out for cluster head nomination . Prolonged network lifetime

2.2. Bio-Inspired Based Schemes

The adaptation of nature-inspired solutions in science and engineering has brought great
communication benefits. Swarm intelligence based algorithms such as ant colony optimization [36],
artificial bee colony [37], firefly algorithm [38] have the capabilities of handling complex problems with
simple rules or methods. In WSNs, swarm intelligence based routing protocols utilizes the forging
behavior of small insects for solving complex routing problems [39].

In ad-hoc networks, exploitation of self-organizing capabilities of natural species provides
scalability, robustness and effectiveness [40]. The last few years also witnessed the scope of bio-inspired
approaches in vehicular ad-hoc networks due to their close communication similarity with the natural
species. Bio-inspired vehicular ad-hoc networks routing protocols provide better scalability, robustness,
low computational complexity and adaptability as compared to traditional vehicular ad-hoc networks
routing protocols [41]. Similarly, in the context of the internet of things, bio-inspired routing techniques
are nominated as a suitable choice for handling the routing challenge of frequent changing topology
and network object diversity [42].

Firefly algorithm low complexity among other metaheuristic algorithms has attracted much
attention in the last decade [43]. The minimum computation cost of the firefly algorithm in terms of
time has led to its adaptation in various applications, including digital image compression [44], antenna
design [45], traveling salesman problem [46], security [47–49] and multi-modal optimization [50].
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In the WSNs, firefly algorithm has also been adapted for handling different problems such as node
localization [51,52], energy-efficient data collection [53] and cluster head selection [54–56]. From the
contributions brought by the firefly algorithm in WSNs, we comprehend that the incorporation of
a bio-inspired firefly algorithm in IBNNs ensures a higher probability of achieving low-complexity
energy-efficient data routing. In Figure 1, we have further emphasized the impact of the firefly
algorithm in improved WSNs performance that is further paving the way for its adaptation in IBNNs.
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Figure 1. The impact of employing firefly algorithm in improving the performance of WSNs.

2.3. Network Communication Protocols for IBNNs

Due to the severe constraints of IBNNs regarding energy, transmission range, storage and
computational capabilities, the general routing protocols for nanonetworks are not directly applicable
in IBNNs. Therefore, in this section, we specifically discuss the existing routing protocol proposed for
IBNNs. The selective flooding scheme presented in Reference [19] conserve the limited resources of
IBNNs by controlling the direction of forwarded packets for reducing energy consumption and saving
bandwidth. In another effort to save energy consumption, a protocol stack for IBNNs is proposed in
Reference [15]. The proposed protocol stack introduces two different protocols at the network layer for
prolonging the network lifetime. In the greedy scheme, the node with the maximum energy is selected
for responding to the request message received from the healthcare monitoring system. The low
complexity of the greedy scheme points it as the most suitable approach for conserving energy resources
in IBNNs. Another energy conservation scheme presented in Reference [17] introduces nanocluster
controllers for performing data aggregation. NBSs transmit data to the closed positioned nanocluster
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controller that helps in reducing energy consumption. The work presented in Reference [57] thoroughly
investigated IBNN and studied the energy harvesting options available for prolonging the life span of
NBSs. In the view of the characteristics of the existing energy conservation scheme, we conclude that
our proposed scheme differentiates from the state of the art schemes in the following ways:

1. In our proposed work, we select information and energy enriched spatially correlated region for
data transmission. While Afsana et al. [17] elects nanocontrollers for aggregating data from their
respective layers, which increases the complexity of resource constraint IBNNs. Our proposed
FLBDS selection is a low complexity solution for correlated region selection. Moreover, it also
reduces the transmission of redundant and invaluable information.

2. In our proposed scheme, we limit the number of transmission of forwarding packets by selecting
those NBSs for generating response messages, located at a minimal distance from nanorouter.
This selection criterion decreases the possibility of multi-hop communication.

3. Our proposed scheme selects the optimum number of NBSs based on different fitness parameters,
the selection of the optimal number of NBSs ensures that data is collected from enough number of
NBSs to achieve data accuracy. Whereas the greedy scheme selects only one node for transmitting
answer messages based on remaining energy. The selection based on solely differentiates energy
while ignoring the distance from the nanorouter results in an increased number of forwarded
packets. In addition, data transmission from only one node for energy consumption can also
significantly compromise the data accuracy.

3. Fuzzy Logic and Bio-Inspired Firefly Algorithm Based Routing Scheme

In this section, we proposed a fuzzy logic and bio-inspired firefly algorithm based routing scheme.
The main objective of our proposed scheme is to increase the probability of enriched information
transmission while maximizing the lifetime of implanted NBSs. Our proposed scheme realizes the goal
of energy-efficient data routing by dividing the data transmission process from NBSs to nanorouter
into three different phases, briefly explained in this section. Furthermore, Figure 2 also elaborates on
the complete working of our proposed scheme.

