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Explainable machine‑learning 
predictions for complications 
after pediatric congenital heart 
surgery
Xian Zeng1,2, Yaoqin Hu1, Liqi Shu3, Jianhua Li1, Huilong Duan2, Qiang Shu1* & Haomin Li1*

The quality of treatment and prognosis after pediatric congenital heart surgery remains 
unsatisfactory. A reliable prediction model for postoperative complications of congenital heart surgery 
patients is essential to enable prompt initiation of therapy and improve the quality of prognosis. Here, 
we develop an interpretable machine‑learning‑based model that integrates patient demographics, 
surgery‑specific features and intraoperative blood pressure data for accurately predicting 
complications after pediatric congenital heart surgery. We used blood pressure variability and the 
k‑means algorithm combined with a smoothed formulation of dynamic time wrapping to extract 
features from time‑series data. In addition, SHAP framework was used to provide explanations of 
the prediction. Our model achieved the best performance both in binary and multi‑label classification 
compared with other consensus‑based risk models. In addition, this explainable model explains why 
a prediction was made to help improve the clinical understanding of complication risk and generate 
actionable knowledge in practice. The combination of model performance and interpretability is easy 
for clinicians to trust and provide insight into how they should respond before the condition worsens 
after pediatric congenital heart surgery.

Congenital heart disease is the most common form of major birth defect, affecting approximately 8 in 1000 
live births  worldwide1. Extraordinary advances in cardiovascular diagnostics and cardiothoracic surgery have 
increased the survival of newborns with congenital heart  disease2. Nevertheless, the quality of treatment and 
prognosis after congenital heart surgery remains unsatisfactory, especially when complex surgery is  performed3,4. 
Postoperative complications in congenital heart surgery have been inconsistently reported but have important 
contributions to mortality, hospital stay, cost and quality of  life5–7. Heart centers with the best outcomes might 
not report fewer complications but rather have systems in place to recognize and correct complications before 
deleterious outcomes  ensue6. In these cases, the early detection of deterioration after congenital heart surgery 
enables a prompt initiation of therapy, which may result in reduced impairment and earlier rehabilitation. Several 
scoring systems, such as the Risk Adjustment for Congenital Heart Surgery (RACHS-1)  category8, the Aristotle 
Basic Complexity (ABC)  score9, the European Association for Cardiothoracic Surgery and the Society of Thoracic 
Surgeons (STS-EACTS) mortality  score10, and the STS-EACTS morbidity  score11, have been developed and used 
to adjust the risk of in-hospital morbidity and mortality in the community. However, all these consensus-based 
risk models only focus on the procedure themselves and cannot be adjusted for specific patient characteristics 
such as lower  weight12 and longer cardiopulmonary bypass (CPB)13, which were associated with worse outcomes 
after congenital heart surgery.

With the development of electronic health record (EHR) systems, abundant, complex, high-dimensional, and 
heterogeneous data are being captured during surgery and daily care. Researches using EHR data have shown that 
 weight12,14, perioperative blood  transfusions15,  CPB13,16, and preoperative ejection  fraction17 were associated with 
the risk of postoperative complications and mortality after congenital heart surgery. A machine learning-based 
predictive  model18 has recently been used to identify independent risk factors and predict complications after 
congenital heart surgery. However, several gaps remain to be addressed. First, quantifying the effect of these risk 
factors in both a specific patient and a population in clinical practice is less explored. Second, highly intensive 
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vital signs data during surgery were not fully utilized. Perioperative blood pressure control has been adopted as 
a significant clinical focus in congenital heart surgery. The previous model only used static features to predict 
postoperative complications and did not leverage intraoperative blood pressure data. Third, the previous model 
focused only on predicting whether patients had postoperative complications and did not address what kind of 
complications patients could experience. Clinicians might take different interventions for different complications, 
so it is of more clinical significance to predict the specific complications that patients will experience. Fourth, 
although machine learning model provides good prediction accuracy, its application in an actual clinical setting 
is limited because the prediction is difficult to interpret. Interpretable methods explain why a certain prediction 
was made for a patient, that is, a specific characteristic that led to the prediction.

