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The prevention of allograft transplant rejection by inhibition of the CD40/CD40L
costimulatory pathway has been described in several species. We searched pubmed
for studies reporting the prevention of kidney transplant rejection in nonhuman primates
utilizing either anti CD40 or anti CD40L (CD154) treatment. Inclusion of data required
treatment with anti CD40 or anti CD154 as monotherapy treatment arms, full text
available, studies conducted in nonhuman primate species, the transplant was renal
transplantation, sufficient duration of treatment to assess long term rejection, and the
reporting of individual graft survival or survival duration. Eleven publications were included
in the study. Rejection free survival was calculated using the Kaplan-Meier (KM) life test
methods to estimate the survival functions. The 95% CI for the medians was also
calculated. A log-rank test was used to test the equality of the survival curves between
control and treatment arms (CD40 and CD154). The hazard ratio for CD154 compared to
CD40 and 95% CI was calculated using a Cox proportional-hazards model including
treatment as the covariate to assess the magnitude of the treatment effect. Both anti CD40
and anti CD154 treatments prevented acute and long term graft rejection. The median
(95% CI) rejection free survival was 131 days (84,169 days) in the anti CD40 treated
animals and 352 days (173,710 days) in the anti CD154 treated animals. Median survival in
the untreated animals was 6 days. The inhibition of transplant rejection was more durable
in the anti CD154 group compared to the anti CD40 group after cessation of treatment.
The median (95% CI) rejection free survival after cessation of treatment was 60 days
(21,80 days) in the anti CD40 treated animals and 230 days (84,552 days) in the anti
CD154 treated animals.
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INTRODUCTION

In 2021 more than 40,000 solid organ transplants were
performed in the USA, the first time in history this number
has been exceeded (UNOS). The steady increase in transplants
has been due, in part to the development of calcineurin inhibitors
as prophylaxis against cellular and antibody mediated rejection.
A major historical innovation in efforts to reduce transplant
rejection is the inclusion of the calcineurin inhibitor tacrolimus
in standard polypharmacy regimens resulting in reduce cellular
and antibody mediated rejection improving short term outcomes
for transplant recipients and making transplant a more viable
option for patients in need. Although tacrolimus has had a
dramatic impact on 1 year survival rates for organ transplant,
long term survival rates (> 3 years) have not changed since their
introduction, suggesting that further improvements are
needed (1).

One approach to improving long term outcomes post-
transplantation is through the inhibition of the co-stimulatory
pathways of the immune system. These receptors belonging to
the immunoglobulin (CD80, CD86, CD28, CTLA4, ICOS,
ICOSL, PD-1, PD-L) and TNF (CD40, CD154) superfamilies
respectively were first identified as cell surface receptors on
immune cells capable of modulating immune cell responses
between cells of the T cell lineage and antigen presenting cells
(2–11).

The discovery and role of the costimulatory pathway in
regulating adaptive and innate immune function more than 30
years ago led to preclinical data in nonhuman primates (NHPs)
demonstrating the inhibition of costimulatory signaling via
CD80 & CD86 (12–16), CD28 & CTLA4 (17–20), and CD40 &
CD40L (CD154) (15, 21–32) to prevent acute and long term
allograft transplant rejection. Indeed, this led to global approval
of belatacept, a CTLA4-FC fusion protein developed by Bristol
Myers Squibb for renal transplant indications in 2011.
Additional costimulatory antagonists are now in clinical
development for renal transplant targeting CD28 (Vel-101,
Veloxis), CD40 (Iscalimab, Novartis; ASKP1240, Astellas), and
CD154 (AT-1501, Eledon; HZN-4920, Horizon).

Two important hypotheses have arisen from the extensive
number of studies conducted in multiple species antagonizing
costimulatory receptors to prevent transplant rejection: (1)
Antagonizing the CD40/CD154 pathway is more efficacious
than the inhibition of other costimulatory pathways; and (2)
Inhibition of CD154 is more efficacious than inhibition of CD40
in preventing transplant rejection. In support of this, it was
recently reported that anti CD154 was significantly more
efficacious in preventing graft rejection compared to anti CD40
therapy in a pig to rhesus macaque xenograft transplant model
(33). Indeed, initial clinical development programs focused on
inhibition of CD154 due to superior efficacy in preclinical
studies. Hu5c8 was a clinical development candidate for tissue
transplant and autoimmune disease, but demonstrated
unpredicted on target toxicity due to Fc effector function
activity and high affinity binding to platelets, resulting in
thrombolytic events in humans (34, 35). This halted further
clinical development of other anti-CD154 antibodies until
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solutions to the on target binding could be engineered.
Subsequent research suggested the thrombolytic activity of 5c8
is due to binding of 5c8 to CD40L on platelets and is mediated by
the FC portion of the heavy chain sequence of 5c8 (36, 37).
Furthermore anti CD40L antibodies lacking FC effector function
do not activate platelets and do not cause thromboembolisms
(26, 38, 39).