• First Phase: In the first phase, nanorouter nominates information and energy enriched regions
from the accumulated number of correlated regions—configured during network setup time.
The Fuzzy logic-based decision ensures the selection of only those regions that have maximum
enrichment values for energy and information. The selection of correlated regions supports in
achieving the ultimate goal of important information retrieval with balanced energy consumption.
After the selection of participating correlated regions for data reporting, nanorouter broadcast
request messages (PRqM) only for selected correlated regions. Those correlated regions that are
excluded from data reporting cannot generate feedback message (PFB) and response message
(PRM). Avoiding data aggregation from correlated regions that have not valuable information
results in evading unnecessary data transmission and saving of energy resources.

• Second Phase: In the second phase, NBSs selection is carried out using the firefly algorithm to
support further the objective of reduced redundant data transmission, increased probability of
retrieving crucial information and prolonged lifetime of NBSs. Since NBSs located in the correlated
regions are assumed to be spatially correlated, which transmit similar types of information.
Therefore, the selection of NBSs using the proposed firefly algorithm from selected correlated
regions minimize aggregation of the same information. For selecting NBSs, nanorouter determines
the fitness of NBSs using the information transmitted by the NBSs in the feedback messages
(PFB). The feedback message (PFB) contains the information about the priority bit (i.e., the value
set to 1 or 0 according to the criticality of the last transmitted message) and residual energy of
the NBS. The proposed fitness function ensures the selection of those NBSs for data reporting
that have maximum residual energy, minimum distance from the nanorouter and have valuable
information. These fitness criteria lead to improved network lifetime of NBSs and increase the
probability of receiving important information.
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• Third Phase: After selecting NBSs, nanorouter broadcasts announcement message (PAM) to notify
selected NBSs to generate response messages (PRM). Finally, in the third phase, selected NBSs
transmit response messages (PRM) to the nanorouter.
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Figure 2. The complete working of the routing scheme proposed in this work.

3.1. System Architecture

A possible healthcare monitoring system is composed of an IBNN and an external healthcare
system. IBNN consists of two kinds of nanodevices, namely, NBSs and nanorouters implanted inside
the human body. NBSs have severe constraints in terms of energy, transmission range, storage
and computational resources. While nanorouters have more resources than NBSs and they are
responsible for handling more complex operations such as collecting data from NBSs, performing
complex computational operations and transmitting collected information to the external healthcare
system using nanointerface. Nanointerface is connected to the external healthcare system through the
internet for remote data transmission. The communication is carried out until the IBNN is dead.
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Network Model Assumption and Definitions

We describe our network model as a undirected graph G = (V, E), where V denotes set of
NBSs and nanorouter (vertices), represented as V ∈ (nr, nbs) and E is the set of edges connecting
vertices. In a scenario where an edge is directly connecting nr and nbsi to each other, they are said to
be neighbors. The neighbors of router nr are defined as N(nr) = {nr|nr(nr, nbsi) ∈ E}. The one-hop
neighbor set of nr is a symmetric graph G′ = (V, E), where given any two pairs of adjacent vertices
nr—nbs1 and nr-nbs2 of V, bidirectional edge E exist.

Definition 1. When several NBSs are located in the transmission range of a nanorouter (ri), a cluster is formed
that is expressed as:

Clustermembers(nr) =

{
1 if {nbs1, nbs2, . . . nbsn} ∈ TR(nr),

0 otherwise
(1)

where TR(nr) is the transmission radius of the nanorouter nr. Nanorouter nr is responsible for collecting
detected information from its cluster members and transmitting it to the external healthcare system.

Definition 2. The transmission radius of a nanorouter (nr) is divided into small correlated region, such that
the value observed by the NBSs in that spatially correlated region are considered similar (for the application).
The correlated region of nanorouter nr are expressed as {cr1, cr2, cr3, crn} ∈ nr. Instead of collecting data from
all deployed NBSs, data is aggregated from the optimal number of NBSs, which is sufficient to represent the
correlated region CRi.

The size of the correlation region varies according to the type of application and event characteristics.
For those applications that demand a high level of accuracy, the size of the correlation region can be decreased.
While for the event characteristics that do not change significantly at a small range, the size of the correlation
region can be increased. In this work, the size of the correlated region is defined during the simulation setup time.

Definition 3. Participating correlated regions are selected before the data collection process based on the output
of the fuzzy logic decision, the detailed selection process is given in the Section 3.2.

Definition 4. NBSs selection from participating correlated regions is performed based on the bio-inspired firefly
algorithm fitness value. The complete process is demonstrated in the Section 3.3.

Definition 5. The lifetime of IBNN is evaluated based on the number of alive NBSs (m-in-k-of-n nodes) [58].
The total number of NBSs are divided into two groups; directed − neighbors − to − nanorouter and

non− directed− neighbors− to− nanorouter denoted as NBSD and NBSND, respectively. According to the
(m-in-k-of-n nodes) approach, the group of NBSND are characterized as non-critical NBSs, which means death
of k NBSs is allowed from NBSND. While no failure of NBSs from the group of NBSD is tolerable. Accordingly,
the network lifetime is elaborated as following:

The total number of NBSs available in the network are denoted as
︷︸︸︷
NBS = {nbs1, nbs2, . . . nbsn}, the set

of all the NBSs that are alive at the certain time t, expressed as U(t).