We aimed to develop and internally validate a machine learning model to predict the risk of complications 
and what kind of complications patients could experience using patient demographics, surgery-specific features, 
and intraoperative blood pressure data, all of which are routinely collected as part of medical records. In addi-
tion, to gain insight into the specific factors that contribute most to the model predictions, we used the feature 
attribution framework of SHAP (SHapley Additive exPlanations). The schematic of data processing and workflow 
of our proposed model was shown in Fig. 1. We believe the combination of model performance and interpret-
ability is an important step forwards that enables the prediction of postoperative complications prediction to be 
more widely used in practice.

Results
Population characteristics. A total of 1964 patients with a median age of 11 months (IQR 4–26) were 
included in the final analyses, of which 582 (34.4%) patients developed postoperative complications, 134 (6.8%) 
patients developed cardiac complications, 131 (6.7%) patients developed rhythm complications, 432 (22.0%) 
patients developed lung complications, 90 (4.6%) patients developed infectious complications, and 155 patients 
developed other complications. Patient characteristics used in the final prediction model were shown in Table 1. 
The univariate analysis revealed that patients with postoperative complications were more likely to be boys, had 
lighter weight, shorter height, and younger age. Lower blood oxygen saturation levels before and after surgery 
were also associated with postoperative complications. Moreover, a longer surgical time, CPB time, and aortic 
cross-clamping time were associated with complications. The trajectory of blood pressure change during surgery 
and blood pressure variability of different phases were also associated with postoperative complications.

Data‑driven clusters group blood pressure time‑series data. When patients were ordered by their 
blood pressure cluster, the block-like structure of the similarity matrix becomes evident (Fig. 2a). Black lines 
along the diagonal marked blocks of patients grouped into the same cluster and similarities between patients in 
the marked blocks have some differences from those outside the mark blocks. We also compared the composi-
tion of each cluster in terms of whether the patients experienced postoperative complications, risk categories 
of operation, or primary diagnoses (Fig. 2b). Notably, there were significant differences in these components 
of clusters, and the subjects belonged to clusters with higher rates of complications harbored more complex 
surgery. Clusters with higher rates of complications were also composed primarily of patients with high levels of 

Figure 1.  Schematic of data processing and workflow of our proposed model. We used soft-DTW to measure 
similarities of time-series hemodynamic data, and k-means clustering was applied to capture different dynamic 
patterns of hemodynamic data. Blood pressure variability was also used to measure blood pressure fluctuations 
within a period of surgery. All these extracted time-series features combined with the patient- and surgery-
specific static features were used to build a predictive model of postoperative complications. An explanation was 
then built for each prediction. Pink features revealed that increased value is associated with an increased risk 
on the final prediction, whereas blue features decreased risk. The base value is the mean of the model output 
over the training dataset. The final prediction risk is the sum of the impacts of all features and base value, and 
then transformed into probability space; in this case, this patient has a 21% chance of having postoperative 
complications.
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Characteristic No PC (n = 1382) PC (n = 582) P value