CD154 is a costimulatory type II membrane receptor found
on activated T helper cells, platelets, endothelial cells, basophils,
eosinophils, vascular smooth muscle cells, NK cells, astrocytes,
and in some cases on B cells (40–46). The receptor for CD154,
CD40 is a transmembrane protein of the Tumor Necrosis Factor
Receptor (TNFR) family found on antigen presenting cells
(APCs) such as B cells, macrophages, dendritic cells,
neutrophils, mesangial cells and tubular cells in the kidney,
and microglia in the central nervous system (47–52).

The binding of CD154 to CD40 activates multiple
downstream immune and inflammatory responses. Inhibition
of CD154 signaling can abolish many effector mechanisms of
inflammation with the potential to instill transplant tolerance
(53–57) and ameliorate Lupus Nephritis (58), Arthritis (59, 60),
Grave’s Disease (61); Multiple Sclerosis (62), and Sjogren’s
Syndrome (63). These effects are mediated by inhibition of
effector and follicular T cell function, increased T regulatory
function, inhibition of germinal center formation, inhibition of B
cell maturation and antibody production, and inhibition of
antibody class switching (10, 64–72). The inhibition of the
CD40/CD154 costimulatory pathway in nonhuman primate
models of cellular and organ transplantation has been shown
to improve graft function and survival compared to untreated
animals. Although there is limited data directly comparing anti
CD154 and anti CD40 antibodies in nonhuman primate (NHP)
models of renal transplant these studies provide sufficient data
for a meta-analysis comparing inhibition of the ligand versus the
receptor in preventing transplant rejection as monotherapies.
MATERIALS AND METHODS

Methodology
A systematic review and meta-analysis was performed according
to the guidelines that are recommended by the PRISMA
statement (Preferred Reporting Items for Systematic reviews
and Meta-Analysis).

Search Terms
A systematic search of peer reviewed articles in Pubmed was
conducted between September 2nd, 2021 and September 15th,
2021. The search term was: “renal transplant AND (CD40 OR
CD154)”. Original research studies were included if the study
was conducted in rhesus macaques or cynomolgus monkeys, if
the transplanted organ was exclusively renal transplant, if the
treatment period was at least 90 days, if there were monotherapy
treatment arms with antagonistic biologics against either
CD154 or CD40, and if survival data was reported for each
treated animal.
April 2022 | Volume 13 | Article 861471
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Data Extraction
Data was extracted on the species, the name of the protein
biologic, the type of protein biologic, the costimulatory target for
the biologic treatment, the dosing scheme, the dose of biologic,
the duration of dosing, the number of days of rejection free
survival post renal transplant, and the number of days each
animal survived after cessation of treatment if reported.
Individual animal survival data was available for 99 animals
and data was estimated based on Kaplan- Meier plots for 3
animals. Animals who did not have rejection or were alive at the
end of the trial were censored at the last available time.

Statistical Analysis
An Individual Participant data meta-analysis was performed to
estimate the overall treatment effect on rejection free survival.

Rejection free survival was summarized by the 25th, 50th

(median), and 75th percentiles calculated using the Kaplan-
Meier (KM) life test methods to estimate the survival functions.
The 95% CI for the medians was also calculated. A log-rank test
was used to test the equality of the survival curves between control
and treatment arms (CD40 and CD154). A similar analysis was
performed to compare CD40 versus CD154. The hazard ratio for
CD154 compared to CD40 and 95% CI was calculated using a
Cox proportional-hazards model including treatment as the
covariate to assess the magnitude of the treatment effect. KM
plots show the survival probabilities over time.

A Cox proportional hazard model, including study treatment
was used to assess the impact of covariates on rejection free
survival. The covariates examined were species, IgG subfamily
and duration of treatment.

An inverse weighting variance random effects meta-analysis
model comparing the effect of mean survival time was also
examined. An I2 measure was used to assess heterogeneity of
the data. A forest plot comparing subgroups of CD40 and CD154
is presented with 95% CI for each study and for each
combined subgroup.

All statistical analyses were performed using SAS® Version
9.4 or higher and/or the R analysis language (Version 4.0.3
or greater).
RESULTS

