
Journal of Vision (2020) 20(7):17, 1–25 1

A computational observer model of spatial contrast
sensitivity: Effects of photocurrent encoding, fixational eye
movements, and inference engine

Nicolas P. Cottaris
Department of Psychology, University of Pennsylvania,

Philadelphia, PA, USA

Brian A. Wandell
Department of Psychology, Stanford University, Stanford,

CA, USA

Fred Rieke
Department of Physiology & Biophysics, University of

Washington, WA, USA

David H. Brainard
Department of Psychology, University of Pennsylvania,

Philadelphia, PA, USA

We have recently shown that the relative spatial
contrast sensitivity function (CSF) of a computational
observer operating on the cone mosaic photopigment
excitations of a stationary retina has the same shape as
human subjects. Absolute human sensitivity, however, is
5- to 10-fold lower than the computational observer.
Here we model how additional known features of early
vision affect the CSF: fixational eye movements and the
conversion of cone photopigment excitations to cone
photocurrents (phototransduction). For a computational
observer that uses a linear classifier applied to the
responses of a stimulus-matched linear filter, fixational
eye movements substantially change the shape of the
CSF by reducing sensitivity above 10 c/deg. For a
translation-invariant computational observer that
operates on the squared response of a quadrature-pair
of linear filters, the CSF shape is little changed by eye
movements, but there is a two fold reduction in
sensitivity. Phototransduction dynamics introduce an
additional two fold sensitivity decrease. Hence, the
combined effects of fixational eye movements and
phototransduction bring the absolute CSF of the
translation-invariant computational observer to within a
factor of 1 to 2 of the human CSF. We note that the
human CSF depends on processing of the retinal
representation by many thalamo-cortical neurons, which
are individually quite noisy. Our modeling suggests that
the net effect of post-retinal noise on contrast-detection
performance, when considered at the neural population
and behavioral level, is quite small: The inference
mechanisms that determine the CSF, presumably in
cortex, make efficient use of the information carried by
the cone photocurrents of the fixating eye.

Introduction

The spatial contrast sensitivity function (CSF) is
a fundamental characterization of human vision:
It specifies the amount of contrast required for a
visual system to detect sinusoidal contrast modulation
at different spatial frequencies. The human CSF is
single-peaked, increasing with spatial frequency to
about 3 to 5 c/deg (cycles per degree) and then declining
steadily until the resolution limit, near 60 c/deg for
a very well-refracted eye (Robson, 1966; Campbell
Robson, 1968; Kelly, 1977). The falling limb of the
human CSF is parallel to that of an ideal observer who
makes optimal use of the information carried by the
excitations of the cone photoreceptors in a model foveal
retinal mosaic (Banks, Geisler, & Bennett, 1987). This
alignment indicates that blurring by the eye’s optics
and cone apertures play an important role in limiting
human contrast sensitivity. The absolute sensitivity of
the ideal observer CSF, however, greatly exceeds that of
human observers. This leads to the question of what
visual mechanisms, not included in the ideal observer
calculations, account for the lower sensitivity.

The ideal observer uses a decision rule that requires
exact knowledge of the visual stimulus. Our recent work
(Cottaris, Jiang, Ding, Wandell, & Brainard, 2019)
relaxes this assumption by modeling an observer that
learns the decision rule from labeled stimulus-response
data. Indeed, it is to highlight this difference that we
use the term computational observer (Farrell et al.,
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2014; Jiang et al., 2017; Cottaris et al., 2019). Using
open-source and freely available software (ISETBio),
we confirmed the essential features of the classic
ideal observer results. The software extends the ideal
observer work, allowing us to explore how variations
in optics, cone mosaic structure, and choice of learned
decision model (inference engine) affect the spatial CSF
(Cottaris et al., 2019). Accounting for these factors,
which affect the encoding of every visual stimulus,
did not change the shape of the falling limb of the
computational observer CSF. There remained, however,
a 5- to 10-fold difference in absolute sensitivity between
the computational and human CSFs.

The present article extends the analysis further
into the visual system. We incorporate two additional
factors into the ISETBio simulations that influence
visual encoding: (a) spatial uncertainty introduced by
fixational eye movements and (b) sensitivity regulation
and noise introduced by the conversion of cone
photopigment excitations into cone photocurrent.
Fixational eye movements, which include slow drifts
and microsaccades, translate the retinal image with
respect to the cone mosaic and introduce spatial
stimulus uncertainty. Drifts translate the retinal
image along Brownian motion-like curved paths that
change direction frequently, with instantaneous mean
velocities in the range of 30 to 90 arc min/s (Cherici,
Kuang, Poletti, & Rucci, 2012). Microsaccades occur
between periods of drift, every 500 to 2000 ms, and
induce very fast retinal image translations with speeds
in the range of 4 to 100 deg/s (Martinez-Conde
et al., 2009). Inference mechanisms in the visual
system must confront this uncertainty, which may
be beneficial for certain visual processes (Martinez-
Conde et al., 2006; Engbert, 2006) or not (Kowler
Steinman, 1979). Although our model of fixational eye
movements includes the ability to model both drift and
microsaccades, here we only examine the effect of drift,
as the modeled stimulus duration is sufficiently short
(100 ms) that microsaccades rarely occur.

The conversion of cone photopigment excitations
into cone photocurrent (phototransduction) introduces
nonlinear amplification and compression of the cone
excitation signal (Endeman & Kamermans, 2010) and
additive noise that is largely stimulus-independent
(Angueyra &Rieke, 2013). As mean light level increases,
the effect of these two factors exceeds the uncertainty
caused by Poisson noise in the cone photopigment
excitations. Additional effects are also introduced by
phototransduction, such as background-dependent
changes in the temporal dynamics of the cone
photocurrent response and asymmetries between
increments and decrements (Endeman & Kamermans,
2010; Angueyra, 2014).

To foreshadow our main result, for the inference
engines we considered, the addition of fixational drift
and phototransduction into the analysis pipeline closes

much of the overall gap between computational and
human CSFs while mostly retaining the agreement
in the shape of sensitivity falloff as spatial frequency
increases. We say mostly, because the combined effect of
fixational eye movements and phototransduction has a
small dependence on spatial frequency. Thus, although
the CSF of a human subject depends on processing
by many thalamic and cortical neurons, which are
individually quite noisy, our computational modeling
suggests that the net effect of this noise on contrast
detection, when considered at the neural population
level, is quite small: The inference mechanisms that
determine the CSF, presumably in cortex, make
efficient use of the information available from the cone
photocurrents of the fixating eye.

Overview of computational model
of early vision

Evaluating the significance of a wide array of visual
system factors requires computational modeling.
To meet this challenge, we are developing ISETBio
(Farrell et al., 2014; Jiang et al., 2017; Cottaris et al.,
2019) and related software packages (Lian et al., 2019)
as open-source software resources.1,2,3 The software
enables specification of visual scene radiance (including
both three-dimensional scenes and stimuli presented
on planar displays), modeling the transformation of
scene radiance through the eye’s optics to the retinal
image, calculation of photopigment excitations in the
retinal cone mosaic, modeling of phototransduction
within the cones, simulation of fixational eye
movements, and implementation of inference engines
for relating visual representations to performance on
psychophysical tasks. The computational pipeline for
scenes represented on planar displays through to the
level of cone photopigment excitations is described
in detail elsewhere (Cottaris et al., 2019). The work
here describes extensions to include fixational eye
movements, which translate the retinal image over
the cone mosaic, and a model of phototransduction
that converts quantal cone photopigment excitation
events into current flow through the cone outer segment
membrane.