Age (months) 14.4 [6.6, 36.2] 5.0 [2.2, 11.5]  < 0.001

Gender (male) 646 (47.2%) 312 (54.5%) 0.003

Height (cm) 77.0 [66.0, 95.0] 62.0 [55.0, 72.0]  < 0.001

Weight (kg) 9.5 [6.8, 13.8] 6.0 [4.1, 8.2]  < 0.001

Main defect

ASD, secundum 651 (47.5%) 306 (53.5%) 0.204

VSD, type 2 579 (42.3%) 229 (40.0%) 1.908

PDA 240 (17.5%) 249 (43.5%)  < 0.001

PFO 343 (25.0%) 144 (25.2%) 5.676

VSD, type 1 217 (15.8%) 82 (14.3%) 2.406

TOF 32 (2.3%) 50 (8.7%)  < 0.001

Main operation

VSD repair, patch 629 (45.9%) 289 (50.5%) 1.030

ASD repair, patch 414 (30.2%) 90 (15.7%)  < 0.001

PDA closure 242 (17.7%) 246 (43.0%)  < 0.001

PFO, primary closure 340 (24.8%) 138 (24.1%) 7.170

ASD repair, primary closure 242 (17.7%) 205 (35.8%)  < 0.001

VSD repair, primary closure 180 (13.1%) 25 (4.4%)  < 0.001

Valvuloplasty, mitral 53 (3.9%) 49 (8.6%)  < 0.001

Valvuloplasty, tricuspid 65 (4.7%) 36 (6.3%) 2.130

TAPVC repair 20 (1.5%) 43 (7.5%)  < 0.001

TOF repair, ventriculotomy, transannular patch 20 (1.5%) 40 (7.0%)  < 0.001

ABC score 6.0 [3.0,6.0] 6.0 [6.0,9.0]  < 0.001

RACHS-1

1 400 (29.2%) 43 (7.5%)  < 0.001

2 824 (60.1%) 348 (60.8%) 4.920

3 137 (10.0%) 137 (24.0%)  < 0.001

4 9 (0.7%) 43 (7.5%)  < 0.001

5 0 (0.0%) 1 (0.2%) 1.480

STS-EACTS mortality score 0.2 [0.2, 0.4] 0.4 [0.2, 0.7]  < 0.001

STS-EACTS morbidity score 0.6 [0.2, 1.0] 1.1 [0.7, 1.3]  < 0.001

Surgical time (minutes) 120.0 [106.0,140.0] 152.5 [123.0,200.8]  < 0.001

CPB time (minutes) 56.0 [46.0, 70.0] 84.5 [62.0,127.8]  < 0.001

Aortic cross-clamping time (minutes) 36.0 [26.0, 47.0] 55.0 [41.0, 86.0]  < 0.001

Previous surgery 14 (1.0%) 10 (1.7%) 0.234

Preoperative LOS 4.0 [2.0, 6.0] 6.0 [4.0, 11.0]  < 0.001

Surgical access route  < 0.001

Complete median sternotomy 1095 (79.9%) 551 (96.3%)

Right thoracotomy 275 (20.1%) 21 (3.7%)

Preoperative oxygen saturation (%) 98.0 [97.0, 99.0] 96.0 [90.0, 98.0]  < 0.001

Oxygen saturation (%) 98.0 [97.0, 99.0] 98.0 [96.0, 99.0]  < 0.001

Trajectory of SBP change

Cluster 1 931 (67.4%) 340 (58.4%)  < 0.001

Cluster 2 349 (25.3%) 40 (6.9%)  < 0.001

Cluster 3 102 (7.4%) 202 (34.7%)  < 0.001

Trajectory of DBP change

Cluster 1 83 (6.0%) 31 (5.3%) 1.890

Cluster 2 1032 (74.7%) 310 (53.3%)  < 0.001

Cluster 3 267 (19.3%) 241 (41.4%)  < 0.001

Trajectory of MAP change

Cluster 1 229 (16.6%) 234 (40.2%)  < 0.001

Cluster 2 826 (59.8%) 265 (45.5%)  < 0.001

Cluster 3 18 (1.3%) 44 (7.6%)  < 0.001

Cluster 4 309 (22.4) 39 (6.7%)  < 0.001

SBP variability

Overall slope 1.9 [1.6, 2.3] 1.6 [1.4, 1.9]  < 0.001

Continued
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patent ductus arteriosus, coarctation of aorta, and type 1 total anomalous pulmonary venous connection, which 
have a higher risk than other diagnoses. In addition, we compared surgical time, CPB time, and aortic cross-
clamping time between clusters and found statistically significant differences between clusters for these times 
(Fig. 2c). The mean and 95% confidence interval of the blood pressure readings during the surgery between dif-
ferent clusters were shown in Supplementary Fig. S3.

Performance of the complication prediction model. To test the potential of our model to aid postop-
erative complication prediction we evaluated the performance of our proposed model and four consensus-based 
risk models using receiver operating characteristic curves and other evaluation metrics (Fig. 3, Table 2, Supple-
mentary Table S2). We found that for both the binary and multi-label classification tasks, the predictions made 
by our model are considerably more accurate than the predictions made by consensus-based risk models. The 
STS-EACTS morbidity score performed relatively well in both types of classification tasks compared with other 
risk models. Cardiac complication prediction has a higher AUC of 0.946, whereas lung complication prediction 
has a lower AUC of 0.785 (Fig. 3b–f, Supplementary Table S2).