The systematic search of Pubmed with the term “renal transplant”
and “CD154 or CD40” returned 226 and 289 records respectively
for a total of 515 records. Redundant records were removed
leaving 314 records for manual curation. The titles and abstracts
were read for each record to identify original articles testing anti
CD154 or anti CD40 antibodies in nonhuman primate studies in
either rhesus macaque or cynomolgus monkeys. 28 articles were
identified for full text review. Six articles were excluded due to a
lack of monotherapy arm, five records were excluded that were
not renal allograft, four records were excluded due to brief
treatment period to assess rejection, one record saw acute
toxicity, and one record reported animals included in another
study (Figure 1). Eleven articles were identified.
Frontiers in Immunology | www.frontiersin.org 3
Characteristics of Curated Data Sets
Eleven full text publications were included in the analysis. These
were published between 1999 and 2017, contained dosing
information, included a monotherapy arm for an anti CD154
or anti CD40 antibody, and provided individual animal survival
data post renal transplant. There were 64 treated animals
included in the study, 40 treated with anti CD154 antibodies
and 24 treated with anti CD40 antibodies, as well as 38 control or
untreated animals. Eight of the studies utilized rhesus macaques
(65 animals) and 3 studies utilized cynomolgus monkeys (37
animals). There were 4 different anti CD154 antibodies and 3
different anti CD40 antibodies utilized in the studies. A summary
of these data can be seen in Table 1.

Animal Survival
An assessment of survival across groups suggested a statistically
significant difference between untreated and treated animals as
well as between anti CD40 and anti CD154 treated animals. The
Kaplan Meier plot and risk table of the survival function are
shown in Figure 2.

The median (95% CI) rejection free survival was 131 days
(84,169 days) in the anti CD40 treated animals and 352 days
(173,710 days) in the anti CD154 treated animals. Median
survival in the untreated animals was 6 days.

The log rank test comparing the equality of survival curves
between anti CD40 and anti CD154 was statistically significant
(p<0.0001) indicating an increase in survival for animals treated
with anti CD154 compared to anti CD40.

A cox proportional hazard model to assess the treatment
variable on the outcome of survival showed the hazard ratio (HR
[95% CI]) for anti CD154 compared to anti CD40 was 0.29 [0.15,
0.54] indicating animals treated with anti CD154 have a 71%
higher likelihood of survival compared to anti CD40 treated
animals (p=0.0001).

Meta Analysis of Animal Survival With
Costimulatory Inhibition
Random effects meta- analysis demonstrated that monotherapy
costimulatory inhibition was effective at preventing renal
transplant rejection in nonhuman primates (combined effect
size 183.7 days: 95% CI, 95.1 to 272.3 days) p <= 0.001. There
was, however, a high degree of heterogeneity across the studies
(I2 = 78%) reflecting a difference in effect size among subgroups.
A subgroup analysis of anti CD40 versus anti CD154
demonstrates that anti CD154 had a higher effect size 241.4
days (95% CI, 79.6, 403.2 days) compared to anti CD40, 130.1
days (95% CI, 57.7 to 202.5 days) as shown in Figure 3. The
model does indicate that the studies included for the anti CD40
studies are much more homogeneous than the anti CD154 (I2 =
30.1% vs. 85.2% for the anti CD40 and anti CD154
subgroups respectively).

Duration of Treatment Influences Time to
Transplant Rejection and Survival
An analysis was performed to assess whether there were any
covariates associated with the difference in survival times
April 2022 | Volume 13 | Article 861471
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between anti CD154 and CD40 treated animals. There were
significant differences between anti CD154 and CD40 groups
with regards to species, the IgG subfamily of the antibodies, as
well as duration of treatment. The majority of studies using anti
CD154 antibodies were conducted in rhesus macaques (all 7
studies) compared to anti CD40 studies where six studies were
conducted in cynomolgus monkeys and one was conducted in
rhesus macaques. Similarly, all four of the anti CD154 antibodies
were IgG1 subclass (one is an IgG1 domain antibody) whereas
Frontiers in Immunology | www.frontiersin.org 4
one of the anti CD40 antibodies was IgG1 and 2 were IgG4.
Given there were no studies using anti CD154 antibodies in
cynomolgus monkeys and none of the anti CD154 antibodies
were IgG4, it is impossible to rule out difference in survival with
these two variables.

The studies consisted of an induction phase of treatment
when antibodies were administered every few days for up to
fourteen days. The induction was then followed by maintenance
therapy for a variable number of days between studies with
FIGURE 1 | PRISMA Flow Chart of Literature Search.
April 2022 | Volume 13 | Article 861471
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varying doing frequencies. We analyzed the survival function
with a cox proportional hazard model including the duration of
exposure to either anti CD40 or anti CD154 antibodies to assess
whether duration of treatment accounted for the differences
observed in survival times between anti CD154 and anti CD40
studies. Time of exposure is a significant predictor in graft
function and survival (p<0.001). The hazard ratio (HR[95%
CI]) for CD154 compared to CD40 controlling for exposure is
0.46 (0.24, 0.90) indicating that inhibition of CD154 was still
superior to inhibition of CD40 in preventing graft rejection and
increasing survival, suggesting that animals on anti CD154 are
54% more likely to survive even with longer exposure of
inhibiting either CD40 or CD154.