An overview of ISETBio’s computational pipeline
is depicted in Figure 1. In the present study, visual
stimuli are specified initially as display RGB values
(Figure 1A) and then transformed into radiance maps
at a set of wavelengths (Figure 1B). This transformation
is based on display calibration information, including
the spectral radiance emitted by each of the display
primaries (Figure 1AB). The gray-scale image stack
in Figure 1B represents the emitted spatial radiance
maps at different wavelengths (multispectral scene), and
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Figure 1. Flowchart of ISETBio computations. (A) The visual stimulus, here an image on an RGB display. (B) The corresponding
multispecral scene, consisting of a spectral stack of spatial radiance maps at the sample wavelengths. The image at the front of the
stack represents an RGB rendition of the scene. The A → B computation uses the spectral power distributions of the display primaries

→
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←
(panel AB). (C) The corresponding retinal image for a single fixation location, consisting of a spectral stack of spatial irradiance maps at
the sample wavelengths. The image at the front of the stack represents an RGB rendition of the retinal image. The yellow tint is due
to spectral filtering by the lens. The B → C computation blurs the scene radiance using a set of shift-invariant point spread functions
(panel BC), typical of human foveal vision. (D) The corresponding cone mosaic photopigment excitation response, also at a single
fixation location. The pink, cyan, and magenta disks highlight an L-, an M-, and an S-cone, respectively. The C → D computation uses
an eccentricity-based cone mosaic model (panel CDE) in which L- (red disks), M- (green disks) and S- (blue disks) cones spectrally
integrate and spatially sample the retinal irradiance. (E) Spatiotemporal cone photopigment excitation response depicted as a
temporal stack of cone mosaic photopigment response maps. The temporal dynamics introduced in the D → E computation are due
to fixational eye movement paths generated via a human ocular drift model, which translates the retinal image with respect to the
cone mosaic. The color coded line superimposed in panel E depicts eye position during a 600-ms long fixational eye movement
trajectory, with color changing from red to yellow to green to blue, as time increases from 0 to 600 ms. (F) Conversion of noise-free
photopigment excitation responses during the fixational eye movement trajectory (color-coded lines in the left panels) to noise-free
photocurrent responses (color-coded lines in the right panels) for the three selected cones. This computation uses
biophysically-derived photocurrent impulse responses which depend on the mean cone excitation level (top panel of EF). Gray lines in
the left and right panels depict noisy instances of the corresponding cone photopigment and cone photocurrent responses. 256
instances of photocurrent noise are depicted in the bottom panel of EF.

the image at the front of the stack depicts an RGB
rendition of the scene.

Maps of the spatial spectral irradiance incident
on the retina, or the retinal image,4 are calculated
from the scene data using ISETBio methods that
employ a model of the human eye’s optics (Cottaris
et al., 2019). This model accounts for factors such
as on-axis wavefront aberrations, which determine
a set of wavelength-dependent, shift-invariant point
spread functions (Figure 1BC), pupil size, and
wavelength-dependent transmission through the
crystalline lens. The stacked gray-scale images in
Figure 1C represent retinal irradiance at different
wavelengths, and the image at the front of the stack
depicts an RGB rendition of the retinal image.

For a single fixation location, the spectral irradiance
on the retina is transformed into a static spatial pattern
of cone photopigment excitation responses using cone
mosaic methods that employ an eccentricity-varying
cone mosaic model (Cottaris et al., 2019). This model
accounts for the relative number of L, M, and S
cones; cone spacing; inner segment aperture size and
outer segment length; cone photopigment density;
and macular pigment density, all varying with retinal
eccentricity (Figure 1CDE). The photopigment
excitation response map across the cone mosaic in
response to the retinal image of Figure 1C is depicted
in Figure 1D, for a single fixation location.

A time-varying spatiotemporal pattern of cone
photopigment excitation responses is obtained using
a model of fixational eye movements that takes into
account the dynamics of human fixational drift as
described by Engbert & Kliegl (2004) and is described
in detail in the Methods (Modeling fixational eye
movements). ISETBio cone mosaic methods translate
the retinal image with respect to the cone mosaic
along the eye movement trajectories. This generates a

temporal sequence of cone photopigment excitation
responses, three frames of which are depicted in
the stacked plot of Figure 1E. The superimposed
color-varying line depicts the eye movement trajectory
up to the time of each frame (red-yellow-green-blue as
time increases from 0 to 600 ms), and the full trajectory
during a simulated 600-ms period is depicted by the
gray line in Figure 1CDE.

Noise-free, cone photopigment excitation responses
are transformed into noise-free cone photocurrent
responses by temporal convolution with the cone
photocurrent impulse response. Photocurrent impulse
response functions are derived using a biophysically
based model of phototransduction, which is based on
work by Angueyra (2014) and is described in detail in
the Methods (Modeling photocurrent generation). The
gain and temporal dynamics of these impulse response
functions depend on the background cone excitation
level. For the stimulus depicted in Figure 1, there
are large differences between the L-/M- and S-cone
photocurrent impulse responses (Figure 1EF) due to
the much weaker background excitation of S-cone
photopigment by the stimulus. This results in a weaker
S-cone adaptation level and therefore a higher S-cone
photocurrent gain. The colored lines in the left panels
of Figure 1F depict the noise-free cone photopigment
excitation responses of three highlighted neighboring
cones: an L cone in the top plot, an M cone in the
middle plot, and an S cone in the bottom plot. The
corresponding noise-free photocurrent responses are
depicted by the color-coded lines in the right panels
of Figure 1F. Note that temporal integration of cone
photopigment excitation responses greatly attenuates
fast transients (e.g., compare L andM cone traces in left
and right panels of Figure 1F at around 450 ms), and
that the strong S-cone photocurrent impulse response
amplifies the mean photocurrent responses of S cones
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relative to their photopigment excitation responses. In
the final step of the simulations, photocurrent noise
with Gaussian amplitude distribution and temporal
spectral density matched to those of photocurrent
responses in primate cones (Angueyra & Rieke, 2013)
is added to the noise-free photocurrent responses; this
generates the noisy photocurrent response instances
depicted as gray lines in the left panel of Figure 1F.

Results

Cone mosaic response dynamics

On each trial in a two-interval forced-choice spatial
contrast sensitivity experiment, the subject is presented
with two stimulus intervals: One contains a spatially
uniform pattern (null stimulus), and one contains a
sinusoidal grating pattern (test stimulus). The subject
reports which interval contains the test. For each spatial
frequency, contrast varies across trials and percent
correct is measured as a function of contrast. From
such data, the contrast corresponding to a criterion
percent correct is taken as detection threshold, and
sensitivity is given by the reciprocal of threshold
contrast.

Figure 2 depicts examples of cone photopigment
excitation and photocurrent mosaic responses to a
16 c/deg, 100% contrast, 100-ms test stimulus, with a
mean luminance of 34 cd/m2. The mosaic’s mean cone
photopigment excitation response map in the absence of
fixational eye movements is shown in Figure 2A. Mean
cone excitation responses increase with eccentricity
(brighter values) because cone aperture increases
with eccentricity. Figure 2B depicts four instances of
fixational eye movement trajectories, each lasting for
150 ms. Different eye movement trajectories start at
random locations, but the trajectories are constrained
so that their centroids are all at the origin.

Figures 2C0–C4 depict differential5 spatiotemporal
cone photopigment excitation responses for cones
lying along the horizontal meridian of the mosaic
during different single noisy response instances, and
the corresponding spatiotemporal cone photocurrent
responses are depicted in Figures 2D0–D4. The
responses depicted in Figures 2C0 and Figure 2D0 were
obtained in the absence of fixational eye movements.
A clear spatiotemporal modulation can be seen during
the stimulus presentation duration (0–100 ms) in the
cone photopigment response. The stimulus-induced
spatiotemporal modulation is somewhat blurred over
time in the cone photocurrent response, and the
overall modulation is more noisy than that in the cone
photopigment excitation response.

The differential spatiotemporal cone photopigment
excitation responses depicted in Figures 2C1–2C4

were obtained for the four fixational eye movement
trajectories depicted in Figure 2B. Note the jitter and
clear spatiotemporal response modulation that is due to
the translation of the retinal image along the horizontal
axis and that the corresponding photocurrent

Figure 2. Spatiotemporal dynamics of cone mosaic
photopigment excitation and photocurrent responses. (A)
Mean cone photopigment excitation mosaic response to a 16-
c/deg, 100% contrast, 34- cd/m2 mean luminance grating,
flashed for 100 ms. Excitation level is depicted by the gray scale
value. S-cones are weakly excited and appear black. This is
primarily due to selective absorption of short-wavelength light
by the lens and macular pigment. (B) Four instances of
fixational eye movements, each computed for a period of 150
ms. (C0) Differential (test–null) spatiotemporal response maps

→
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responses, depicted in Figures 2D1–2D4, have weaker
stimulus-induced spatiotemporal modulations. Two
factors contribute to this. First, convolution of the
jittered cone photopigment excitation response with
the photocurrent impulse response smears responses in
time. Second, the photocurrent response signal-to-noise
ratio (SNR) is lower than the SNR of the cone
photopigment excitation response,6 as can be seen by
comparing Figures 2C0 and 2D0.

Impact of fixational eye movements

We begin our computational assessment of contrast
sensitivity by examining the impact of fixational drift
at the level of cone photopigment excitations. The gray
disks in Figure 3 depict the contrast sensitivity function
(CSF) in the absence of fixational eye movements.
Performance is estimated using a computational
observer that employs a linear support vector
machine (SVM) classifier operating on the output of
a stimulus-matched spatial pooling filter (template),
which linearly sums cone responses over space at every
time instant (Cottaris et al., 2019) and which we term
the SVM-Template-Linear computational observer.
This CSF serves as a baseline for assessing the impact
of fixational eye movements.