Inspection of model features. In Fig. 4a,b, we list the top 15 features by mean absolute SHAP value for 
both the binary and multi-label classification, and different colored circles in Fig. 4b represent the feature impor-
tance of each category in multi-label classification. The top 15 features importance of each complication category 
are respectively shown in Supplementary Fig. S4. The relationship between feature value and SHAP value in 
binary classification is illustrated in more detail for the features in Fig.  4c,d, with further examples in Sup-
plementary Fig. S5. When removing the top 15 features in turn, the removal of CPB time noticeably decreased 
model performance in the binary classification, as is also observed in the analysis based on SHAP values. While 
these analyses show the overall effect of the features, SHAP values can also be inspected for individual predic-
tions to identify the influential features (see Fig. 4e). All these effects explain why the model predicted a specific 
risk and thus allow appropriate interventions before deleterious outcomes ensue.

Table 1.  Characteristics of cardiac patients stratified by postoperative complications (PC). ASD atrial septal 
defect, VSD ventricular septal defect, PDA patent ductus arteriosus, PFO patent foramen ovale, TOF tetralogy 
of fallot, TAPVC total anomalous pulmonary venous connection, LOS length of stay, SBP systolic blood 
pressure, DBP diastolic blood pressure, MAP mean arterial pressure.

Characteristic No PC (n = 1382) PC (n = 582) P value

Overall coefficient of variation 0.3 [0.2, 0.3] 0.3 [0.2, 0.3] 0.437

Pre-slope 1.7 [1.3, 2.3] 1.5 [1.1, 2.1]  < 0.001

Intra-slope 1.6 [1.1, 2.1] 1.3 [1.0, 1.8]  < 0.001

Post-slope 1.9 [1.5, 2.4] 1.7 [1.3, 2.1]  < 0.001

Pre-coefficient of variation 0.1 [0.1, 0.2] 0.1 [0.1, 0.2] 0.326

Intra-coefficient of variation 0.2 [0.2, 0.3] 0.2 [0.2, 0.3] 0.013

Post-coefficient of variation 0.1 [0.1, 0.2] 0.1 [0.1, 0.2] 0.006

DBP variability

Overall slope 1.2 [1.0, 1.4] 1.1 [0.9, 1.3]  < 0.001

Overall coefficient of variation 0.2 [0.2, 0.2] 0.2 [0.2, 0.3]  < 0.001

Pre-slope 1.2 [0.9, 1.6] 1.0 [0.7, 1.3]  < 0.001

Intra-slope 1.2 [0.8, 1.5] 1.1 [0.8, 1.4] 0.131

Post-slope 1.0 [0.7, 1.3] 1.0 [0.7, 1.3] 0.539

Pre-coefficient of variation 0.1 [0.1, 0.2] 0.1 [0.1, 0.2] 0.167

Intra-coefficient of variation 0.2 [0.1, 0.2] 0.2 [0.2, 0.3]  < 0.001

Post-coefficient of variation 0.1 [0.1, 0.1] 0.1 [0.1, 0.2]  < 0.001

MAP variability

Overall slope 1.5 [1.3, 1.7] 1.3 [1.1, 1.5]  < 0.001

Overall coefficient of variation 0.2 [0.2, 0.3] 0.2 [0.2, 0.3] 0.033

Pre-slope 1.5 [1.1, 1.9] 1.2 [0.9, 1.6]  < 0.001

Intra-slope 1.3 [1.0, 1.7] 1.2 [0.9, 1.6] 0.004

Post-slope 1.3 [1.0, 1.7] 1.2 [0.9, 1.6]  < 0.001

Pre-coefficient of variation 0.2 [0.1, 0.2] 0.2 [0.1, 0.2] 0.051

Intra-coefficient of variation 0.2 [0.1, 0.2] 0.2 [0.2, 0.3]  < 0.001

Post-coefficient of variation 0.1 [0.1, 0.1] 0.1 [0.1, 0.2]  < 0.001
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Discussion
We developed an efficient machine-learning-based model that comprehensively integrated patient- and surgery-
specific static features and intraoperative time-series features to predict postoperative complications before 
they occur. Based on a comparison with existing consensus-based risk models, our model achieves superior 
performance both in binary and multi-label classification. Different from the traditional black-box model, we 
used the XGBoost model and SHAP framework which take advantage of artificial intelligence to process complex 
and high-dimensional features and identify the quantitative association between factors and prediction result 
to explain the prediction at different levels. In addition, we introduced blood pressure variability and k-means 
algorithm combined with soft-DTW to preprocessing intraoperative blood pressure. Such an approach can 
improve the interpretability of intraoperative time-series features, and we know which phase of fluctuation in 
surgery is more likely to lead to complications. This combination of model performance and interpretability 
allows physicians to receive the best predictions while also gaining insight into why those predictions were made.