Costimulatory Treatment Induces Long
Term Transplant Tolerance
For many of the studies, treatment was stopped and the
durability of preventing transplant rejection was assessed by
the number of days without treatment until graft failure. As can
be seen from the untreated animals (Figure 2), graft rejection
occurs very quickly in the absence of immunosuppressive or
immunomodulatory treatment (median survival in control
animals 6 days). The induction of transplant tolerance has
been described in the context of blocking costimulatory
TABLE 1 | Publications included in the study.

Publication Year Drug Target Dose Loading Doses Dosing Interval Species #
Treated

#
Control

Isotype

Kirk et al.
(21)

1999 5c8 CD154 20 mg/kg days pre-op 0, post-op
0, 3, 10, 18, 28

q28d for 5 months rhesus
macaque

9 4 IgG1

Preston et al.
(22)

2005 IDEC-131 CD154 20 mg/kg days -1, 0, 3, 7 q7d for 8 weeks rhesus
macaque

5 5 IgG1

Montgomery
et al. (15)

2002 5c8 CD154 20 mg/kg days pre-op 0, post-op
0, 3, 10, 18, 28

q28d for additional 5 months rhesus
macaque

3 5 IgG1

Xu et al. (23) 2001 5c8 CD154 20 mg/kg days -1, 0, 3, 10, 18, 28 q28d for 6 months rhesus
macaque

8 5 IgG1

Xu et al. (24) 2002 5c8 CD154 20 mg/kg days -1, 0, 3, 10, 18, 28 q28d for 12 months rhesus
macaque

6 0 IgG1

Kanmaz
et al. (25),

2004 A1793 CD154 20 mg/kg days 0, 1,4, 11,
18,56,84

Treatment terminated on day 84 rhesus
macaque

6 6 IgG1

Kim et al.
(26)

2017 CD154
dAB

CD154 30 mg/kg days 0, 1,4, 11,
18,56,84

Treatment terminated on day 84 rhesus
macaque

3 0 dAB

Song et al.
(27)

2014 ASKP1240 CD40 5 mg/kg days -1, 0, 3, 7, 11, 14 2.5 mg/kg q14d until day 168 cynomolgus 6 3 IgG4

Aoyagi et al.
(28)

2009 4D11 CD40 20 mg/kg days pre-op 0, post-op
0,4,11.14

q7d 10 mg/kg for 6 months cynomolgus 3 3 IgG4

Aoyagi et al.
(28)

2009 4D11 CD40 10 mg/kg days pre-op 0, post-op
0,4,11.14

q7d 5 mg/kg for 6 months cynomolgus 3 31 IgG4

Imai et al.
(29)

2007 4D11 CD40 10 mg/kg days pre-op 0, post-op
0, 2,4,6,8,10,12.14

q7d for weeks 1-6, q14d for weeks
7-10

cynomolgus 3 3 IgG4

Imai et al.
(29)

2007 4D11 CD40 20 mg/kg days pre-op 0, post-op
0, 2,4,6,8,10,12.14

q7d for weeks 1-6, q14d for weeks
7-10

cynomolgus 3 31 IgG4

Imai et al.
(29)

2007 4D11 CD40 20 mg/kg days pre-op 0, post-op
0, 2,4,6,8,10,12.14

q7d for weeks 1-6, q14d for weeks
7-10

cynomolgus 1 31 IgG4

Haanstra
et al. (30)

2003 ch5D12 CD40 20 mg/kg days -1, 0 10 mg/kg: days 4, 7, 11, and 14;
then 5 mg/kg 2q7 until day 56.

rhesus
macaque

5 4 IgG1
April 2022 |
 Volume 1
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1Same control animals for each treatment group.
FIGURE 2 | Kaplan Meier Survival Plot and Risk Table for Treatments versus
Placebo. Kaplan-Meier estimates of the probability of rejection free survival by
treatment group. Median survival untreated (6 days), CD40 (131 days), and
CD154 (352 days) groups (P = 0.0001; log-rank test).
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signaling as well as in the induction of chimerism with whole
body irradiation and bone marrow transplant. There were 26
animals in the anti CD154 cohort and 15 animals in the anti
CD40 cohort that were followed for durability of treatment effect.
The Kaplan Meier plot and risk table are shown in Figure 4.

The median (95% CI) rejection free survival was 60 days
(21,80 days) in the anti CD40 treated animals and 230 days
(84,552 days) in the anti CD154 treated animals.

The log rank test comparing the equality of survival curves
between anti CD40 and anti CD154 was statistically significant
(p<.0001) indicating an increase in survival for animals treated
with anti CD154 compared to anti CD40.

A cox proportional hazard model to assess the treatment
variable on the outcome of survival showed the hazard ratio (HR
[95% CI]) for anti CD154 compared to anti CD40 was 0.21
Frontiers in Immunology | www.frontiersin.org 6
[0.097, 0.475] indicating animals treated with anti CD154 have a
79% higher likelihood of survival compared to anti CD40 treated
animals (p=.0002).