The CSF computed in the presence of drift fixational
eye movements using the same SVM-Template-Linear
observer is depicted by the red disks in Figure 3A. Note
the dramatic loss in sensitivity as spatial frequency
exceeds 10 c/deg. Indeed, a threshold cannot be
obtained beyond 24 c/deg. For this computational
observer, fixational eye movements cause significant
misalignment between the retinal image and the
observer’s stimulus-matched filter. This decreases
the SNR of the observer’s filter response in a
spatial-frequency-dependent manner, leading to the

←
of photopigment excitation for cones positioned along the
horizontal meridian, in the absence of fixational eye
movements. Each column represents a single cone. Gray-scale
color bar denotes excitation level in R* × (cone)−1 × (5 ms)−1.
(D0) Differential spatiotemporal response maps of
photocurrent excitation for cones positioned along the
horizontal meridian, also in the absence of fixational eye
movements. Gray-scale color bar denotes response level in pico
Amperes (pA). (C1–C4) Differential spatiotemporal cone
photopigment excitation maps during the four fixational eye
movement trajectories depicted in panel B. Colored lines depict
the horizontal component of the corresponding eye movement
trajectory. Note that time increases from bottom to top of each
panel (D1-D4). Differential spatiotemporal cone photocurrent
excitation response instances during the four fixational eye
movement trajectories depicted in panel B.

Figure 3. Impact of fixational eye movements. Top panels:
Contrast sensitivity functions (CSFs) at the level of cone
photopigment excitations, computed for a 3 mm pupil, typical
subject wavefront-based optics, and eccentricity-based cone
mosaics (Cottaris et al., 2019). Bottom panels: Ratios of CSFs
with respect to the reference CSF, which is computed using the
SVM-Template-Linear observer in the absence of fixational drift
(gray disks). (A). CSFs computed using the SVM-Template-Linear
computational observer in the absence (gray disks) and
presence (red disks) of fixational drift. (B) CSFs computed using
the SVM-Template-Energy observer in the absence (red disks)
and presence (blue disks) of fixational drift. Gray disks in panel
B replicated from panel A.

rapid falloff in classifier performance with increasing
spatial frequency.

A computational observer that is less susceptible to
the effects of retinal image jitter can be constructed by
employing a pair of stimulus-matched spatial pooling
filters that have a spatial quadrature relationship (see
Appendix Figure A2, panels B1 and B2) and whose
outputs are squared (Greene et al., 2016). We term this
observer the SVM-Template-Energy computational
observer. This computation, often referred to as an
energy computation, was introduced in the literature
to explain retinal and cortical neuron responses that
are independent of stimulus spatial phase within the
neuron’s receptive field (Hochstein & Shapley, 1976;
Emerson, Bergen & Adelson, 1992; Ohzawa et al.,
1990). Our SVM-Template-Energy computational
observer applies a linear SVM classifier to the energy
responses. A similar approach was used by Kupers et al.
(2019), who employed linear SVM classifiers operating
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on the Fourier power spectra of the two-dimensional
time-varying cone absorption responses.

The CSFs derived using the SVM-Template-Energy
computational observer in the absence and presence
of fixational eye movements are depicted in Figure 3B
by the red and blue disks, respectively. Note that
the SVM-Template-Energy derived CSFs are nearly
identical in the presence and absence of fixational eye
movements, demonstrating that the sharp performance
decline with spatial frequency can be eliminated
when complex cell-like spatial energy mechanisms
are used. This performance improvement at high
spatial frequencies comes at a cost, however: an overall
sensitivity drop by a factor of 2.5–3.0 across the entire
frequency range independent of whether fixational eye
movements are present or not (blue and red disks), as
seen by comparison with the SVM-Template-Linear
observer in the absence of eye movements (gray disks).

Impact of phototransduction

Next, we examined how phototransduction impacts
contrast sensitivity. To isolate performance changes
due to phototransduction alone, we computed CSFs
in the absence of fixational movements using the
SVM-Template-Linear observer. The results are
depicted in Figure 4. Note that the transformation
in stimulus representation from cone photopigment
excitations to cone photocurrents reduces contrast
sensitivity by a factor of 2.0–2.5, with slightly more
reduction at lower spatial frequencies. This spatial
frequency effect is due to the increased down regulation
of photocurrent response gain at more eccentric retinal
locations, where the cone excitation response is stronger
due to the enlarged cone aperture diameters. More
eccentric retinal locations come into play because the
experiment we are modeling employed a fixed number
of grating cycles, resulting in larger stimulus extents at
lower spatial frequencies.

Note that sensitivity loss at the cone photocurrent
stage depends on the mean luminance of the
background, the pupil size, and the stimulus
duration. For example, as stimulus mean luminance
increases, there is sensitivity loss at the level of
photocurrent compared to excitations, due to increased
downregulation of photocurrent gain. This loss occurs
in the presence of a constant photocurrent noise for
excitation rates up to 50k–100k R* × cone−1 × s−1.7
Also, cone photopigment excitation responses to short
duration stimuli are attenuated more than responses to
longer- duration stimuli due to temporal convolution
with the photocurrent temporal impulse response. The
effects of mean luminance, pupil size, and stimulus
duration on the computational CSF are depicted in
Appendix Figures A3, A4, and A5.

Figure 4. Impact of phototransduction. Contrast sensitivity
functions computed at the level of cone photopigment
excitations (gray disks) and at the level of cone photocurrents
(red disks) in the absence of fixational eye movements. Here,
CSFs were obtained using the SVM-Template-Linear
computational observer for a 3 mm pupil, typical subject
wavefront-based optics, and eccentricity-based cone mosaics.
The transformation from cone photopigment excitations to
cone photocurrent results in a sensitivity loss of a factor of 2 to
2.5. Note that this sensitivity loss is specific to mean light level
(here 34 cd/m2) and stimulus duration (here 100 ms). Stimuli
presented at different adapting light levels and/or for different
durations will be affected differently (see Appendix Figures A3
and A5).

Combined effect of fixational eye movements
and phototransduction

Figure 5 depicts the combined effect of
phototransduction and fixational eye movements,
using the SVM-Template-Linear (Figure 5A) and the
SVM-Template-Energy (Figure 5B) inference engines.
We previously showed that the SVM-Template-Energy
computational observer is effective at mitigating the
effect of fixational eye movements when applied at
the level of cone excitation responses (Figure 3).
When it is applied at the level of cone photocurrent
responses, it is less effective, as can be seen by the
small spatial-frequency-dependent performance loss
above 8 c/deg (compare red disks to blue disks in
Figure 5B). The reduced efficiency of the energy
computation at discounting fixational jitter in high
spatial frequency occurs because the photocurrent
impulse response temporally integrates the spatially
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Figure 5. Combined effect of fixational eye movements and
phototransduction. Contrast sensitivity functions for a 3 mm
pupil, typical subject wavefront-based optics, and
eccentricity-based cone mosaics. (A) CSFs computed using the
SVM-Template-Linear-based computational observer. (B) CSFs
obtained with the SVM-Template-Energy computational
observer. Gray disks: Reference CSF computed at the level of
cone excitations in the absence of fixational eye movements.
Red disks: CSFs computed at the level of photocurrent in the
absence of fixational eye movements. In A, red disks are
replotted from Figure 4. Blue disks: CSFs computed at the level
of photocurrent in the presence of fixational eye movements.

jittered cone excitation responses (see Figures 2C1–2C4,
2D1–2D4), reducing the signal to noise ratio before the
energy computation can discount the spatial jitter.

Nonetheless, spatial pooling via the energy
computation is beneficial relatively to spatial pooling via
a linear computation for maintaining performance at
higher spatial frequencies as can be seen by comparing
the blue disks in Figure 5A to the blue disks in
Figure 5B. Further, as we show in the Appendix section
(Impact of spatial pooling mechanism), performance
at higher spatial frequencies can be improved by using
ensembles of energy mechanisms whose centers are
spatially offset and which tile a region larger than the
spatial extent of the stimulus (see Appendix Figure A2).

Overall, our results indicate that the combined effects
of photocurrent encoding, fixational eye movements,
and the energy-based computational observer reduce
performance by a factor of 5 to 10 compared to
the performance at the level of cone photopigment
excitations alone. The reduction is largely independent
of spatial frequency, with the spatial frequency

dependence caused by the temporal integration of
spatially jittered cone photopigment excitation signals
during phototransduction.

