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The outcome of ischemic stroke varies across socioeconomic strata, even among

countries with universal health care. Emerging evidence suggests that psychosocial

aspects of low socioeconomic status such as social isolation and social defeat

stress interact with, and contribute to, stroke pathophysiology. However, experimental

investigations of stroke rarely account for such socioeconomic influences. Social isolation

in stroke survivors is associated with increased infarction volume, increased risk of

post-stroke depression, and worse long-term functional outcome. Social defeat is

thought to contribute significantly to chronic stress in low socioeconomic status groups

and is associated with poor health outcomes. Chronic stress is also associated with

worse post-stroke functional outcome and greater disability even after accounting for

stroke severity, vascular risk factors, and access to acute stroke care. Experimental

stroke studies which incorporate social isolation or social defeat stress have shown

that both tissue and functional stroke outcome is affected by the increased expression

of TNF-α and IL-6, increased glucocorticoid production, and suppression of the

protooncogene bcl-2. This review explores the consequences of social isolation and

social defeat stress on stroke, preclinical stroke models that have been used to

investigate these factors, and possible molecular mechanisms underlying the influence

of socioeconomic disparities on stroke outcome.
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INTRODUCTION

Stroke remains a leading cause of death and adult disability worldwide, presenting an enormous
societal burden (1) for which there are limited treatments. Indeed, over one thousand potential
neuroprotectant compounds have shown efficacy in animals but have failed in clinical trials (2).
While the reason for this translational failure is multi-faceted, a common criticism of stroke
research is that preclinical animal models of stroke do not adequately capture the characteristics
of the clinically targeted population (3). While clinical stroke outcome is influenced by a myriad
of factors including initial stroke severity, stroke subtype, age, sex, co-morbidities, polypharmacy,
and access to rehabilitation (4), a growing body of literature suggests that factors associated with
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low socioeconomic status (SES) contribute to stroke
pathophysiology (5). This review will examine the influence
of social isolation and stress from social defeat (i.e., losing
or becoming subordinate as the outcome in social conflict or
competition) on stroke pathophysiology and outcome, and how
preclinical stroke models might incorporate these important
factors in the development of new stroke therapeutics.

SOCIOECONOMIC STATUS, SOCIAL

ISOLATION AND SOCIAL DEFEAT STRESS:

CONSEQUENCES FOR STROKE

Low SES negatively influences nearly all social determinants of
health, and is inextricably linked to disease outcomes and a
variety of health conditions (6–8). Low SES is not simply a lack of
money, but also includes insufficient access to various necessities
of life, including housing, health care and other resources (9).
Low SES has been shown to influence morbidity and mortality
of stroke worldwide (5), increase the incidence of stroke, and
affect accessibility of evidence-based stroke care in both the
acute and chronic stages of injury—even among countries with
universal health care (5, 10, 11). Importantly, acute and long-
term functional outcome following stroke appears to be linked
to SES independent of stroke severity, risk factors, and access to
acute stroke care (12–14). The specific aspects of low SES which
affect stroke outcome remain to be clarified, but social isolation
and social defeat stress may have an important influence on both
stroke injury and stroke recovery.

Social isolation (SI) is the condition in which people have few
personal contacts (typically three or less) amongst their friends,
families and neighbors (15). SI predicts morbidity and mortality
from a variety of diseases and conditions (16, 17), is a known
risk factor for Alzheimer’s disease (18), and can have detrimental
effects on the outcome of other neurological disorders, including
Parkinson’s disease (19) and multiple sclerosis (20). SI is a
particularly potent risk factor for poor stroke outcome (21–23),
compounded by life-altering sequelae such as loss of mobility,
dysphagia, cognitive impairment, aphasia, and visual disabilities
(24). As a consequence many report feelings of isolation or
fear, becoming socially withdrawn, increasingly housebound and
disengaged from the recovery process (25). Additionally, stroke
incidence and SI increase with age, resulting in a high prevalence
of post-stroke depression (26), further contributing to social
withdrawal and poor cognitive and functional outcomes (26, 27).
Fortunately, social support systems and engagement have been
shown to be protective for stroke survivors (21, 25). Social
support was linked to a faster recovery rate, improved outcome
(21) and, when facilitated by stroke survivor groups, decreased
loneliness, increased feelings of empowerment and acceptance,
and improved social competence (25).