Histopathology
The histopathology data across the eleven articles is sparse and
limited in consistent pathological assessments of just the
monotherapy arms in the studies. In general, for anti CD154
treated animals with protocol biopsies at specific time points in
the absence of overt signs of renal failure there is no histological
signs of renal damage and minimal perivascular immune cell
infiltrate and no infiltrate present in tubules or glomeruli (21, 24–
26) With treatment withdrawal rejection occurred and immune
cell infiltrates were associated with tubulitis, endothelitis, and
eventually severe damage of the kidney parenchyma (24, 25). The
majority of anti CD40 treated animals also had minimal
perivascular immune cell infiltrate and no infiltrate present in
tubules or glomeruli. With the 4d11 anti CD40 antibody,
however there were animals still on treatment that showed
mild interstitial cell infiltrate. In addition one animal had
tubulitis and severe interstitial fibrosis and tubular atrophy in
another animal (28). Imai reported similar results at 1 month all
animals having mild interstitial cell infiltration, with or without
slight tubulitis and 2 animals having moderate to severe
interstitial infiltration along with moderate tubular changes
(29). Animals remained stable after 1 month with no changes
in pathology until cessation of treatment. After cessation of
treatment animals had moderate to severe interstitial fibrosis
with a mild tubular atrophy, and mild arteritis without intimal
thickening and glomerulopathy was seen in three animals (29).
DISCUSSION

This meta-analysis of eleven peer reviewed publications contained
time to event information regarding renal graft function and renal
graft survival data for 64 monotherapy treated animals as well as
38 untreated control animals. While inhibition of either CD40 or
CD154 produced a significant advantage in rejection-free survival
compared to untreated controls, there was a significant decrease in
risk of graft rejection and improvement in survival for animals
FIGURE 3 | Meta Analysis: Inverse Variance Weighting Random Effects Model. Published studies of anti CD40 and anti CD154 antibodies in nonhuman primates.
Forest plot displaying random effects meta-analysis results of the association compared to nontreated animals. The Black circle is the mean values for treatment
effect across all studies. Light Grey circles are anti CD40. Dark Grey circles are anti CD154.
FIGURE 4 | Kaplan Meier Survival Plot and Risk Table for Treatment
Durability. Kaplan-Meier estimates of the probability of rejection free survival
by treatment group after discontinuation of treatment. Median survival CD40
(38 days), and CD154 (198 days) groups (P = 0.0003 log-rank test).
April 2022 | Volume 13 | Article 861471
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treated with anti CD154 antibodies compared to anti CD40
antibodies. There was also a significant improvement in graft
function and survival influenced by duration of treatment. The
histological data also suggested more limited immune cell infiltrate
and pathological changes in anti CD154 treated animals compared
to anti CD40 treated animals. An interesting observation arising
from the analysis is the induction of transplant tolerance and
durability of preventing graft dysfunction and rejection after
cessation of treatment with anti CD154 antibodies having longer
durability of effect than anti CD40 antibodies.

There are three general pathophysiological mechanisms
leading to transplant rejection, hyperacute rejection occurring
in minutes or hours due to preformed anti donor antibodies,
acute rejection occurring in weeks to months of transplant which
can be cellular or humoral in nature, and chronic allograft
rejection which develops over a period of months to years and
is described as transplant vasculopathy (TV) (73), characterized
by neointima formation. Hyperacute rejection is uncommon due
to advances in prescreening for anti-donor antibodies. Acute and
chronic graft rejection are characterized by both vascular and
parenchymal damage to the graft involving professional antigen
presenting cells as well as “semiprofessional” antigen presenting
cells such as platelets and endothelial cells (EC). EC are a natural
barrier between graft and host immune systems but can be
compromised by pro-inflammatory activation, ischemic
reperfusion injury or infections. ECs when activated release
inflammatory mediators and can directly activate platelets, NK
cells, and T cells.

Significant progress has been made in elucidating the
mechanisms by which CD154 inhibition prevents acute and
long-term transplant inhibition and, in some cases, can induce
transplant tolerance. Accumulating evidence suggest that CD40/
CD154 signaling is dynamic in nature, evolutionarily designed to
be potent in the recognition of and requirement for immune
system activation yet transient to prevent long lasting autoimmune
activation. In addition, the focal expression of this receptor/ligand
pair on endothelial cells, vascular smoothmuscle cells and platelets
in the context of atherosclerosis and vasculopathy perfectly
juxtapositions the regulation of CD40/CD154 signaling in
immune responses to foreign pathogens and “non-self’ in the
context of transplant rejection and autoimmunity as well as the
site where these events primarily occur in transplant rejection. In
addition, in renal allograft transplantation there is the additional
relevance to the expression of CD40/CD154 on immune cell
infiltrates, tubules, mesangial cells, and glomerular structures in
the kidney in allograft transplant and autoimmune nephritis.