The risk profiles learned by our model are clinically relevant. First, accumulating evidence has demonstrated 
the prolonged duration of CPB as a risk factor for neurologic, respiratory, infective, and renal complications. 
However, CPB time is frequently dichotomized at heterogeneous time points or the association between dura-
tion and risk of complication was not well characterized. Yamauchi and colleagues identified CPB times > 5 h 
as a risk factor of postoperative acute kidney  injury19. Agarwal and colleagues reported that a longer CPB time 
was significantly associated with a great number of cardiac and extracardiac  complications13. In our study, CPB 
time is also the most important variable as is observed in the analysis based on SHAP values and selection of 
variables guided by model performance. We provide a more useful perspective by considering the quantitative 
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Figure 2.  Clustering of intraoperative blood pressure and comparison of other characteristics between clusters. 
(a) Similarity matrix of blood pressure where rows and columns were ordered by a partition detected through 
k-means clustering. (b) Composition of each cluster in terms of whether the patients experienced postoperative 
complications, risk categories of operation, or primary diagnoses. (c) Distribution of surgical time, CPB time, 
or aortic cross-clamping time between each cluster. In the box plots, box edges represent the 25th and 75th 
percentiles, the centerline shows the median and whiskers extend from the box edges to the 1.5× interquartile 
range and *means P < 0.001 (Kruskal–Wallis H-test).
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effect of continuous CPB time and its relationship with complications (Fig. 4c). The actionable knowledge such 
as control the CPB time under 80 min or 160 min will relatively control the risk of postoperative complications 
at different levels can be generated from these explainable plots. Second, clinical surgeons can now quantify risks 
of postoperative complications adjusted for other factors to the younger, those who are low weight and more 
susceptible to the environment. The exact relationships described in Fig. 4 and Supplementary Fig. S5 clearly 
show the patterns and threshold points for the risk. Third, different diagnoses are associated with different risk 
levels of postoperative complications. For example, patent ductus arteriosus or tetralogy of fallot patients may be 
more critically ill as they have more postoperative complications when compared with patients with other defects. 
When considering the standardization of care to reduce unwanted clinical deterioration, these data suggest that 
resources need to be differentially deployed to address differential rates of complications.

To the best of our knowledge, before, during, and after CPB are 3 distinctly different phases in cardiac sur-
gery, and changes in blood pressure at these 3 phases may also have different effects on  complications20. Due 
to the lack of our data on patients’ start and end times of CPB, we attempted to explore the impact of changes 
in blood pressure at different phases of surgery distinguished by changes in  temperature21. Naturally, changes 
in blood pressure before hypothermia had a minimal effect on the risk of complications when compared with 
intra- and post- hypothermia (Fig. 4, Supplementary Fig. S4). Interestingly, we found that the smaller average 
slope of systolic blood pressure was associated with an increased risk of postoperative complications in both 
the univariable analysis and prediction model (Table 1, Supplementary Fig. S5). This finding stands in contrast 
to the common belief that rapid fluctuations in intraoperative arterial blood pressure are deleterious and that 
clinicians should strive to maintain ‘railroad track’  hemodynamics22. One possible interpretation may be that 
patients with shorter surgical times quickly have steep changes in blood pressure readings because the trends in 

Figure 3.  Receiver operating characteristic curve of the predictive models in the test data set. (a) Binary 
classification; (b–f) Multi-label classification. ABC Aristotle basic complexity, RACHS-1 risk adjustment for 
congenital heart surgery, STS Society of Thoracic Surgeons.

Table 2.  Experimental results of binary classification and multi-label classification on the test set.