Comparison of computational and human
observer performance

To compare our computational-observer contrast
sensitivity functions to humanpsychophysical sensitivity
(Banks et al., 1987), we repeated the simulations for a
2 mm pupil to match the psychophysics. The results are
depicted in Figure 6. Here, the CSF at the level of cone
photopigment excitations in the absence of fixational
eye movements, computed using the ideal (Poisson,
analytically based) observer inference engine, provides
a reference (gray disks). The performance at the cone
photopigment excitations but now assessed using our
computational, SVM-Template-Linear observer is
depicted by the red disks. Performance at the level of
cone photocurrent, also in the absence of fixational eye
movements using the SVM-Template-Linear observer,
is depicted by the blue disks. Performance at the level
of cone photocurrent in the absence of fixational
eye movements, but now computed using the SVM-
Template-Energy observer, is depicted by the green
disks. Finally, performance at the level of photocurrent
in the presence of fixational eye movements, computed
using the SVM-Template-Energy observer, is depicted
by the magenta disks. The performance of two human
observers measured by Banks et al. (1987) is depicted
by the gray triangles.

Note that at low to mid spatial frequencies (4–16
c/deg), the performance of the computational observer
is within a factor of about 2 of the human observer
performance. As spatial frequency increases beyond
16 c/deg, performance of the computational observer
drops somewhat more rapidly than that of the two
human observers of Banks et al. (1987), so that the
computational and human CSFs are coming into
agreement for spatial frequencies above about 20 to 30
c/deg. Thus, at the higher spatial frequencies, the early
vision factors we model here account for the absolute
contrast sensitivity of the human observers.

The middle panel of Figure 6 depicts CSF ratios
with respect to the reference CSF (gray disks), that is,
accumulated loss due to all processing stages up to the
current stage, whereas the bottom panel of Figure 6
depicts CSF ratios with respect to the CSF computed at
the previous processing stage, that is, performance loss
at each processing stage. So in the bottom panel, red
disks depict performance reduction due to having to
learn the noise statistics (analytical vs. template-based
computational observer), which results in the
computational observer performance hovering between
80% and 90%8 of the ideal observer performance. Blue
disks depict loss at the cone photocurrent generation
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Figure 6. Comparing human and computational CSFs. Top panel:
spatial CSFs computed for a 2 mm pupil, matching the
psychophysical conditions of Banks et al. (1987). The curves
through the different-colored disks show estimated CSFs that
separate out the effects of a variety of physiological factors. The
gray disks depict the CSF at the level of cone photopigment
excitations in the absence of fixational eye movements using
the ideal observer, analytically based inference engine, which
has exact knowledge of the stimulus and Poisson noise
statistics. This CSF serves as the reference CSF. Red disks depict
the CSF also at the level of cone photopigment excitations and
in the absence of fixational eye movements but now derived
using the SVM-Template-Linear computational observer. Blue
disks depict the CSF at the level of cone photocurrent in the
absence of eye movements, also using the
SVM-Template-Linear observer. Green disks depict the CSF also
at the level of cone photocurrent and in the absence of eye
movements but now using the SVM-Template-Energy observer.
Magenta disks depict the CSF at the level of photocurrent in the
presence of fixational eye movements using the
SVM-Template-Energy observer. Triangles depict the CSFs
measured in two subjects by Banks et al. (1987). Middle panel:
CSF ratios with respect to the reference CSF (gray disks). These
data capture accumulated loss due to all processing stages up
to the current one. Bottom panel: CSF ratios with respect to the
CSF computed at the previous processing stage. These data
capture sensitivity loss due to different processing stages: red
disks: loss due to employing a computational observer, blue
disks: loss due to photocurrent generation, green disks: loss
due to using an energy computational observer, magenta disks:

→

stage, which results in a performance that is around
40% to 50% of the performance at the level of cone
photopigment excitations. Green disks depict loss due
to the energy computational observer, which results in
a performance around 40% of the performance of the
linear computational observer. Finally, magenta disks
depict loss due to fixational eye movements, which
results in a performance that ranges from 100% to
40% of the performance obtained in the absence of
fixational movements, as spatial frequency increases
from 4 to 32 c/deg.

More elaborate inference engines, for example, using
an ensemble of energy spatial pooling mechanisms,
can mitigate some of the performance loss in the
high spatial frequency regime due to fixational eye
movements (see Appendix section, Impact of spatial
pooling mechanism). Also note that a good agreement
in performance between our computational observer
and that of human observers was found in a separate
set of simulations where we computed CSFs for a
variety of stimulus sizes (see Appendix section, Impact
of spatial summation).

Discussion

Benefits and drawbacks of fixational eye
movements

In the absence of fixational eye movements,
post-receptoral processes render real human observers
functionally blind to stationary objects (Riggs et al.,
1953), and recent studies have demonstrated that
fixational eye movements can improve the precision
of vision at intermediate (10 c/deg) spatial frequencies
(Rucci et al., 2007) and near the resolution limit
(Ratnam et al., 2017). In contrast, our work suggests
that fixational eye movements reduce sensitivity at
high spatial frequencies. Because of this contrast, the
relation between our work and theoretical work that
has considered the role of fixational eye movements is
worth discussion.

Rucci and colleagues (Rucci et al., 2007; Kuang
et al., 2012; Boi, Poletti, Victor, & Rucci, 2017),
observed that fixational eye movements reformat the
spatiotemporal power spectrum of the stimulus. Under
certain assumptions about post-receptoral processing,

←
loss due to fixational eye movements. The photocurrent and
the energy inference engine each contribute to a 2.0- to
2.5-fold sensitivity loss across the spatial frequency range.
Fixational eye movements contribute an additional loss which
ranges from a factor of 1.0 to a 2.5 as spatial frequency
increases from 4 to 32 c/deg.
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this reformatting can be beneficial in terms of the
transfer of information between the stimulus and
subsequent post-receptoral mechanisms. Their theory
is based on the observation that the temporal dynamics
of ocular drift redistributes the 1/f2 power of static
natural images by progressively boosting power at
spatial frequencies up to 10 to 15 c/deg at nonzero
temporal frequencies. This redistribution can improve
detection performance for high spatial frequency targets
if subsequent detection mechanisms are bandpass
tuned to intermediate temporal frequencies (Boi et al.,
2017). It can also ease the problem of decorrelating
visual signals for efficient coding by capacity-limited
post receptoral mechanisms.

In contrast, our computational observer simulations
do not show that fixational drift enhances performance
at high spatial frequencies. The difference between
our observations (fixational eye movements reduce
performance at high spatial frequencies) and those of
Rucci and colleagues (fixational eye movements improve
performance at high spatial frequencies) probably
arises because of a few key differences between the two
studies.

First, we explicitly model spatio-spectral low-pass
spatial filtering by the eye’s optics, isomerization noise,
and the dynamics of phototransduction. These factors
are not taken into consideration in the computation of
the spatiotemporal power distribution by Rucci et al.
(2007; Kuang et al., 2012; Boi et al., 2017). Second, their
calculations are based on the pixel-level representation
of the stimulus. Importantly, the low-pass temporal
filtering embodied in the conversion of cone excitations
to cone photocurrent is not accounted for in their
analysis. This temporal filtering, when combined with
fixational eye movements, reduces effective contrast
at high spatial frequencies, which post-receptoral
processing cannot undo. The potential advantage of
reformatting the spatiotemporal power spectrum must
be large enough to overcome this loss.

Third, by starting their analysis with consideration
of the power spectrum, their calculations exclude
phase information (Rucci et al., 2007; Kuang et al.,
2012; Boi et al., 2017). Our comparisons of the
SVM-Template-Linear and SVM-Template-Energy
observers show that removing spatial phase information
produces translation invariance in the face of fixational
eye movements but comes at a cost in sensitivity when
applied to the case where there are no fixational eye
movements. When considering possible functional
benefits of fixational eye movements, the underlying
cost of applying requisite translation-invariant decision
models should also be taken into account.

Fourth, we model a 100-ms stimulus because we
are comparing with the data of Banks et al. (1987).
During this short time interval, there is not a significant
reduction in the photocurrrent response amplitude
(see Figure 8E), limiting the opportunity for drift

transients to enhance the response. Boi et al. (2017)
report that contrast sensitivity enhancement at high
spatial frequencies in the presence of fixational drift is
nearly absent for stimuli presented for 100 ms and that
a progressive enhancement occurs during prolonged
stimulus exposure (800 ms).

Fifth, in our simulations, stimuli at progressively
higher spatial frequencies have progressively reduced
spatial extent, maintaining a constant number of cycles.
In the studies by Rucci and colleagues (Rucci et al.,
2007; Kuang et al., 2012; Boi et al., 2017), stimuli at
all spatial frequencies were matched in spatial extent.
Fixational eye movements may have a different effect in
these two types of stimuli.