There are clear distinctions differentiating between CD154
and CD40 as drug targets and in how they modulate immune
responses that may account for these observations. CD154 is a
costimulatory type II membrane receptor initially characterized
on activated T helper cells. Cell surface CD154 is not
constitutively found on the cell, it is inducible and is regulated
by T cell receptor and CD28 signaling on the cell surface (74).
CD154 is stored intracellularly in microsomes prior to activation
as a monomer and trimerizes within seconds to minutes on the
cell surface as a functional receptor (41, 75, 76). The activity of
CD154 on the cell surface of T cells and platelets is modulated by
Frontiers in Immunology | www.frontiersin.org 7
metalloproteases and the protease ADMA-10 cleaving CD154 on
the cell surface and releasing biologically active soluble CD154
(sCD154) (77, 78). The shedding of cell surface CD154 is thus a
feedback mechanism which controls constitutive activation of its
receptors on APCs. Soluble CD154 is a potent chemokine that
then binds to CD40 as well as a5b1 integrin on APCs
modulating pro-inflammatory signaling (76, 79). The activity
of activated T cells is further modulated by CD154 and sCD154
in a cis fashion by binding with a5b1 integrin on the surface of T
cells and inhibiting apoptosis (80) Indeed, T lymphocytes in
autoimmune diseases express higher levels of sCD154 and
express aberrant amounts a5b1 integrin on the cell surface
which increases T cell populations via inhibition of apoptotic
signaling (81, 82).

Cell surface CD154 on activated T cells interacts with its
constitutively expressed receptor, CD40, found on cells of the
monocyte lineage and antigen presenting cells (APCs) including
B cells (83, 84). B cell maturation, class switching and
proliferation requires both antigen and CD40 ligation via
CD154 on the cell surface of activated T cells because activated
T cell supernatants are insufficient to induce full B cell
maturation (85). Further evidence supporting the critical role
for CD154 in B cell maturation and class switching arises from
persons living with X chromosome-linked hyper-IgM Syndrome
(HIGM1). HIGM1 arises from mutations in the CD154 gene on
the X chromosome and is characterized by undetectable serum
levels of IgG, IgA, and IgE with normal or elevated levels of IgM
(64). In addition people with HIGM1 either lack or have poorly
differentiated germinal centers in secondary lymphoid tissues.
Germinal centers are formed in secondary lymphoid tissues
during the process of immune responses to antigen
presentation by dendritic cells to immature B cells and the
maturation of B cells via interaction with activated T cells. The
expression of CD40 on dendritic cells and B cells and the
expression of CD154 on activated T cells in the germinal
center is required for B cell maturation, class switching,
antibody production and the formation of both memory B
cells and long-lived plasma cells (10, 64–69).

The inhibition of CD40/CD40L signaling on T cells, APCs,
endothelial cells (ECs), platelets and other non-professional antigen
presenting cells is a potent mechanism to inhibit acute and chronic
transplant rejection via the inhibition of adaptive and humoral
immunity induced between donor and recipient immune systems
and to modulate the progression of transplant vasculopathy (TV),
the chronic process mediating chronic rejection.

The inhibition of CD154 results in decreased infiltration and
activation of alloreactive CD4+ and CD8+ T cells in allograft
transplants. The binding of CD154 to CD40 and the integrin
a5b1 on CD8+ and CD4+ T cells respectively results in
proliferation and pro-inflammatory signaling on T cells. Anti
CD154 antibodies interfere with these interactions resulting in T
cell anergy and apoptosis (70, 71, 80, 86). CD40+ cellular
infiltrates have been characterized in human kidney transplants
with chronic rejection. CD40+ infiltrates are primarily T cell
receptor positive T lymphocytes (73%) and 27% CD68+

macrophages (87). CD154 expression was observed on
glomerular endothelial, mesangial, and epithelial cells in
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biopsies from subjects undergoing chronic rejection whereas no
CD154 staining is detected in non rejecting biopsies (87). CD40+

infiltrates colocalize with CD154 expression in glomeruli and
tubules suggesting a role in mediating pro-inflammatory
signaling in the kidney and as discussed a role in the
development of vasculopathy observed during chronic rejection.

Inhibition of CD40/CD154 induces anergy in peripheral high
affinity alloreactive CD4+ and CD8+ T cells which can be
enhanced in the presence of donor specific transfusion of
recipient cell populations. The potency of CD154 inhibition
and alloreactive T cell anergy is a result of the inhibition of
costimulatory signals on antigen presenting cells as well as on
alloreactive T cells (55, 86, 88). In a similar fashion, the
engagement of CD154 with both CD40 and the integrin
CD11b, a component of the MAC complex on dendritic cells
and APCs results in secretion of pro-inflammatory cytokines,
processes that are inhibited by anti CD154 antibodies (89).