U(t) = {u | u ∈
︷︸︸︷
NBS∧ u alive at t}, | U(t) |= u(t), (2)

where ui is a NBS that belongs to the set of
︷︸︸︷
NBS, expressed as (ui ∈

︷︸︸︷
NBS), whose energy is not depleted. Now

set of NBSs that are part of the
︷ ︸︸ ︷
NBSD and

︷ ︸︸ ︷
NBSND are defined using Equation (3) and (4):

v(t) = {v | v ∈ (NBS,
︷ ︸︸ ︷
NBSND) ∧ v is non− directed− neighbors− to− nanorouter at t}, | V(t) |= v(t), (3)
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where (vi ∈
︷ ︸︸ ︷
NBSND) is a NBS that is a part of

︷ ︸︸ ︷
NBSND, while v(t) it is also a subset of U(t). Among all the

NBSs that are part of
︷ ︸︸ ︷
NBSND, only k number of NBSs can be dead.

w(t) = {w | w ∈ (
︷ ︸︸ ︷
NBSD) ∧ w is directed− neighbors− to− nanorouter at t}, |W(t) |= w(t), (4)

where (wi) is a part of
︷ ︸︸ ︷
NBSD group denoted as (wi ∈

︷ ︸︸ ︷
NBSD) and w(t) is also a subset of U(t), death of any

NBS from the group
︷ ︸︸ ︷
NBSD results in the death of the network.

3.2. Fuzzy Logic-Based Correlated Region Selection

In our proposed work, different correlated regions are selected for data reporting; the selection
decision of the participating region is performed using FLBDS, as demonstrated in Algorithm 1.
Our proposed FLBDS significantly overcomes the complexity overhead of the selection decision of
correlated regions in resource constraint IBNNs.

Algorithm 1: Selection decision of correlated regions for data reporting using FLBDS
1: Input:
2: Set of correlated regions {CRr} = {cr1, cr2, cr3 . . . crn}
3: Action:
4: For each correlated region CR index i do
5: CRi

D = Density (One-hop neighbors of nanorouter in the correlated region i)
6: CRi

E = Energy (Residual energy in the correlated region i)
7: CRi

PCMR = Previous critical messages received (PCMR in the last data reporting interval in the

correlated region i)
8: End For
9: Evaluate input parameters (CRi

D, CRi
E, CRi

PCMR) using Fuzzy Rules given in Figure 3.
10: For each CRi do
11: Calculate Enrichment− valueCR (Using the defuzzification process).
12: Enriched list of CR (Enrichement({CR})← Enrichment− valueCR
13: End For
14: Output:
15: Enrichment− valueCR = List of Information and Energy enriched correlated regions

The fuzzy logic-based decision is made after completion of three main parts of the FLBDS, namely
fuzzification, fuzzy inference system and defuzzification. Our proposed fuzzy logic-based decision
model uses three input parameters (i.e., messages, density and energy) for generating one output
parameter. The first input parameter gives knowledge about the number of messages that are received
from a correlated region during the last interval. The second input parameter density shows the NBSs
density at the one-hop distance from nanorouter and the last input parameter is energy that represents
the remaining energy of the correlated region. Based on these three input parameters, the output
parameter determines the enrichment value of a correlated region.

1. Fuzzification: In our proposed fuzzy logic-based decision model, the input and output parameters
are described using the linguistic variables. The expressions used for input parameters, density,
messages and energy are ‘high, ‘medium’ and ‘low,’ respectively. While the output parameter
represents the enrichment value using the linguistic variables ‘very high’, ‘high,’ ‘medium,’
‘low’ and ‘very low.’ In the fuzzification process, these variables are represented by triangular
membership functions, which are used to associate a grade to each input linguistic variable.
The selection of the number of membership functions and their initial values is based on process
knowledge and intuition. The membership function has a value between 0 and 1 over an interval
of the crisp variable.

2. Fuzzy Inference System: After the fuzzification process, the fuzzified values are processed by the
fuzzy inference engine to inference the fuzzy rules for driving decisions. The fuzzy rules used in
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our proposed fuzzy logic-based decision model are elaborated using Figure 3. The fuzzy rules are
the sets of ’IF’ and ’THEN’ statements, for instance, the first rule is read as IF (Density is high)
and (number of messages received are also high) and (energy is high) THEN (The enrichment
of the correlated region is very high). The number of rules depends on the number of input
membership functions, which grow exponentially with the increase in the number of input
membership functions.

No. Input 1 
(Density) 

Input 2 
(Messages) 

Input 3 
(Energy) 

Output 
(Enrichment  Value) 

1 High High High Very High 

2 High High Medium High 

3 High High Low Medium 

4 High Medium High High 

5 High Medium Medium Medium 

6 High Medium Low Low 

7 High Low High Medium 

8 High Low Medium Low 

9 High Low Low Very Low 

10 Medium High High Very High 

11 Medium High Medium High 

12 Medium High Low Medium 

13 Medium Medium High High 

14 Medium Medium Medium Medium 

15 Medium Medium Low Low 

16 Medium Low High Low 

17 Medium Low Medium Low 

18 Medium Low Low Very Low 

19 Low High High High 

20 Low High Medium High 

21 Low High Low Medium 

22 Low Medium High Medium 

23 Low Medium Medium Medium 

24 Low Medium Low Low 

25 Low Low High Low 

26 Low Low Medium Very Low 

27 Low Low Low Very Low 

 

Figure 3. The Mamdani rules used for fuzzy logic-based correlated region selection.