There are also differences in the modeling. We do
not include limits imposed by known post-receptoral
mechanisms. These are the spatiotemporal filtering
applied by circuits in the retina, as well as bandwidth
limits on the transmission of information between
the retina and the cortex. The work of Rucci and
colleagues focuses on the relation between these
factors (e.g., spatiotemporal filtering by ganglion
and cortical neurons) and the effect of fixational eye
movements. We are planning to extend our modeling
to explicitly include post-receptoral mechanisms (e.g.,
retinal ganglion cells), at which point it will be of
interest to re-examine the effects of fixational eye
movements. Modeling both the factors we consider
here and those underlying the thinking of Rucci and
colleagues seems likely to further clarify the costs and
benefits of fixational eye movements and how they
depend on what is taken as given about post receptoral
processing.

A different theoretical framework for understanding
the beneficial effects of fixational eye movements
observed experimentally has recently been proposed by
Anderson, Olshausen, Ratnam, and Roorda (2016).
Their work considers inference engines that seek to
simultaneously estimate both the visual stimulus and
the eye movement path, thus minimizing the effects of
spatial uncertainty introduced by the eye movements.
They show potential advantages of fixational eye
movements, particularly if cone sampling density is
low relative to the spatial structure in the stimulus.
In that case, the sweep of the mosaic across the
retinal image samples stimuli more finely than a
stationary retina. It is possible that this inference engine
retains or even increases sensitivity in the presence
of fixational eye movements. Such inference engines
might also help explain the spatial stability of our
perceptual representations in the face of fixational
eye movements. Note, however, that the inference
engine described by Anderson et al. (2016) requires
short-term storage and cannot be implemented before
the cone-bipolar synapse; such inference engines thus
remain subject to the information loss caused both
by optical blurring and by the temporal smearing of
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spatially-jittered (due to fixational drift) cone excitation
responses by the low-pass filter of phototransduction
(Figure 2). Further modeling of the effect of these
factors on the performance of their algorithm would be
interesting.

Other inference engines

Our conclusions about computational observer
performance are tied to specific choices of inference
engines to study: In principle, other inference engines
could achieve better or worse performance. A more
extended study of the effect of inference engines,
particularly in the face of fixational eye movements,
would be interesting but beyond the scope of the
current article. Indeed, as noted just above, we think
that an important direction for future work is to couple
the study of sophisticated inference engines with model
visual systems such as the one we present here, which
incorporate the known limits of visual encoding.
We outline some additional possible directions of
investigation in the next few paragraphs. The interested
reader is also directed to the discussion in Kupers et al.
(2019), who developed an inference engine based on the
power spectrum of the cone excitations.

As an example, inference engines based on deep
convolutional networks have a lower performance loss
than the SVM-Template-based inference engines we
studied (Reith & Wandell, 2019). Another possibility
is that performance might be increased if multiple
inference mechanisms were employed in parallel.
For example, at low to mid spatial frequencies (2-8
c/deg), where retinal jitter due to eye movements
causes essentially no performance degradation when
a linear pooling-based inference engine is used, it
would be detrimental to use energy-based inference
engines that have reduced overall sensitivity. At
very high spatial frequencies, however, it would be
beneficial to use ensembles of energy-based mechanisms
(see Appendix section, Impact of spatial pooling
mechanism). A hybrid inference engine that relies
more on linear summation mechanisms for low to mid
spatial frequency stimuli and ensembles of nonlinear
summation mechanisms for high spatial frequency
stimuli could be examined.

As another approach, the uncertainty introduced
by fixational eye movements could be handled by the
visual system using mechanisms that discard phase
information in different ways than our V1 complex
cell-like energy-based mechanism. For example, an
inference engine might employ an ensemble of spatially
shifted stimulus-matched pooling templates that,
unlike our present strategy, make a decision based on
a classifier operating not on the ensemble of responses
from all pooling mechanisms but instead on the single
maximal response across all the mechanisms, selected

at each time point. Such an approach would tend to
choose the mechanism whose position best overlapped
with the translating stimulus at each time point and
would in effect estimate the eye movement trajectory
and apply that estimate to compute a time-varying
spatial pooling. The general performance of uncertain
observers has been examined previously (Pelli, 1985;
Geisler, 2018). An alternative along these lines would
be to use the statistics of the fixational eye movement
trajectories to construct a signal-known statistically,
maximum likelihood type of observer.

Finally, in the other direction, our inference engines
employ a stimulus-matched template, so that they do
not have to learn the structure of the stimulus from
examples. It is possible that inference engines provided
with less a priori information about the stimulus would
exhibit reduced performance.

Central visual processing stages

Our work analyzes how the information loss
imposed by early stages of visual processing limits
the human spatial CSF. The inclusion of nonlinear
spatial summation-based inference engines already
introduces post-receptoral processing elements. A full
account must also include explicit modeling of the
retinal and cortical circuitry (Wassle, 2004; Lennie
& Movshon, 2005) and, in the case of free-viewing
of natural scenes, realistic visual search strategies
(Najemnik & Geisler, 2005). The close agreement
between our computational observer CSF and human
performance suggests that the post-receptoral circuitry
efficiently transmits stimulus information from the
photoreceptors to decision mechanisms. Confirming
this efficiency experimentally and understanding how it
is achieved remains an important goal. Recent work by
Horwitz (2020) illustrates how such experimental
investigation may be approached for the case of
contrast detection, although differences in stimulus
conditions preclude a precise comparison of our results
and that work.

Computational modeling connecting cortical models
to psychophysical performance is a second approach to
understanding visual performance. For example, Goris
et al. (2013) employed a neural population approach,
which included a cortex-like stimulus encoding stage (a
population of spatial frequency bandpass-tuned units),
a nonlinear transducer stage (broadly tuned divisive
inhibition followed by an expansive nonlinearity and
additive Gaussian noise with activation-dependent
amplitude), and a stimulus decoding stage (maximum
likelihood inference engine). The Goris et al. (2013)
model contained eight free parameters whose values
were determined by fitting the model to a set of
behavioral performance measurements, which included
the Campbell and Robson (1968) contrast sensitivity
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function. These parameters allow the model to
mimic the combined information loss from multiple
components of early vision, as well as any imposed
by the cortex. The phenomenological model has the
advantage of simplicity, but it does not separately
characterize specific visual components. There is an
interesting possibility of combining the two approaches,
using the known early vision factors to constrain and
shape the input to computational models of cortical
processing.

Caveats

We list some limitations of our modeling of early
vision. First, we do not account at a fine scale for
eccentricity-based changes in photocurrent sensitivity.
In our present simulations, the amplitude and dynamics
of the light-regulated photocurrent impulse response
are determined based on the average activation of
each cone type (L, M, and S) across the entire mosaic.
This approximation improves computational efficiency
and affects our simulations in two ways. Central
cones, which have the smallest apertures, have lower
excitation levels than the mean excitation level across
the entire mosaic, and therefore, for these cones,
the modeled photocurrent impulse response is more
heavily regulated than what it would have been if their
actual cone excitations were used. Since the model
photocurrent noise is stimulus independent, the SNR
for central cones is slightly lower than it ought to
be. The opposite holds for peripheral cones: Their
photocurrent responses have higher SNR than they
ought.

Second, foveal cones are considerably slower than
peripheral cones (Sinha et al., 2017), so the temporal
integration of cone excitation signals in the presence of
fixational eye movements would have less of an impact
for peripheral stimulus locations than is captured by our
simulations, which assume foveal cone photocurrent
dynamics at all mosaic locations. The combined effect
probably results in a lower overall sensitivity, and we
suspect that our CSF estimates would be a little higher
if we took eccentricity-based changes in photocurrent
sensitivity and dynamics into account.

Third, our simulations employed stimulus-
independent photocurrent noise. Work by Angueyra
Rieke (2013) has shown that noise is not entirely
independent of the background cone excitation level.
Low-frequency noise components (1–10 Hz) are subject
to the same adaptational gain reduction as the mean
photocurrent response, whereas high-frequency noise
components (> 100 Hz) are less affected by background
light level. So in real cone mosaics, in which peripheral
cones have larger apertures than central cones, the
noise spectrum changes shape with eccentricity. Our
simulations do not capture this effect.

Fourth, our simulations match the size of the cone
mosaic to the stimulus size, which in turn varies with
spatial frequency. This simplification was chosen for
computational efficiency. However, this poses a problem
for the highest spatial frequency stimuli, for which part
of the retinal image can be brought out of the field of
view of the cone mosaic in the presence of fixational
eye movements. The Appendix section, Impact of
spatial pooling mechanism, presents an analysis of
performance for different spatial pooling mechanisms
that extend beyond the stimulus spatial support.