A unique and critical component of CD154 inhibition is the
polarization of allogenic T cells (CD4+ lymphocytes) that do not
undergo anergy and apoptosis to become tolerogenic FoxP3+ T
regulatory cells (Tregs) (70–72). Blocking CD154 signaling on
Tregs results in the proliferation of CD4+CD25+ (Tregs) which
create a tolerogenic environment via inhibition of IL2
production (90–92). The Inhibition of IL2 production by Tregs
suppresses expansion of donor derived allogenic T cells and is
required for the prevention of transplant rejection (93).

The inhibition of CD40/CD154 may also impact chronic
rejection by ameliorating EC and platelet activation decreasing
transplant vasculopathy (TV). TV is characterized by lesions
consisting of a progressive narrowing of the vessel lumen due to
intimal hyperplasia. The thickened intima is formed by
endothelial infiltrates of host-derived T cells and macrophages
and subsequent proliferation of graft-derived SMC and
associated extracellular matrix.

Endothelium is the primary interface between donor and
recipient immune systems in solid organ transplant. The
activation of EC, platelets and leukocyte migration play a
critical role in vascular injury. Loss of integrity of the
endothelium and activation of ECs balance cellular and
antibody mediated transplant rejection. Disruption of the
endothelial cell layer results in EC and platelet activation as
well as migration of neutrophils, monocytes, and T cells via
thrombin receptors. In addition ligation of anti HLA antibodies
on the surface on the endothelium results in EC activation and
expression of adhesion molecules and additional pro-
inflammatory cytokines including intercellular cell adhesion
molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-
1), monocyte chemoattractant protein-1 (MCP-1) and CD40
resulting in adhesion of leukocytes via Fcg receptors (73, 94–96).
Platelets are the most abundant source of CD154. Expression of
CD40 on ECs results in binding to cell surface CD154 on
platelets resulting in the secretion of potent chemoattractants
including CXCL4, CXCL7, RANTES, and MCP-1 thus arresting
inflammatory T cells, monocytes, and neutrophils at the site of
platelet activation (97, 98). Activated infiltrating T cell expressing
CD40L interact with CD40 on the surface of platelets further
activating their pro-inflammatory potential (99, 100). Although
Frontiers in Immunology | www.frontiersin.org 8
CD40 is also expressed on the cell surface of platelets unlike its
expression on other cell types there is no evidence for a direct
involvement of CD40 in the activation or aggregation of platelets.
Much like a5b1 controls CD154 pro-inflammatory activity by cis
acting interactions on T cells, CD40 interactions with CD154 in
cis on platelets result in internalization and cleavage of sCD154, a
central mechanism controlling CD154 pro-inflammatory
activities again showing a negative feedback of CD154 activity
(13). In animals models of vascular injury and restenosis,
inhibition of CD154 reduces neonatal intima formation and
macrophage infiltration (101). These effects are mediated
through multiple pathways including P-selectin on platelets
and MAC-1 on leukocytes (101, 102). sCD40L stimulates Mac-
1 integrin expression and neutrophils adhesion to activated
platelets and these activities can be abrogated via anti CD154
antibodies (101).

In addition eosinophils express CD154 and the number of
eosinophils in circulation are a biomarker of solid organ
transplant rejection (44, 103). Activated Basophils express
CD154, IL4 and IL13 and induce B cell expression of IgE (43).
IgE antibodies specific for donor MHC class I and MHC class II
antigens developed during graft rejection in several mouse
transplantation models and resembled DSAs associated with
vasculopathy and ABMR (104).

Both anti CD154 and anti CD40 antibodies have progressed
into clinical development programs in autoimmunity and solid
organ transplant. Iscalimab (CFZ-533), an IgG1 anti CD40
antibody reported positive data in a phase 2 study of iscalimab
versus a standard of care (SOC) arm containing the calcineurin
inhibitor tacrolimus (TAC) in de novo kidney transplant
recipients. At the 6 month composite endpoint of biopsy
proven acute rejection (BPAR), graft, loss or death, iscalimab
in conjunction with corticosteroids (CS) and mycophenolate
mofetil (MMF) showed non inferiority to CS, MMF, and TAC
(21.2% versus 22.2%). The iscalimab group also demonstrated
improved renal function (55.8 mL/min versus 45.5 mL/min),
fewer serious adverse events (47.1% versus 61.1%), fewer
opportunistic infections, and a decreased incidence in rate of
new onset diabetes mellitus after transplantation (NODAT)
(14.7% versus 38.9%) (105). In a small subgroup analysis 12
subjects in the study (5 in the iscalimab arm and 7 in the TAC
arm) had extended treatment to 24 months and underwent
protocol biopsies. Biopsies were reviewed with Banff criteria
and the chronic allograft damage index (CADI) was calculated.
Three of five subjects in iscalimub group had normal renal
histology versus none of the subjects in the SOC group. The
average CADI score in the iscalimab group was 1.6 +/- 0.6 and
5.1 +/- 0.8 in the SOC group (106). These encouraging results led
to further development of iscalimab with the initiation of a phase
2B study in 420 subjects undergoing a de novo renal transplant
(NCT03663335). The study was discontinued in 2021 after an
interim analysis suggested iscalimab was less efficacious than
TAC in the prevention of kidney transplant rejection. A clinical
study of iscalimab in liver transplant rejection is still
ongoing (NCT03781414).