The characteristics of the defined rules are imprecise; the value generated from the rules are fuzzy
instead of crisp values. The input parameters are fuzzified according to the membership value to
obtain crisp values. The attained crisp values are then used to determine the enrichment of the
correlated-region.

3. Defuzzification: The obtained result is processed in the defuzzification process to achieve a
quantifiable output (i.e., the enrichment of a correlated region). In this process, the membership
degree of the fuzzy set is interpreted into some specific values (crisp value). In this work,
the centroid (COG) method is used for defuzzification to obtain a crisp output value.

Example: To further explain the fuzzy-based selection, we consider an example with three crisp
inputs values; x = 16, y = 19 and z= 55 for density, messages and energy in the correlated regions,
respectively as shown in Figure 4.

After the fuzzification process, the fuzzified inputs are evaluated according to certain appropriate
rules as shown in Figure 5. Based on the rules, each crisp value has a membership grade that is used
for generating output. According to the rule, for the crisp input values (medium, medium and high),
the output is medium. While for crisp input values (medium, high and medium), the output is high.
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(a) (b)

(c)

Figure 4. Input variables for performing fuzzification. (a) Input variable “density” for fuzzification.
(b) Input variable “messages” for fuzzification. (c) Input variable “energy” for fuzzification.

(a) (b)

Figure 5. Mamdani Rule evaluation process for crisp input values of x = 17, y = 19 and z = 55. (a) If x is
0.8 (medium), y is 0.14 (medium) and z is 0.75 (medium) then the output w is 0.75 (medium). (b) If x is
0.8 (medium), y is 0.79 (high) and z is 0.75 (medium) then the output w is 0.79 (high).

After completion of the Mamdani rule evaluation process, the defuzzification process is performed.
In the defuzzification process, the attained aggregated fuzzy set is converted to a number through the
COG technique as demonstrated in Figure 6.
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Figure 6. Mamdani defuzzification process using the centroid (COG) method for the crisp inputs
values; x = 16, y = 19 and z = 55.

3.3. Bio-Inspired Firefly Algorithm Based NBSs Selection

The firefly algorithm is inspired by the flashing pattern and behavior of fireflies.
The low-complexity and self-adaptability of this metaheuristic approach make it the most suitable
approach for adaptation in IBNNs for designing low-complexity routing schemes. Fireflies use their
flashlight for attracting other fireflies for communication and mating; the flashing pattern, rhythm
and the rate influence the attractiveness of a firefly. The firefly algorithm is based on the three main
assumptions; first, all the fireflies are unisex. Second, the attractiveness of a firefly is proportional to
its intensity, as the distance increases both the attractiveness and intensity decreases. If no brighter
firefly is found then the particular firefly moves randomly. Third, the objective function determines
and influences the intensity of the firefly. The attractiveness of firefly is determined using Equation (5):

ζ(d) = ζoe−βd2
(5)

where ζ(d) expresses the attractiveness of a firefly at a distance d. The attractiveness of a firefly
at a distance d = 0 is represented as ζo. β and d denotes light absorption coefficient and distance
between two fireflies respectively. The distance between two fireflies F̃Fi and F̃Fj is calculated using
Equation (6):

d(F̃Fi, F̃Fj) =
√
(F̃Fj(x)− F̃Fi(x))2 + (F̃Fj(y)− F̃Fi(y))2 + (F̃Fj(z)− F̃Fj(z))2, (6)

where d(F̃Fi, F̃Fj) is the distance from the coordinates of firefly F̃Fi given by (F̃Fi(x), F̃Fi(y), F̃Fi(z))
to the coordinates of firefly F̃Fj denoted as (F̃Fj(x), F̃Fj(y), F̃Fj(z)).

Since all the spatially correlated NBSs are assumed to detect similar types of information, therefore,
limiting the participation of NBSs in the data reporting process increases the network lifetime by
conserving network resources that are consumed in redundant data transmission. The proposed
firefly algorithm optimizes NBSs selection for reducing redundant data transmission, balancing energy
consumption and increasing the probability of retrieving more valuable information from NBSs.
The proposed firefly algorithm for the optimal selection of NBSs is further provided in Algorithm 2.
The detailed demonstration of the main steps of our proposed firefly algorithm is given below:

1. Solution Initialization: In the firefly algorithm, the potential solution of a problem is represented
by each firefly. Similarly, in NBSs selection, each firefly symbolizes as the solution of NBSs
selection problem. The proposed algorithm first initializes the initial solution. The initial solution
structure is generated randomly (i.e., 0 or 1) depending on the number of NBSs.
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2. Fitness function calculation: In the view of the influence of the light intensity on the brightness of
a firefly, in this work, the attractiveness of the firefly devise its fitness. The fitness value is based
on the three main characteristics; remaining energy of the NBSs, distance from the nanorouter
and the priority bit.