Despite the well-recognized negative effects of low SES on
disease incidence and outcome (6–8), preclinical modeling of
low SES remains a challenge. While material deprivation can
be replicated in animals through food or bedding restriction,
other socioeconomic factors associated with poverty such as
standard of living, neighborhood safety, and self-perception of

social rank are more uniquely human. Chronic stress appears
to be one mechanism through which low SES can influence
health and disease (6, 28, 29). Individuals and families of lower
SES experience increased stress (8, 30, 31) and low social rank
is a profound stressor across many species, including humans
(29). Chronic stress is associated with poor outcomes in a
variety of neurological diseases, including Parkinson’s disease,
multiple sclerosis, dementia, and stroke (32, 33). Low SES is also
associated with mental and physical stress as well as increased
odds of intracranial atherosclerotic disease, a well-known stroke
etiology (34). Kondo et al. demonstrated that poor health
outcomes are more associated with people’s perceptions of social
deprivation and unfavorable social comparisons (for example, to
co-workers, parents at a similar stage in life, or neighbors) rather
than absolute income (35). Wood et al. found that objectively
measured low social rank and the associated cognitions (defeat,
entrapment) also seem to be a cause for mental distress rather
than absolute income (36). This is possibly mediated through
an “involuntary defeat syndrome” (37), analogous to the coping
strategies used by animals faced with social defeat. Social status,
where social position was assessed by the respondent’s rating
of where they stood within the social hierarchy, has also been
linked to worse health outcomes (38). Therefore, the role of
mental stress, and in particular social defeat stress as part of the
spectrum of challenges faced by those with low SES, seems to be
significant in health outcome, vascular risk factors, and increased
vulnerability to stroke (23).

SOCIAL ISOLATION AND SOCIAL DEFEAT

STRESS IN ANIMAL MODELS OF STROKE

Social Isolation in Preclinical Models of

Stroke
SI is a known stressor across many species (39), and can be
defined as a near-complete or total lack of contact between
members of a social species (40). In adult rodents, SI has been
shown to elicit anxiety and depressive-like behaviors (41, 42)
and the effects of actual or perceived isolation in humans can
be modeled in rodents by utilizing a SI protocol (43). These
paradigms vary in length, and may involve isolation rearing (i.e.,
isolation of pups at the time of weaning) or separation of adult
mice from a group-housed environment later in the lifespan
(41, 44).

Several studies have investigated the impact of SI on stroke
outcome in rodents (17, 39, 43, 45, 46). In all cases, SI was
shown to have detrimental effects on the extent of ischemia-
mediated damage, functional outcome, and/or survival (17, 39,
43, 45, 46). While the precise mechanisms underlying this
phenomenon have yet to be fully elucidated, it is evident
that socially-deprived animals mount a distinct pathological
response to ischemic injury compared to their socially-housed
counterparts (17, 39, 45). Craft et al. showed that male and
female mice housed singly both before and after middle cerebral
artery occlusion (MCAO) had larger infarcts and elevated intra-
ischemic serum concentration of C-reactive protein (CRP, a
marker of systemic inflammation) compared to animals that
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were pair-housed (17). Additionally, isolated mice had worse
functional outcomes than pair-housed mice, as evidenced by a
significant decrease in contralateral paw use. Weil and colleagues
demonstrated that SI of mice before and after global ischemia
exacerbated ischemia-induced neuronal damage (45). Socially
isolated mice showed a heightened inflammatory response in the
hippocampus, characterized by increased microglial activation,
and increased gene expression of the proinflammatory cytokine
tumor necrosis factor-α (TNF-α). TNF-α is a primarymediator of
the early immune response in both the brain and the periphery
(47), and can activate a multitude of signaling cascades that
ultimately lead to apoptosis or necrosis (48). By contrast, group-
housed mice showed a near complete attenuation of the post-
ischemic inflammatory reaction, possibly explaining the reduced
neuronal damage observed in these animals. The effect of
housing conditions on stroke outcome and survival was further
demonstrated by Karelina et al. (39). Mice that were individually
housed prior to and following MCAO had higher post-stroke
serum concentration of interleukin-6 (IL-6, a pro-inflammatory
cytokine), greater mortality rate at 7 days post-reperfusion (60%,
compared to 0% for socially housed animals), and significantly
increased infarct volume and cerebral edema. Administration of
an IL-6 neutralizing antibody to both singly- and pair-housed
mice prior to ischemia onset resulted in infarct sizes that were
comparable between groups, thereby mitigating the influence of
housing conditions on stroke outcome. Interestingly, housing
conditions did not appear to influence functional outcomes
(e.g., total locomotor activity, exploratory behavior, contralateral
paw use), although behavioral metrics were conducted at earlier
timepoints than in Craft et al. (72 h vs. 7 days). Consistent with
these studies, Venna et al. showed that mice housed with either
a healthy or stroked partner following MCAO had significantly
smaller infarcts at 72 h post-stroke compared to isolated mice
(46). Isolated mice also had significantly elevated serum IL-6
concentrations relative to socially housed animals. Even when
pair housing was initiated 72 h after stroke, socially housed
mice showed improved functional recovery (e.g., increased
contralateral paw use and mobility on the tail suspension test)
and decreased mortality compared to isolated animals, despite
similar histological damage in all groups (46). The authors
postulate that the improved functional recovery of pair-housed
mice may be due to increased neurogenesis and BDNF levels seen
in these animals compared to their isolated counterparts.