Bleselumab (ASKP1240) an IgG4 anti CD40 antibody
completed a phase 2 study in subjects undergoing de novo
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renal transplant. Two study arms with bleselumab (bleselumab
plus MMF or bleselumab plus TAC) were compared to a SOC
regiment containing TAC. Only 62.4% of subjects achieved the 6
months endpoint with the majority of drop outs in the
Bleselumab groups due to adverse events (33/35, 94.2%) (107).
The Bleselumab plus TAC group was noninferior to SOC at the 6
month endpoint for BPAR (9.1% versus 6.3% respectively) but
the Bleselumab plus MMF did not achieve noninferiority to SOC
(37%). There was no statistically significant difference between
the SOC group and either of the Bleselumab groups for patient or
graft survival at 6 or 36 months (107). The incidence of infections
and NODAT was similar between the groups.

VIB4920 an anti CD154 TN3 fusion protein is in a phase 1
study in combination with Belatacept in the prevention of
transplant rejection for subjects undergoing de novo kidney
transplantation, but study results have not been reported at
this time (NCT04046549).

The induction of transplant tolerance is considered the “Holy
Grail,” or penultimate goal, for the prevention of acute and long
term transplant rejection. Initial studies in nonhuman primates
identified limitations utilizing whole body irradiation or
lymphoid irradiation in conjunction with CD34+ cells to
induce chimerism and tolerance due to incomplete T cell
depletion in secondary lymphoid organs (108, 109). The
addition of CTLA4 costimulatory inhibition with belatacept
significantly improved long term graft rejection (110).
However, anti CD40L inhibition was shown to be more
effective at inducing long term transplant tolerance (111).

For several of the studies analyzed in this meta- analysis,
treatment was terminated at specified times due to limitations in
antibody availability, space, and costs associated with long term
animal care. The half-life of IgG1 and IgG4 antibodies range from
nine to eighteen days in nonhuman primates. Animal survival
was tracked after cessation of treatment until graft failure showing
long term graft survival in the absence of immunosuppression.
Animals in the anti CD154 treatment groups had a 3 fold higher
likelihood of survival compared to anti CD40 treated animals.

Although this meta- analysis demonstrated a significant
difference between the inhibition of CD40 and CD154 in
preventing transplant rejection and inducing transplant
tolerance after cessation of treatment, the study has several
limitations. The strength of the analysis is the availability of
individual animal data from multiple studies. Although there
were individual animal data for over 100 animals included in the
study the actual number of animals per study was small. One
study was excluded from analysis utilizing the anti CD154
antibody ABI793 in the prevention of kidney transplant
rejection in cynomolgus monkeys due to acute tubular necrosis
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in the kidneys (ATN). ATN appeared in 8 of 9 animals in the
study but the mechanism for the acute toxicity is unclear given
that ABI1793 was studied in a renal transplant study in rhesus
macaques with no evidence of ATN (25). There were also
differences in the species and type of FC utilized with anti
CD40 studies being comprised of studies conducted in
cynomolgus animals with mostly IgG4 containing FC
antibodies and anti CD154 studies being conducted in rhesus
macaques with IgG1 containing FC antibodies. Studies have
shown similar binding affinities of CD154 antibodies to
multiple nonhuman primate species (baboon, rhesus
macaques, cynomolgus) however this variable could not be
controlled for in this analysis. There was some evidence to
suggest pathological differences between anti CD154 and anti
CD40 treatment but these interpretations are limited given the
sparsity of the data and histopathology was not assessed in a
blinded fashion with a single pathologist. Most importantly there
were no studies that directly compared the inhibition of anti
CD40 versus anti CD154 antibodies in the context of preventing
transplant rejection or the induction of transplant tolerance.

In conclusion, this meta-analysis of published studies utilizing
anti CD154 and anti CD40 antibodies as monotherapy
demonstrates that they are effective at the prevention of acute and
long term transplant rejection. These analyses also suggest the
ability to induce transplant tolerance after blocking the CD40/
CD154 costimulatory pathway in nonhuman primates. Animals
treated with anti CD154 had an approximately 3 fold higher
likelihood of survival and induction of tolerance compared to anti
CD40 treated animals. In addition, the ability to prevent transplant
rejection after cessation of treatment was more durable in the anti
CD154 treatment groups. Further studies will be required in
combination with other technologies to assess the ability to
sustain long term transplant tolerance in nonhuman primates.
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