(a) Residual Energy: Selecting NBSs with more residual energy assist in prolonging the
network lifetime. Therefore, selecting NBSs with more energy available is a more preferable
choice.

(b) Distance: Data transmission at less distance requires low energy consumption and
ultimately increased network lifetime. Therefore, NBSs that is located at the minimum
distance from nanorouter has better fitness value.

(c) Priority Bit: The priority bit depends on the content of the last transmitted data, if the NBS
has transmitted critical messages in the last interval then priority bit is set to 1 otherwise it
is 0.

Based on the fitness parameters, the overall fitness value of a NBS is determined using
Equation (7):

NBSi(Fitness) = α1 × Ei + α2 ×
1

d(i, r)
+ α3(Prioritybit), (7)

where weights α are used to balance the weight of three parameters expressed as αi ∈ (0, 1) and
α1 + α2 + α3 = 1.

3. New Solution Updating: After determining the light intensity of each solution, the firefly with
less brightens moves to the next firefly with more brightness. The position of the next firefly is
updated using the Equation (8):

F̃Fi(pos + 1) = F̃Fi(pos) + ζ
−βd2

F̃Fi,F̃Fj
o (F̃Fj(x), F̃Fi(x)) + α(random− 1/2), (8)

where F̃Fi and F̃Fj are two fireflies, α denoted the randomization parameter and random function
is used to generate random value between [0,1].

Algorithm 2: Firefly algorithm based NBSs selection

1: Initialize population nbs = (nbs1, nbs2, . . . nbsi)T
2: Perform the generation of initial firefly population, (1,2,. . . i)
3: Calculate the light intensity I at nbsi using Equation (7) and obtain the Ibest.
4: While t<MAXGeneration
5: For every i
6: For every j
7: update fitness function and find light intensity.
8: For n f = 1 : N f lies
9: If max(In f > Ibest) then

10: Replace with updated firefly.
11: Else Randomly change function and generate new intensity.
12: End If
13: End For
14: Determine the new solution using Equation (8) and update the light intensity.
15: End For
16: End For
17: Make a ranking of the fireflies to locate the present best.
18: End While
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3.4. Data Transmission

Once the selected NBSs receive announcement message PAM, NPSs transmit the response
messages according to the assigned transmission status. The status is allocated to the NSBs according
to the following Equation (9):

NBSi(status) =
EVCR(r) + FVNBS(i)

TotalNo.o f selectedNBSs
, (9)

where EVCR(r) is the enrichment value of the correlated region indexed r and FVNBS(i) is the fitness
value of the NBS indexed i.

3.5. The Lifetime of an IBNN

Network lifetime is the fundamental characteristic of an IBNN for evaluating its potential in
specific applications. In the existing literature, various factors are considered, such as the alive
number of nodes, sensor coverage and connectivity for defining the lifetime of a WSN [59]. Similarly,
the lifetime of IBNN is also associated with the number of alive NBSs, defined as the time when
NBSs exhaust themselves and have no energy left for carrying out primary operations. The definition
provides information that when NBSs do not have enough energy to transmit data packets, the network
can no longer provide useful information to the external healthcare system. Therefore, the IBNN
should be considered dead. The evaluation of IBNN lifetime based on the alive number of NBSs is
briefly discussed in this section.

The detailed comprehension of IBNN lifetime is possible by briefly explaining the life cycle of an
NBS. The life span of an NBS depends on the number of messages transmitted and received by the
nano-transceivers. Nano-transceivers use TS-OOK modulation scheme for communication in the THz
band as THz band transceivers are not able to handle the shape or phase complexity of the transmitted
signal [60]. At the physical layer, TS-OOK modulation scheme is used with pulse duration, pulse time
interval and transmission range equal to 100 fs, 100 ps and 10 mm, respectively. According to TS-OOK
modulation scheme the energy consumed by a NBS for transmitting a pulse is 1 pJ (i.e., Etx = 1 pJ) and
the amount of energy needs for a pulse reception is 0.1 pJ (i.e., Erx = 1 pJ). Thus, the energy consumed
by the ith NBS in the transmission and reception of x number of bits is given as Equations (10) and (11):

Etx(x) = x× α× Epulse
tx (10)

Erx(x) = 0.1× x× Epulse
rx , (11)

where weight α is used in Equation (10) to denote the probability of transmitting the symbol 1 in the
x streams of bits. Since the symbols 0 and 1 are equiprobable, therefore, the value of α is generally
set to 0.5. While in the case of energy consumption during the reception, the entire x stream of bits
is considered. Accordingly, the total energy consumed by the ith NBS in the rth round expressed as
Equation (12):

E(nbsr
i ) = (PRM × Etx + PFB × Etx + PRqM × Erx + PAM × Erx), (12)

where PRM, PFB, PRqM and PAM shows the total number of transmitted and received packets
respectively. While Etx and Erx represents the amount of energy consumed in packet transmission and
reception, respectively. Consequently, the amount of energy left in the NBS after completion of rth
round is determined using Equation (13):