Finally, the fixational eye movement model computes
drift eye movement trajectories whose mean velocity is
60 arc min/s (Figure 7C), near the mean of the velocity
distribution across a number of human observers
(Cherici, Kuang, Poletti, & Rucci, 2012). However,
Cherici et al. (2012) report that trained observers
have significantly lower mean drift velocities (30 arc
min) as opposed to naive observers, who can have
mean drift velocities up to 90 arc min/s, and therefore
trained observers have narrower fixation spans. The
observers employed by Banks et al. (1987) were the
authors themselves and were certainly well trained.
Our computational observer performance would likely
improve in the higher spatial frequency regime if we
employed fixational eye movements whose velocity
matched the low end of the distribution of velocities
reported by Cherici et al. (2012).

Summary and conclusion

We extended the ISETBio computational observer
model of the human spatial contrast sensitivity
to incorporate fixational eye movements and the
transformation of quantal cone photopigment
excitations to cone photocurrent.9 Our analysis
indicates that fixational eye movements abolish
sensitivity above 10 c/deg for a computational observer
that employs a stimulus-matched, linear pooling
template. Energy-based computational observers
eliminate the sharp performance decline at high spatial
frequencies but at the cost of an overall decrease in
sensitivity. The decrease in overall sensitivity in the
absence of eye movements should not be surprising—to
achieve translation invariance, energy-based observers
ignore the stimulus spatial phase, using less stimulus
information than the linear summation observer.

Phototransduction-induced sensitivity regulation
and additive noise further decrease sensitivity by a
factor of ∼2. Combining the effects of fixational eye
movements, photocurrent encoding, and energy-based
computational observers brings the computational
observer performance to levels that are within a factor
of 1 to 2 of human sensitivity, depending on spatial
frequency. This analysis indicates that the sensitivity
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loss observed in human performance relative to the
sensitivity of an ideal observer operating on cone
photopigment excitations in the absence of fixational
eye movements can largely be accounted for by cone
photocurrent encoding of spatially jittered cone
excitation responses and the inference engine employed
for the computational inference engines we considered.
This leaves little room for additional sensitivity loss as
the signal is processed by the neurons in the thalamus
and cortex.

Methods

Modeling optics and cone mosaic excitation

ISETBio computations begin with a quantitative
description of the visual stimulus, here, a spatio-
temporal pattern specified as the spectral radiance
emitted at each location and time on a flat screen.
The spectral irradiance incident at the retina (retinal
image) is computed by taking into account human
optical factors such as pupil size, wavelength-dependent
blur, on-axis wavefront aberrations, and wavelength-
dependent transmission through the crystalline lens.
Cone mosaic excitations are computed from the spectral
retinal irradiance using naturalistic cone mosaics that
model the relative number of L, M, and S cones; the
existence and size of an S-cone free zone in the central
fovea; cone photopigment density; and the variation
with eccentricity in cone spacing, inner segment
aperture size, outer segment length, and macular
pigment density. Performance on a two-alternative
forced-choice detection task is assessed using SVM-
based binary classifiers that operate on the output of
mechanisms that pool cone responses over space using
linear and nonlinear (energy-based) stimulus-derived
pooling schemes. Detailed descriptions of all elements
of this computational pipeline and estimates of how
different elements impact the spatial contrast sensitivity
function can be found in Cottaris et al. (2019). In the
following sections, we describe the ISETBio modeling
of two additional elements of early vision, fixational
eye movements and phototransduction, whose impact
on the spatial contrast sensitivity function is examined
in the present article.

Modeling fixational eye movements

The fixational eye movement model in ISETBio
includes a drift and a microsaccade component. The
drift component is generated by a delayed feedback
loop mechanism based on work by Mergenthaler and
Engbert (2007), which generates eye movement paths
using a generalized Brownian motion process. The

microsaccade component injects abrupt shifts in eye
position with the frequency, speed, and amplitude of
the trajectories drawn from published distributions of
microsaccades (Martinez-Conde et al., 2009). Saccade
direction is based on heuristics that aim to maintain
fixation while also avoiding recently visited positions
(Martinez-Conde et al., 2006; Engbert, 2006). In the
present work, which simulates presentation of a 100-
ms stimulus, we only engage the drift component, as
microsaccades typically occur only every 500 to 1,000
ms (Martinez-Conde et al., 2009).

Drift fixational eye movement generation model
Drift eye movement trajectories during fixation

of steady targets resemble generalized Brownian
motion (Engbert & Kliegl, 2004). In a generalized
Brownian motion process, the mean squared
displacement, �p2, at a time lag, �T, relative
to an arbitrary time point, ti, computed as
�p2 = ‖pi+1 − pi‖2 = ‖p(ti + �T ) − p(ti)‖2, is
proportional to �TK, where K is a real number between
0 and 2. In a purely Brownian process, the position at
time step i + 1, pi + 1, is given by

pi+1 = pi + ηi (1)

where pi is the position at time step i, and ηi is a
normally distributed random variable with zero mean.
In such a process, the sequence of spatial displacements
is uncorrelated and K = 1. Using diffusion analysis,
Engbert and Kliegl (2004) showed that fixational
eye movements differ from pure Brownian motion,
exhibiting correlations over two time scales. Over short
time scales (2 to 30 ms), the eye has a tendency to
continue to move in the current direction (persistent
behavior), resulting in correlated displacements and K
> 1. Over longer time scales (100 to 500 ms), there is a
tendency to reverse direction (anti persistent behavior),
resulting in uncorrelated displacements and K < 1.

Differences in eye position dynamics from those of
a purely Brownian process affect fixation span and
may affect performance. To simulate a combination of
persistent and anti persistent dynamics, we generate
fixational eye movements using the delayed random
walk model proposed by Mergenthaler and Engbert
(2007). In this model, the position at time step i + 1,
pi + 1, is given by

pi+1 = pi + wi + ηi (2)

where

wi = χi + (1 − γ ) × wi−1 − λ × tanh (ε × wi−τ ) (3)

In Equation 3, the autoregressive term, (1 − γ ) × wi − 1,
generates the persistent behavior at short time scales;
the negative delayed feedback term, −λ × tanh (ε ×
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Symbol Description Value

γ Control gain 0.25
μχ Control noise χ , mean 0.000
σχ Control noise χ , standard deviation 0.075
μη Position noise η, mean 0.000
ση Position noise η, standard deviation 0.35
λ Feedback gain 0.15
ε Feedback steepness 1.1
τ x Feedback delay (x position) 0.07
τ y Feedback delay (y position) 0.04

Table 1. Values of the drift fixational eye movement model
parameters used in this study.

wi − τ ), generates the anti persistent behavior at longer
time scales; and χ i represents a Gaussian random noise
process with zero mean, which provides the driving
signal for wi. The values of the model parameters that
we used in the present study are listed in Table 1 and
are taken from Mergenthaler and Engbert (2007). The
model generates fixational eye movement paths with a
resolution of 1 ms, with x and y position coordinates
computed independently.

Dynamics of model drift fixational eye movements
Various properties of the eye movement paths

generated by the model are illustrated in Figure 7.
Figure 7A illustrates the x and y components of
1,024 drift trajectories, each lasting for 150 ms. The
contour plot in Figure 7 B depicts the fixation span
computed over all those traces, which is defined as the
spatial probability distribution with which the eye is
at each position during the analyzed period, and the
superimposed black line depicts a single eye movement
trajectory. The distribution of instantaneous drift
velocities, computed by taking the time derivative of the
low-passed position signal (low-pass filter: 41-sample
Savitzky-Golay filter), is depicted in Figure 7C. Notice
that the model velocities span the range of velocities
measured in human observers measured by Cherici
et al. (2012) (depicted by the vertical lines). The spectra
of the x and y position trajectories are displayed in
Figure 7D, in red and blue lines, respectively. The
displacement of eye position as a function of time
lapsed from any time point during the trajectory is
depicted by the solid line in Figure 7E. Note that for
short time scales (2 to 30 ms), displacement is larger
from what would be observed if the motion were purely
Brownian (dashed line), whereas for longer time scales
(100–500 ms), anti persistent dynamics minimize this
difference.