These findings in experimental stroke models may shed light
on the effect of SI on stroke outcome in people. In humans, CRP
is associated with the degree of social integration, with increased

CRP in older men (>60 years) who have fewer social ties (49).
A heightened peripheral inflammatory response—specifically,

peak plasma IL-6, and CRP concentrations—is correlated with
increased infarct volume at 7 days post-stroke, as well as

worse functional outcome at 3 months (50). Future research

should continue to characterize these mechanisms, as it may
yield important insight into whether interventions aimed at
reducing SI in the acute care setting and beyond can improve
functional outcome for patients identified as having low levels of
social support.

Social Defeat Stress in Preclinical Models

of Stroke
Chronic stresses associated with social position can adversely
affect the hypothalamic-pituitary-adrenocortical (HPA) axis, the
body’s primary neuroendocrinemechanism formounting a stress
response, with prolonged activation associated with increased
cardiovascular risk, increased susceptibility to infection, and
immune suppression (28). Since stroke recovery also appears to
be linked to the stress associated with SES (12, 14), utilizing a
model of chronic social defeat stress in rodents may be one way to
approximate the complex effects of social defeat stress on stroke
outcome in humans.

Chronic social defeat stress is a common model for social
dominance and subordination in rodents (29). This paradigm
usually involves placing an “intruder” mouse of one strain into
the cage of an aggressive “resident” mouse of a different strain
(e.g., C57BL/6 “intruder” vs. CD-1 “resident”) (51). The resident
mouse typically attacks the intruder one or more times, after
which the two mice are separated by a transparent screen such
that visual and auditory threats can continue until the intruder is
returned to its home cage. The social defeat paradigm is repeated
for a week or more, at which point the subordinated mouse
shows depressive-like features and other signs of stress (e.g.,
social avoidance, decreased grooming) (52). Chronic social defeat
stress repeatedly activates the HPA axis with each instance of
social conflict (53). Thus, animal models of social defeat stress
may be more relevant to the psychological stressors associated
with low SES such as feelings of powerlessness.

The harmful impact of social defeat stress on experimental
stroke injury has been previously investigated (32, 33). Sugo
and colleagues exposed mice to social intimidation stress for
1 week prior to MCAO (33). Mice who were socially stressed
or administered exogenous corticosterone prior to stroke had
infarct volumes twice as large as those seen in unstressed and
mifepristone-injected (a glucocorticoid receptor antagonist)
groups. Additionally, both stressed and corticosterone-injected
mice showed increased cognitive impairment post-stroke
compared to unstressed and mifepristone-injected mice,
as indicated by a decreased latency to cross in a passive
avoidance task. The authors concluded that histological and
functional outcome following stroke was compromised by
chronic social stress, and was likely mediated through the
action of corticosterone. Indeed, glucocorticoids are thought to
potentiate post-ischemic neuronal morphological damage in the
hippocampus and neocortex of rodents (47, 54), and high serum
levels of cortisol are predictive of poor functional outcome,
cognitive dysfunction, and mortality in stroke patients (55–57).