RE(nbsr
i ) = E(nbsr

i ) + Er
h, (13)

where E(NBSr
i ) is the energy consumption of the ith NBS and Er

h is the amount of energy harvested in
the rth round.
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In the context of energy harvesting mechanisms in nanonetworks, conventional mechanisms
such as solar energy, wind power, or underwater turbulence are inapplicable due to the technical
limitations of these schemes at NS level. In the last few years, novel schemes are introduced for
recharging NS devices. Piezoelectric nano-generator, which is composed of an array of ZnO nanowires,
a reflecting circuit and an ultra nanocapacitor, has gained significant attention for recharging NS
devices. The compression of nano-wires generates an electric current between the ends of nanowires
that are used for recharging the ultra nanocapacitor. The mechanical vibration methods (such as air
conditioning and heartbeat) provides the compressed release cycle. The frequency of the compressed
release cycles f provides the time for recharging ultra nano-capacitor [61]. In IBNNs, NBSs are
integrated inside the human body and the only possible source of mechanical vibration inside the
human body is a heartbeat, therefore, f = 1 Hz.

According to the energy harvesting model, after α compressed cycles, the voltage of the charging
capacitor is calculated using Equation (14):

Vcap(αcycles) = Vg × (1− e
−

αcycles∆Q
VgCcap ), (14)

where Ccap is the total capacitance of the ultra-nanocapacitor, ∆Q represents the harvested charge
per cycle and Vg is the generator voltage. However, due to technical limitation of NBSs, the typical
values of quantities Ccap, ∆Q and Vg are 9 cF, 6 pc and 0.42 V respectively. The energy Ecap stored in
ultra-nanocapacitor after αcycles is re-written as [61] using Equation (15):

Ecap(α) =
1
2

Ccap(Vg(αcycles)
2), (15)

where Ccap corresponds to entire capacitance of ultra-nanocapacitor, Vg signifies the voltage of the
generator and αcycles demonstrates the number of cycles necessary to reach the energy level given by
Equation (16):

αcycles(E) =
⌈−VgCcap

∆Q
ln
(
1−

√
2E

CcapV2
g

)⌉
, (16)

where Vg is the generator voltage, Ccap is the capacitance of ultra-nanocapacitor and ∆Q represents
the harvested charge per cycle. Following the above given information, the energy harvested by the
ith NBS in the rth round is obtained by determining the number of cycles α required for charging the
ultra-nanocapacitor, as expressed in Equation (17):

Er
h(i) = Ecap(cyclesα + cyclesr), (17)

where cyclesα refers to number of cycles given in Equation (16) and cyclesr represents number of cycles
in the rth interval.

Considering the amount of energy harvested and consumed in packet transmission and reception,
the lifetime of the ith NBS is obtained using Equation (18):

Li f eTime(nbsi) =
Ei

o
RE(nbsr

i )
, (18)

where Ei
o is the initial energy of the NBS and RE(NBSr

i ) is the remaining energy of the NBS.
Consequently, the lifetime of an IBNN is defined using Equation (19):

Li f eTimeNW = min{Lm |
︷ ︸︸ ︷
NBSD, Lk

|
︷ ︸︸ ︷
NBSND |

, |
︷ ︸︸ ︷
NBSND |}. (19)
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4. Performance Evaluation

This section aims at evaluating the proposed protocol for validating the practical utility of the
proposed protocol in the biomedical field, by studying a health-monitoring system based on IBNN.
The evaluation is performed based on the residual energy, network lifetime, average end-to-end delay
and packet delivery ratio. We have compared our proposed scheme with the selective flooding scheme,
which is considered as the benchmark for evaluating electromagnetic-based IBNNs [19]. Moreover,
intending to prove an in-depth evaluation of our proposed scheme, we have also compared our
scheme with different scenarios. In the first scenario, all the correlated regions are involved in the
data aggregation process (i.e., without employing fuzzy logic-based correlated region selection) and
only NBSs are optimally selected using bio-inspired firefly algorithm. While in the second scenario,
only the correlated regions are selected and all the NBSs located in the selected correlated regions
generate response messages (PRM). We referred to both scenarios as scenarios A and B in the result
section for simplicity. The simulations are run ten times to obtain the results demonstrated in the result
sections. The detailed comparison assists in investigating the potential of proposed work and forecasts
future research.

4.1. Nano-SIM Simulation

The proposed protocol is simulated using the Nano-SIM tool, Nano-SIM tool is an emerging tool
integrated into NS3 for simulating the performance of electromagnetic-based nanonetworks. In line
with Reference [17], the area of the considered IBNN is a 10 mm radius. The considered IBNN consists
of (100 and 200) NBSs and one nanorouter, where NBSs are moving using constant mobility model and
nanorouter maintains a fixed position at the center of the network area. All NBSs are equipped with
a sensing unit and are able to sense the surrounding environment and to collect information about
chemical particles and biological functions. Nanorouter periodically collects data from NBSs to update
the external healthcare system about the health condition. The requests are generated in intervals in
the range of [0.2–0.5] requests/s. The physical layer is set up according to Reference [60]. The size of
request messages and feedback messages is 48 bits, while the size of response messages flowing in
the network is 176 bits, respectively. To provide a fair comparison, we have used the same simulation
parameter settings for flooding scheme and other comparison scenarios. The simulation settings are
further highlighted in the Table 2.