Modeling photocurrent generation

Our cone photocurrent response model consists
of two stages. In the first stage, a biophysically based

model of the phototransduction cascade transforms
a time-varying sequence of photon excitation rate
to a photocurrent temporal response. The model
is a modified version of the canonical model of
phototransduction (Pugh & Lamb, 1993; Hateren,
2005) with parameters based on population recordings
from primate cone photoreceptors (Angueyra, 2014).
Although we have implemented the full nonlinear
conversion between time-varying excitation rate and
photocurrent, the full calculation is compute-intensive
because a small time step (0.1 ms) is required in order
to accurately simulate the differential equations that
govern the phototransduction cascade. Here we use the
full calculation to determine a linear approximation
that is valid for near-threshold perturbations around a
mean luminance. That is, the full phototransduction
model is used to compute a photocurrent impulse
response function, which is defined as the outer segment
membrane current in response to a cone excitation delta
function superimposed on a constant cone excitation
background rate. This biophysically derived impulse
response function is specific to the stimulus mean cone
excitation, and stimuli of different mean luminances
and chromaticities will have different photocurrent
impulse responses. The derived photocurrent impulse
response is downsampled to the time step of the
simulations, here 5 ms, and subsequently convolved
with the sequence of the mean cone photopigment
excitations, which are also computed every 5 ms,
to derive the noise-free photocurrent response. The
second stage of the model adds a stochastic component
that captures noise in the phototransduction cascade.
The noise has Gaussian amplitude distribution and
a power spectrum that is matched to that of primate
cone photoreceptors (Angueyra & Rieke, 2013). The
computed photocurrent captures the characteristics of
primate cone responses (Angueyra, 2014) for a range
of adaptation levels, 0 to 30,000 R* × cone−1 × s−1.
In this range, photopigment bleaching is less than
2%, assuming a half-bleaching constant of 6.4 log R*

× cone−1 × s−1, and can therefore be ignored. The
half-bleaching constant was estimated from the value
of 4.3 log Trolands provided by Rushton and Henry
(1968).

Biophysically based model of the phototransduction
cascade

In darkness, there is a constant inflow of Na+
and Ca+2 ions into the photoreceptor outer segment
via cyclic guanosine monophosphate (cGMP)–gated
channels, many of which are open due to the high
concentration of intracellular cGMP. cGMP is
constantly being produced by the enzyme guanylate
cyclase (GC). The constant inflow of Na+ andCa+2 ions
into the photoreceptor creates a negative current. This
negative current hyperpolarizes the cone membrane,
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Figure 7. Dynamics of drift fixational eye movements generated by our model. (A) x and y components of a set of 1,024 eye
movement trajectories during a period of 150 ms. For visualization purposes, the paths always start at (0,0), but in the simulations,
each path starts at a random location, and the centroid of each path is constrained to be at (0,0). Red and blue lines denote the x and
y, respectively, trajectories of a single eye movement trajectory. (B) The contour plot depicts the fixation span of the set of 1,024 eye
movement paths depicted in A, and the red and blue lines depict the marginal distributions of x and y eye positions of this data set.
The superimposed black line depicts the eye movement path whose x and y trajectory components are depicted in A as the red and
blue traces. (C) Distribution of instantaneous velocities in the examined set of 1,024 eye movement trajectories. The red and blue
solid lines depict the mean drift velocities from 2 human subjects who had the lowest and highest velocity, respectively, in a pool of
12 subjects (Cherici, Kuang, Poletti, & Rucci, 2012). The red and blue dashed lines represent −1σ and +1σ of the drift velocity
distributions for these subjects, respectively. (D) Power spectra of the x and y drift trajectory components. The spectral peaks are due
to the oscillatory behavior of the modeled delayed negative feedback mechanism, which has slightly different delays for the x and y
drift components. (E) Displacement analysis of model drift eye movements. The solid line depicts the mean squared displacement,
�p2, as a function of time lag for the examined set of eye movement paths. The dashed line depicts �p2 for a purely Brownian
process. Notice the persistent behavior between 2 and 30 ms, which causes the eye to diffuse more than it would have if it were
under the control of a purely Brownian process, and the antipersistent behavior that stabilizes eye position at longer time delays (100
to 500 ms).

which results in a continuous release of glutamate at
the synapses with bipolar and horizontal cells. When
a photon isomerizes an opsin molecule, it initiates
a biochemical cascade that results in the activation
of multiple phosphodiesterase (PDE) enzymes. The
increased PDE activity hydrolizes cGMP at a higher
rate than in the dark, thereby reducing the intracellular
cGMP concentration, which leads to closure of cGMP
channels. This blocks the entry of Na+ and Ca+2

ions into the cone, causing a depolarization in the
membrane and a decrease in glutamate released. Our
model of this process, which captures the steps between
cone photopigment excitation rate and the modulation
of membrane current, is illustrated in Figure 8.
The implementation of the different stages is as
follows.

Opsin activation: Absorption of photons
by photopigment molecules (Figure 8A) turns
inactive opsin proteins, R, into their activated

state, R*. Activated opsin molecules are produced
instantaneously with a rate that is proportional to the
photon absorption rate, A(t), and inactivated with a
rate constant, ρR (Figure 8B). When the light intensity is
such that A(t) < 30,000 photons/cone/s, we can neglect
photopigment bleaching and treat the concentration
of inactive photopigment as a constant. In this regime,
the production of activated opsin, R*(t), is described
by

dR∗(t)
dt

= gR · A(t) − ρR · R∗(t) (4)

where gR is a scaling constant.
PDE concentration: PDE enzymes are in turn

activated by activated opsin proteins with a rate
R∗(t) + ρdark

E
, where ρdark

E
is the spontaneous PDE

activation rate in the dark, and become inactivated
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Figure 8. Phototransduction cascade model. Depicted here are the responses of the different model components to a 500 ms long
light increment pulse. (A) Sequence of mean cone photopigment excitation rate. (B) Opsin activation in response to the change in
cone photopigment excitation rate. (C) Activation of PDE enzymes in response to opsin activation. (D) Change in cGMP concentration,
which is synthesized by CG and broken down by PDE enzymes. (E) Cone membrane current, photocurrent, which is an instantaneous
function of the cGMP activation. (F) Change in intracellular Ca+2 concentration, which is the result of ion inflow via the membrane

→
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←
current and ion outflow via the Na+−Ca+2 exchanger pump. Two feedback mechanisms, both based on the intracellular Ca+2

concentration, modify the membrane current. A slow Ca+2 -derived signal directly regulates the membrane current (blue line), and an
indirect signal (red line) modulates production of GC, shown in G, which is responsible for producing cGMP. (I) Noisy membrane
current response instance generated by adding photocurrent noise to the mean membrane current response depicted in E. See text
for more details.

with a rate constant, ρE (Figure 8C). The production of
activated PDE, E(t), is described by

dE (t)
dτ

= R∗(t) + ρdark
E

− ρE · E (t) (5)

cGMP concentration: cGMP molecules are
synthesized continuously due to the GC protein activity
at a rate GC(t) and hydrolized at a rate that is a
product of PDE enzymatic activity, P(t), and cGMP
concentration, G(t) (Figure 8D). The concentration of
cGMP, G(t), is described by

dG(t)
dt

= GC(t) − P(t) · G(t) (6)

The rate at which GC is producing cGMP is an
instantaneous function of the intracellular Ca+2

concentration, C(t):

GC(t) = GCmax

1 +
(
C(t)
kGC

)nGC
(7)

where GCmax is the maximal production rate, kGC is
the half-maximal Ca+2 concentration, and nGC is an
exponent that determines the steepness of the relation
between GC(t) and C(t) (Figure 8G).

Ca+2 concentration: The intracellular Ca+2

concentration, C(t), depends on two factors: the Ca+2

inflow though the open cGMP-gated outer segment
membrane channels and the Ca+2 outflow via Na+ –
Ca+2 exchanger pumps (Figure 8F), and is described by

dC(t)
dt

= qCa · I (t) − ρCa ·C(t) (8)

where qCa = 2 · ρCa ·Cdark

kcGMP · (Gdark)ncGMP
is the fraction of the

ionic membrane current that is carried by Ca+2 ions,
and ρCa is the rate constant at which Na+ – Ca+2

exchanger pumps eject Ca+2 out of the receptor.
Note that Ca+2 drives a negative feedback pathway in
the outer segment, since the concentration of Ca+2

regulates the rate at which cGMP is produced by GC
(Equation 7).