Binary classification Multi-label classification

ACC Recall F1 AUC ACC Micro-Recall Micro-F1 Macro-AUC 

Our method 0.756 0.791 0.661 0.839 0.831 0.703 0.451 0.850

ABC score 0.732 0.480 0.518 0.745 0.761 0.541 0.308 0.763

RACHS-1 0.725 0.345 0.430 0.705 0.805 0.438 0.308 0.730

STS mortality score 0.746 0.407 0.490 0.755 0.829 0.459 0.345 0.770

STS morbidity score 0.736 0.627 0.587 0.792 0.729 0.652 0.322 0.789
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blood pressure readings are all from normal to lower and finally back to normal. For the analysis of postopera-
tive outcomes, the complexity of cardiac surgery was considered an important risk factor in other  studies13. The 
length of surgical time indirectly reflects the complexity of the surgery.

When using this model to generate early warnings before complications occur, it is important to understand 
the balance between recall (the sensitivity) and precision. Given that the ratio of positive to negative in our data 
is unbalanced, especially for specific complication types, we adjust one weight parameter in the model which 

Figure 4.  Feature inspection. (a,b) Importance estimates assigned by our proposed method to the top 15 
features in both the binary (a) and multi-label (b) classification. The importance of features in multi-label 
classification was measured as the averaged feature importance estimated by five categories of complication 
prediction, and the feature importance of each category prediction was represented by different colored circles. 
(c,d) Scatter plots showing the relationship between the varying feature and SHAP value for CPB time (c) 
and patient weight (d). The gray histogram shows the distribution of values for that feature in the training 
set. The orange line and shade represent the mean and the 95% confidence interval of the regression line. (e) 
Visualization of two individual examples for the explanation risk of postoperative complications. Each feature 
contributes to pushing the model output from the base value (the average model output over the training dataset 
we passed) to the model output. Red features mean pushing the prediction higher risk and blue features pushing 
the prediction lower risk.
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can control the balance of positive and negative weights. However, in the multi-label classification, infectious 
and rhythm complications achieved the worst F1 score (Supplementary Table S2) when compared with other 
types of complications. One possible interpretation may be that the ratio of positive and negative for this type of 
complication is too unbalanced and adjusting the weight parameter to improve recall will result in a significant 
reduction in precision. In addition, the correlation between different types of complications and features is not 
the same, the current features maybe not the strongest predictor of infectious and rhythm complications (Sup-
plementary Fig. S4).

The field of medicine is full of data science challenges that have the potential to fundamentally affect the way 
medicine is practiced. More and more data-driven predictions of patient prognosis are being proposed. However, 
black-box models which did not provide any explanations about why make this prediction, are difficult for phy-
sicians to trust. The ability to establish which features contributed to a prediction ensures that this technology 
remains interpretable to its clinical users. Using SHAP values, we see that the model provided quantitative insight 
into the exact changes in risk caused by changes in the features of certain patients. In addition, the interpretable 
prediction made by our model is easy for physicians to trust and provide insight into how they should respond 
before the condition worsens.

Even though our model gets a better performance when compared with other consensus-based risk models, 
it should still be considered as an initial attempt. In the multi-label predictions, considering the low number of 
some complication cases, we classified complications into five complication classes rather than predicting specific 
types of complications. To enhance the clinical availability, future attempts can focus on predicting specific types 
of complications and identifying features that led to this risk. Another future enhancement would be the inte-
gration of abundant preoperative data, such as detailed laboratory results of patients into the prediction model. 
More high-fidelity intraoperative data such as heart rate, End-tidal  CO2, and respiratory rate could include in 
the prediction model, thus potentially leading to more accurate predictions.

There are some possible limitations in this study. We only used relatively few data (n = 1964) from a single 
center to train and validate the model; thus, multicenter data will be used to train and validate the model. While 
we believe that a specific model trained on data from a single center will give a more specific prediction for a 
single center. This approach can be used to train specific models for data from multi-centers when considering 
hospitals and surgeons as features. In addition, we also performed a time-based split to divide the dataset into 
separate training and test sets (the experimental results of binary classification and multi-label classification on 
the time-based test set is listed in Supplementary Table S3). In shortly, the performance of proposed model is 
better than the risk adjustment models especially gave a much higher recall. Compared with randomly divid-
ing the training sets and test sets, the time-based split prediction results have decreased slightly. One possible 
interpretation may be that the treatment of complex defects has greatly improved with the rapid development 
of surgical and interventional treatment, so there may be some differences in the characteristics of the dataset 
from year to year. Another limitation is the low frequency at which blood pressure was obtained, specifically one 
measurement every 5 min to 10 min during the surgery. A narrower time interval would have been desirable 
and possibly more illuminating.