Another possible mechanism underlying the deleterious
effects of stress on stroke outcome is through the protooncogene
bcl-2. Elevated bcl-2 expression in various neurodegenerative
disorders is known to be protective against apoptosis and
necrosis, and up-regulation of bcl-2 in the ischemic penumbra
occurs during stroke (32). In a study by DeVries et al. mice were
exposed to chronic social defeat stress using a resident-intruder
paradigm for 3 days prior to MCAO (32). Interestingly, bcl-2
mRNA expression in the ischemic hemisphere of mice previously
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exposed to social stress was 70% lower compared to unstressed
mice (32). Furthermore, stressed mice had infarct volumes
four times as large as unstressed mice, and infarct size was
significantly correlated with post-ischemic serum corticosterone
concentration. The harmful effects of social intimidation stress
on ischemic injury were abolished in transgenic mice that
constitutively express higher levels of neuronal bcl-2, suggesting
that bcl-2 is an endogenous neuroprotective mechanism that is
sensitive to the effects of psychogenic stress.

While the complex spectrum of challenges associated with low
SES is difficult to model in rodents, utilizing social defeat stress
combined with SI protocols may provide a reasonable proxy
for understanding why individuals of lower SES are at risk for
greater injury and poor functional outcome following stroke.
This requires a more comprehensive experimental approach to
account for psychosocial influences on stroke outcome. As it
remains unclear if SI and social defeat stress are independent of
one another, experimental design of preclinical studies should

allow for assessment of these factors separately as well as in

combination, in both the pre- and post-stroke environments.
This will invariably require larger scale studies with multiple
experimental cohorts. For example, animal groups could include
SI pre- and post-stroke, SI in the pre- but not post-stroke
environment, SI in the post- but not pre- stroke environment, SI
+ social defeat stress in the pre- and post- stroke environment,
etc. This may help to elucidate the molecular bases of each
stressor on stroke outcome, and assess any interaction between
these two important aspects of low SES. In terms of quantifying
psychosocial factors, typical measures of SI in people using
subjective rating scales are not possible in animals. However,
downstream effects of SI such as anxiety and depression (41, 42)
can be quantified using the sucrose intake test, tail suspension
test, forced swim test, and light-dark box (51, 52, 58). Social defeat
and hierarchies in rodents that would be akin to those in humans
can be measured using the tube dominance test (59) or social

interaction test (51). As SI and social defeat stress often co-occur
in people of low SES, accounting for these factors may improve
the translational relevance of preclinical stroke models.

CONCLUSION

SI and social defeat stress are two factors which are known
to have deleterious effects on stroke outcome and can be
modeled experimentally using SI and social defeat stress
protocols. The molecular bases of the effects of SI and social
defeat stress on short- and long-term stroke outcomes are
still incompletely understood, although likely multifactorial.
Increased inflammation and HPA axis activation, as well as
suppression of bcl-2 have emerged as possible mechanisms by
which these social conditions mediate ischemic damage. Future
investigations should continue to delineate these effects in order
to identify novel therapeutic strategies aimed at mitigating stroke
damage in both the acute and chronic stages of injury.

Utilizing preclinical models of stroke that more closely
resemble the social complexity of the clinical population may
improve the translational success of neuroprotectant therapies.

Importantly, an enhanced understanding of how various social
determinants of health interact with and contribute to stroke
pathophysiology on a biochemical level may allow for the
discovery of biomarkers which could be used to identify at-risk
patients upon hospital admission. Such patients could then be
proactively targeted with personalized pharmacological, social or
community-based interventions to improve stroke outcomes not
only in the hospital emergency room and stroke ward, but also
during rehabilitation and the patient’s return to their community.
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