Table 2. The values of parameters selected for the simulations.

Parameter Value

Number of NBSs 100, 200
Number of nanorouter 1
TTL value 100
Tx Range of NBS (mm) 10
Request packet interval 0.2, 0.3, 0.4, 0.5
Pulse energy (pJ) 100
Pulse duration (fs) 100
Pulse interval time (ps) 10
Packet size (PFB, PRqM) 48 (bits)
Packet size (PRM) 176 (bits)
Simulation duration (s) 3
Total iteration 10

4.1.1. Residual Energy

Residual energy is defined as the energy left in the network at the end of the simulation. We have
evaluated remaining energy with respect to different request intervals to comprehend the influences of
request rate on the energy resources of the network. In this work, we evaluate residual energy with
different request rate intervals and increasing densities of NBSs.
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Residual Energy in the Network with the Density of 100 NBSs and Increasing Request Rate Intervals

Figure 7 demonstrates that the increasing rate of request generation leads to a fast depletion of
energy resources. For the request rate interval 0.2, the maximum number of requests are generated in
the network and to satisfy a large number of requests, a large number of answer messages are generated
that cause high energy consumption. The detailed comparison in Figure 7a–d depict that employing a
fuzzy logic and bio-inspired firefly algorithm in our proposed scheme maximum amount of energy is
left at all intervals (i.e., 0.2,0.3,0.4 and 0.5). The reason behind the highest residual energy is due to
data aggregation prevention from low enrichment value correlated region and optimum selection of
NBSs with the highest fitness value that supports decreased energy consumption. While in scenarios
A and B, the remaining energy is almost the same due to the selection of the optimal number of NBSs
and information and energy enriched correlated regions. Both scenarios provide better remaining
energy than the flooding scheme as in the flooding scheme, increased the number of packet generation
and forwarding rate results in consuming all the energy in the network before the simulation ends.

Residual Energy in the Network with the Density of 200 NBSs and Increasing Request Rate Intervals

The increase in the number of NBSs increases the probability of having active NBSs in the network.
However, the rise in the request rate interval increases the number of packet transmission and reception
rate. The Figure 8 shows that flooding scheme consumes its available energy resources at the highest
rate at all intervals (see Figure 8a–d ). While our proposed scheme achieves the best result for an
increasing number of NBSs due to the optimum selection of correlated region and NBSs. The scenario
A and B, both witness high energy consumption as compared to our proposed scheme as selecting only
the correlated region or only selection of optimum NBSs cannot solely overcome the vast consumption
of energy resources.

4.1.2. Network Lifetime

Network lifetime is defined based on the number of alive NBSs (m-ink-of-n nodes) at the end of
simulations. The number of alive NBSs are evaluated with respect to different request rate intervals
and with increasing density of NBSs in the cluster.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. Residual energy comparison of our proposed scheme with flooding scheme and different
scenarios (A and B) with respect to increasing request rate interval and NBSs density of 100. (a) Residual
energy comparison at request rate interval 0.2. (b) Residual energy comparison at request rate interval
0.3. (c) Residual energy comparison at request rate interval 0.4. (d) Residual energy comparison at
request rate interval 0.5.

(a) (b)

(c) (d)

Figure 8. Residual energy comparison of our proposed scheme with flooding scheme and different
scenarios (A and B) with respect to increasing request rate interval and NBSs density of 200. (a) Residual
energy comparison at request rate interval 0.2. (b) Residual energy comparison at request rate interval
0.3. (c) Residual energy comparison at request rate interval 0.4. (d) Residual energy comparison at
request rate interval 0.5.
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Network Lifetime with the Density of 100 NBSs and Increasing Request Rate Intervals

Figure 9 clearly depicts that the maximum number of alive NBSs are obtained for the 0.5 request
rate interval. Since at interval 0.5, requests are generated at the minimum number. Our proposed
scheme achieves the maximum network lifetime due to our selection strategy that balances the message
generation load among all the NBSs. In addition, the selection of NBSs based on the their fitness value
also supports in preventing energy consumption in those NBSs that have low remaining energy. While
Flooding scheme results in a minimum network lifetime for all the intervals due to the involvement of
all the NBSs. From Figure 9a–d, it is evident that scenarios A and B do not provide improved network
lifetime alone, without combining them to achieve the goal of maximum network lifetime.

(a) (b)

(c) (d)

Figure 9. Comparison of total number of alive NBSs in our proposed scheme with flooding scheme
and different scenarios (A and B) with respect to increasing request rate interval and NBSs density
of 100. (a) Total number of alive NBSs at request rate interval 0.2. (b) Total number of alive NBSs at
request rate interval 0.3. (c) Total number of alive NBSs at request rate interval 0.4. (d) Total number of
alive NBSs at request rate interval 0.5.