Conclusions
In summary, with a novel interpretable machine learning algorithm, we can predict whether a patient has the 
complication after congenital heart surgery and what kind of complications will occur and explain the specific 
patient characteristics that led to this prediction. This prediction model achieved higher accuracy and sensitivity 
compared to risk adjustment models. We believe the combination of model performance and interpretability 
could provide useful information for physicians and can be used as part of clinical decision making.

Methods
Study design and population. A total of 2858 pediatric patients who underwent congenital heart sur-
gery between December 2015 and December 2018 at the Children’s Hospital of Zhejiang University School of 
Medicine were enrolled in the present analysis. Exclusion criteria included patients who died during the surgery, 
patients who lacked intraoperative anesthesia records, or patients who underwent surgery without CPB, for 
which the selection process of eligible participants is shown in Supplementary Fig. S1. Thus, the dataset from the 
remaining 1964 patients were included in the present analyses. This retrospective study was performed accord-
ing to relevant guidelines and approved by the institutional review board of the Children’s Hospital, Zhejiang 
University School of Medicine with a waiver of informed consent (2018_IRB_078).

Data collection and pre‑processing. The following data elements were requested: gender, age, height, 
and weight of patients; diagnoses and types of procedures; surgical time, CPB time and aortic cross-clamping 
time; surgical access route; preoperative and postoperative oxygen saturation; intraoperative anesthetic record 
data; and postoperative complications.

The most challenging part of the data preprocessing is the time-series vital signs data during surgery with 
different lengths which cannot be directly used to construct the prediction model. The evidence-based literature 
supporting temperature management in cardiac surgery suggests that mild (32–35 °C), moderate (28–32 °C), or 
deep hypothermic (< 28 °C) is used to protect the brain and other vital organs during cardiopulmonary  bypass21. 
Firstly, we divided surgery into three phases according to the changes in temperature, namely, the pre- (normal 
temperature—35 °C), intra- (< 35 °C), and post- (35 °C—normal temperature) hypothermic periods. Blood 
pressure variability including the coefficient of variation and slope was used to measure blood pressure fluctua-
tions of different phases of surgery (Fig. 1). The coefficient of variation was defined as the standard deviation 
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divided by the mean of each blood pressure sequence. In addition, the average changes (the slope) were also 
calculated as follows:

To further capture the dynamic temporal pattern of blood pressure during surgery, we used a k-means algo-
rithm to cluster the pattern of blood pressure changes in distinct trajectories (Fig. 1). In time-series analyses, 
the smoothed formulation of dynamic time warping (soft-DTW) was used to measure the similarity between 
two temporal sequences, which may vary in length and  speed23. To perform clustering of the blood pressure, 
we constructed a matrix R whose elements  Ri,j equal the blood pressure trajectory similarity calculated by soft-
DTW between patient i and patient j. Next, we performed k-means clustering on the similarity matrix R and the 
number of clusters was determined by maximizing the average silhouette coefficient and minimizing the within 
clusters sum of squares (a more detailed description of determining the optimal number of clusters is illustrated 
in Supplementary Fig. S2). The application of k-means clustering was applied after data splitting when training 
prediction model. For each patient in the test set, we computed the similarities between data points and all cen-
troids and assigned each data point to the closest cluster. Collectively, the extracted items including blood pres-
sure variability and clustered trajectories combined with patient characteristics were summarized into 45 features 
(detail shown in Table 1), which were subsequently used to construct the machine learning prediction model.

The missing values were imputed using multivariate imputation via chained equations package in  R24. It is 
a practical approach to generating imputations based on a set of imputation models, one for each variable with 
missing values. We used the random forest to fit regression trees of the data and imputed each missing value as 
the prediction based on trees. Class imbalance is also a problem in this study since the number of patients with 
postoperative complications is relatively small in compassion with the number without complications in some 
scenarios. It is important to properly adjust your metrics and methods to adjust for your  goals25. In this study, we 
used the scale_pos_weight hyperparameter in XGBoost which is designed to tune the behavior of the algorithm 
for imbalanced classification problems. It has the effect of weighing the balance of positive examples, relative to 
negative examples when boosting decision trees.

Postoperative complication labels. The label of whether the patient had any complications after surgery 
and what kind of complications occurred was collected by clinicians based on the review of medical records. 
Based on more than 30 defined complications (detailed definition of the types of complications is listed in Sup-
plementary Table  S1), we classified complications into five complication classes: lung complication, cardiac 
complication, rhythm complication, infectious complication, and other  complications26. Cardiac complication 
indicates that a complication symptom appeared in the heart except for arrhythmia, such as cardiac dysfunction 
resulting in low cardiac output, pulmonary hypertension, and so on. Rhythm complication indicates that any 
cardiac rhythm other than normal sinus rhythm. Infectious complication is defined as the successful invasion 
and growth of organisms in the tissues of the host such as sepsis, urinary tract infection, and wound infection. 
Other complications indicate that the symptoms of complications in other organs apart from the lung and heart 
such as thrombosis, liver dysfunction, ascites, and so on. It is worth mentioning that a patient can experience 
multiple postoperative complications. In this study, we defined two tasks, binary classification and multi-label 
classification, to predict whether the corresponding patient has complications and what kind of complications.

Statistical analysis. The patients were categorized according to whether they had experienced postop-
erative complications. Categorical variables were presented as counts and percentages, and continuous vari-
ables as median with interquartile range (IQR) as 25th and 75th percentiles. The Chi-square test was used to 
compare categorical variables of patients with and without this outcome, and the continuous variables were 
compared using the Mann–Whitney U test. Bonferroni’s correction was used to control the family-wise error 
rate when multiple comparisons were performed. All tests were two-sided, and statistical significance was set at 
P-value < 0.05 for all analyses. Data analyses were performed using the published package in the Python (version 
3.7) programming environments.

Model development and evaluation. As the collected features may have a variety of nonlinear interac-
tions, we used XGBoost, a scalable tree boosting system, to link input features with postoperative complications. 
It implements machine learning algorithms under the gradient boosting framework and provides a parallel tree 
boosting that solves many data science problems in a fast and accurate  way27. To understand how single features 
relate to the model output we used SHAP (Shapley Additive exPlanations) values, which are suited for complex 
models such as neural networks and gradient-boosting  machines28. The impact of each feature on the model is 
represented using Shapley values, which are from the game theory and provide a theoretically justified method 
for allocation of a coalition’s output among the members of the  coalition28.

To ensure stability and extrapolation of machine learning model, we randomly divided the dataset into sepa-
rate training (n = 1375) and test sets (n = 589) at a ratio of 7:3. We used fivefold cross-validation on the training 
set to tune hyperparameters for each classification and evaluated the final performance using the independent 
test set. The optimal model parameters were determined in a random search of 500 different combinations of 
hyperparameters of XGBoost. For the final binary classification model, we used learning rate as 0.01, gradient 
boosted trees as 292, maximum tree depth as 3, and minimum child weight of any branch in the trees as 5. For 
the final multi-label classification model, these parameters respectively were 0.02, 140, 5, and 4.

Slope =
1

N − 1

N−1∑
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The accuracy, area under the receiver operating characteristic curve (AUC), recall, and F1 score were the 
metrics used to evaluate binary classification performance. The accuracy, micro-recall, micro-F1 score, and 
macro-AUC were the metrics used to evaluate multi-label classification performance. The F1 score is a measure 
of test data accuracy, which is a weighted average between precision and recall. The micro average calculates 
metrics globally by counting the total true positives, false negatives, and false positives; while the macro aver-
age calculates metrics for each label and finds their unweighted mean. We compared the performance of our 
prediction model with four risk adjustment models mentioned above in the binary and multi-label classification. 
For patients undergoing multiple procedures, the procedure with the highest level was scored. We assessed the 
RACHS-1 category, the ABC score, the STS-EACTS mortality and morbidity score as a predictor of postoperative 
complications by using the univariable logistic regression respectively.

Ethics declarations. This study was approved at 2018-09-19 by the Institutional Review Board/Ethics Com-
mittee of the Children’s Hospital, Zhejiang University School of Medicine (2018_IRB_078). Written informed 
consent was waived by the Institutional Review Board/Ethics Committee, as the utilization of anonymized ret-
rospective data does not require patient consent under the local legislation.

Data availability
Data collected for this study are highly sensitive, and if reasonably requested, data supporting the findings of 
this study can be obtained from the corresponding author on reasonable request.
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