Network Lifetime with the Density of 200 NBSs and Increasing Request Rate Intervals

From Figure 10, it is evident that increasing the density of NBSs improves network lifetime.
However, the increasing density also influences the rate of packet generation. In our proposed scheme,
the network lifetime remains almost the same for increasing the density of NBSs due to our proposed
selection scheme. While in both scenarios A and B, the number of dead NBSs increases with the
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increase in the request rate interval. Similarly, the flooding scheme experienced the minimum network
lifetime for all the intervals.

(a) (b)

(c) (d)

Figure 10. Comparison of total number of alive NBSs in our proposed scheme with flooding scheme
and different scenarios (A and B) with respect to increasing request rate interval and NBSs density
of 200. (a) Total number of alive NBSs at request rate interval 0.2. (b) Total number of alive NBSs at
request rate interval 0.3. (c) Total number of alive NBSs at request rate interval 0.4. (d) Total number of
alive NBSs at request rate interval 0.5.

4.1.3. Average Remaining Energy Comparison at the End of Simulations with Increasing Request Rate
Interval and NBSs Density

The remaining energy at the end of the simulation with different NBSs density is represented in
Figure 11. The Figure shows that our proposed scheme outperforms all the other scenarios and flooding
scheme for both densities of NBSs. By combing the characteristics of fuzzy logic and bio-inspired
firefly algorithm, our proposed scheme results in the highest remaining energy. While in both scenarios
A and B, the remaining energy is almost similar due to the optimal selection of correlated regions
and NBSs. Flooding scheme has the lowest remaining energy due to the participation of all the NBSs
in data reporting, which also significantly increases the overall packet forwarding rate. Therefore,
the flooding scheme consumes more energy.
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(a) (b)

Figure 11. Total remaining energy in the network comparison of proposed scheme with flooding
scheme and different scenarios (A and B) with respect to increasing request rate interval and NBSs
density of 100 and 200. (a) Total remaining energy in the network with respect to increasing request rate
interval and NBSs density of 100. (b) Total remaining energy in the network with respect to increasing
request rate interval and NBSs density of 200.

4.1.4. Average End-to-End Delay

Average end-to-end delay is defined as the time a packet takes from its transmission till the
reception. The average end-to-end delay is compared for different request rate intervals and increasing
NBSs density to provide meaningful insights into our proposed work Figure 12.

Figure 12 clearly shows that our proposed scheme experiences the lowest average end-to-end
delay at all intervals with NBSs density of 100 and 200 in a cluster. Our proposed scheme of selecting
correlated regions and an optimal number of NBSs avoids the transmission of redundant data.
Therefore, a lower number of packets awaits in the queue for their turn in the transmission, which
ultimately reduces the average end-to-end delay experienced by a packet. Further, NBSs fitness value
also considers the distance of NBSs from nanorouter for reducing packet forwarding rate. Avoiding
redundant data transmission and controlling packet forwarding rate results in low average end-to-end
delay even for increased nanosensor density. While in the flooding scheme, the number of packet
transmission and packet forwarding is higher, that significantly increases the average end-to-end delay
for both densities of NBSs.

4.1.5. Packet Delivery Ratio

The successful reception of the maximum number of packets leads to increased packet delivery
ratio. The packet delivery ratio is assessed with respect to different request rate intervals to highlight
the impact of request rate intervals on the packet delivery ratio.

Selecting correlated regions and NBSs also improve the packet delivery ratio, as shown in
Figure 13. When the number of packets generated by NBSs are controlled, it also reduces congestion
and packet drop ratio. Therefore, our proposed scheme achieves a better packet delivery ratio as
compared to the flooding scheme. In the flooding scheme, all the NBSs generate response messages
at fixed intervals that increase the rate of packets flowing in the network. Due to the smaller range
of NBSs, packets are also forwarded at a higher rate. The higher packet transmission and packet
forwarding rate in the flooding scheme, consequently result in lower packet delivery ratio for both
densities of NBSs.
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Figure 12. Average end-to-end delay comparison with flooding scheme with respect to increasing
request rate intervals and NBSs density of 100 and 200.

Figure 13. Packet delivery ratio comparison with flooding scheme with respect to increasing request
rate intervals and NBSs density of 100 and 200.

5. Conclusions

In this work, a novel energy-efficient routing protocol is proposed that explicitly considers the
constraints of NBSs in providing continuous healthcare, diagnostics and treatments. In our presented
work, we have proposed the FLBDS and bio-inspired firefly algorithm for deciding on the selection
of correlated regions and NBSs. The proposed routing scheme devises a new scheme that exchanges
the burden of generating periodic response among all the members of IBNNs. Furthermore, our
proposed scheme also prevents redundant data transmission and increases the transmission of crucial
information. The proposed FLBDS ensures the selection of only those correlated regions that have
valuable information and enough residual energy resources to handle the data communication load.
While the selection of NBSs based on our new fitness function permits only those NBSs participation in
data reporting that have maximum residual energy and have already transmitted crucial information
in the last interval. Simulation results validate that the proposed scheme outperforms flooding
scheme and the diverse scenarios opted for comparison and offer better residual energy, network
lifetime, average end-to-end delay and packet delivery ratio. From the results, we conclude that
our proposed scheme has a higher potential for realizing energy-efficient routing in IBNNs for more
realistic healthcare applications.
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