Photocurrent: The photocurrent, I(t), is the ionic
inflow of extracellular Na+ and Ca+2 into the
photoreceptor outer segment. Na+ and Ca+2 enter via
pores located in the outer segment plasma membrane,
which remain open when cGMP molecules bind to
them. The number of open cGMP-gated channels
depends on the cGMP concentration, G(t), and
determines the amplitude of the photocurrent. In
the canonical phototransduction model, I(t) is an
instantaneous function of G(t) (Figure 8E) and is
described by

I (t) = kcGMP · (G (t))ncGMP (9)

where kcGMP and ncGMP are constants that determine
the non linear dependence of current on open cGMP
channels. In our model, I(t) is regulated based on a slow
Ca+2 -derived signal, Cslow(t), as follows:

I (t) = kcGMP · (G (t))ncGMP

1 +Cslow (t) /Cdark
(10)

where Cdark is the Ca+2 concentration in the dark. The
Cslow(t) signal tracks the calcium concentration, C(t),
filtered through a slow rate constant, ρCslow

< ρC , and is
described by

dCslow(t)
dt

= ρCslow
· (C(t) −Cslow(t)) (11)

This is a second Ca+2-based feedback pathway in the
outer segment, which provides a slow adaptational
mechanism that helps to capture cone responses to
impulse, step, and naturalistic stimuli in the primate
(Angueyra, 2014). The values of all parameters of this
cone photocurrent model are listed in Table 2.

Photocurrent noise model
Photocurrent noise is generated by multiplying the

Fourier transform of Gaussian white noise with the
sum of two spectral functions, Llow(f) and Lhigh(f), and
subsequently computing an inverse Fourier transform.
The Llow(f) and Lhigh(f) functions are given by

Llow( f ) = αlow(
1 + ( f / flow )2

)nlow (12)

Lhigh( f ) = αhigh(
1 + (

f / fhigh
)2)nhigh (13)
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Symbol Description Value Units

R*(t) Opsin activity – s−1

gR∗ Scaling constant for opsin activation 12
ρR∗ Rate of opsin inactivation 10 s−1

E(t) PDE activity – s−1

ρdark
E

Rate of PDE activation in the dark 700 s−1

ρE Rate of PDE inactivation 22 s−1

GC(t) Guanlylate cyclase activity –
kGC Half–Maximal Ca+2 concentration 0.5 M
nGC Steepness of the relation between GC(t) and C(t) 4 –
GCmax Max GC activity 11,090 –
C(t) Ca+2 concentration – M
qCa Fraction of membrane current carried by Ca+2 ions 0.0580 –
ρCa Rate of Ca+2 extrusion by Na+ -Ca+2 exchange pumps 5 s−1

Cdark Ca+2 concentration in the dark 1 M
G(t) cGMP concentration – M
Gdark Concentration of cGMP in the dark 20.5 M
kcGMP Scaling coefficient for cGMP activity 0.02 pA · M−1

ncGMP Apparent cooperativity for cGMP activity 3 –
I(t) Ionic flow through the outer segment membrane (photocurrent) – pA
Llow(f) Low-frequency component of photocurrent noise spectral power distribution – pA2

alow 0.16 –
flow 55 Hz
nlow 4 –
Lhigh(f) High-frequency component of photocurrent noise spectral power distribution – pA2

ahigh 0.045 –
fhigh 190 Hz
nhigh 2.5 –

Table 2. Parameters of the cone photocurrent model used in the present study. Parameter values were determined by fitting the
model to primate cone responses to impulses delivered in darkness, pulses on various adapting backgrounds, and naturalistic stimuli
(Angueyra, 2014).

and model the low and high temporal frequency
components, respectively, of the spectral power
distribution of photocurrent noise recorded in macaque
cone photocurrent responses. The values of the
parameters of Llow(f) and Lhigh(f) are listed in Table 2.
Figure 9A depicts the spectral power distribution of
the generated noise (black line) along with the spectral
power distributions of the low- and high-frequency
noise components (red and blue lines, respectively),
and Figure 9B depicts 150 ms of the generated noise,
along with a histogram of the amplitude distribution
accumulated over 1,024 instances.

It must be noted that our model photocurrent noise
does not depend on the background cone excitation
level. However, Angueyra and Rieke (2013) have
shown that the low-frequency noise component,
which includes contributions from extrinsic noise
(noise due to fluctuations in cGMP concentration
originating from the spontaneous activation of opsin
and PDE) and intrinsic noise (noise in the opening
and closing of cGMP channels), decreases with
background levels (similarly to the gain of mean

photocurrent response) with a half-desensitizing level
of 4500 R* × cone−1 × s−1. The high-frequency
noise component is mostly due to intrinsic noise
and is only mildly affected by the background
cone excitation rate (and with a rate that is not
proportional to the inverse of the background) and has
a half-desensitizing level of 17500 R* × cone−1 × s−1.
These background-dependent noise gain effects are not
included in our implementation.

Keywords: contrast sensitivity function, computational
modeling, fixational eye movements, photocurrent,
phototransduction, spatial pooling, inference engine
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Figure 9. Photocurrent noise model. (A) Photocurrent noise is generated by shaping the spectral power distribution of Gaussian white
noise to that corresponding to the sum of two spectral functions, depicted in red and blue lines, with corner frequencies of 23 Hz and
107 Hz (disks), respectively. Their sum is depicted in magenta, and the black line depicts the spectral power distribution of the
realized noise. (B) A total of 1,024 instances of 150-ms duration photocurrent noise generated by the model. The green line depicts a
single noise instance. The amplitude histogram of the noise is depicted in gray.
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Footnotes
1https://github.com/isetbio/isetbio.
2https://github.com/isetbio/ISETBioCSF.
3https://github.com/ISET/iset3d.
4In the ISETBio software, the more general term optical image is used to
refer to the retinal image. In this article, however, we will use the term
retinal image. We also note that the exact retinal image depends on the
point of fixation and will vary over time due to eye movements.
5Differential responses are computed by subtracting noisy single-instance
responses to the test stimulus from the mean responses to the null
stimulus. Single noisy instances of the mosaic’s photopigment excitation
and photocurrent responses to the null and a test stimulus are provided in
Appendix Figure A1.
6Note that the SNR of the photocurrent response changes with the
background luminance due to changes in the gain of the photocurrent
impulse response, without associated changes in the photocurrent noise.
7As cone excitation rates exceed 50k–100k R* × cone−1 × s−1,
photocurrent noise starts to decrease with background level
(Angueyra, 2014). This decrease is not implemented in our present
photocurrent model, which implements a constant amplitude of
photocurrent noise.
8In our earlier study, (Cottaris et al., 2019), we reported that the
performance reduction due to having to learn the noise statistics was
higher, with the computational observer performance hovering around
50% of the ideal observer performance. Here, we report that the
computational observer performance is reduced to only 80% of the ideal
observer performance. This reported higher performance loss in our
earlier study was due to a misalignment between the retinal image and the
spatial pooling mechanism in those computations, which was corrected in
the present computations.
9An introductory script that demonstrates computation of photocurrent
responses in the presence of fixational eye movements can be found at

https://github.com/isetbio/ISETBioCSF/tree/master/tutorials/recipes/
CSFpaper2.
10Subject JAC (light gray triangles) had a lower high-frequency sensitivity
than subject MSB and he was not able to detect stimuli of certain patch
sizes and spatial frequencies at any contrast, resulting in unmeasurable
contrast sensitivity.
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Appendix

Examples of noisy cone mosaic response
instances

Appendix Figure A1 depicts single noisy instances
of cone mosaic responses to the null stimulus (uniform
field with a background of 34 cd/m2), depicted in
panels A and C, and a test stimulus (100% contrast,
16 c/deg grating presented on a background of 34
cd/m2), depicted in panels B and D. Cone photopigment
excitation responses are depicted in panels A and B
and the corresponding cone photocurrent responses are
depicted in panels C and D.

Figure A.1. Single instance cone mosaic responses to the null
and a test stimulus depicted at the time of peak response. (A)
Cone mosaic photopigment excitation response instance to the
null stimulus (uniform field with a background of 34 cd/m2).
(B) Cone mosaic photopigment response instance to a test
stimulus, here a 16 c/deg, 100% contrast, 34 cd/m2 mean
luminance grating stimulus. (C) Cone mosaic photocurrent
mosaic response instance to the null stimulus. (D) Cone mosaic
photocurrent mosaic response instance to the same test
stimulus as in (B).

Impact of spatial pooling mechanism

When using fixed bandwidth (constant cycles)
stimuli, increasing the spatial frequency decreases the
stimulus size. The spatial pooling for the computational
observer also shrinks because it matches the area of
the stimulus. Fixational eye movements can move
the retinal image of the stimulus outside the field of
view of these pooling mechanisms, thereby lowering
performance.

Appendix Figure A2 depicts how performance is
affected by choosing spatial pooling regions that extend
beyond the stimulus.We consider two spatially-extended
cone pooling schemes. The first scheme, depicted in
panel B, consists of a single spatial pooling energy
mechanism which is centered on the retinal image,
depicted in panel A, and which spans 0.3 × 0.3 deg, a
spatial region that is considerably larger than the retinal
image of the stimulus, 0.16 × 0.16 deg. This energy
mechanism consists of a pair of quadrature-phase
spatial pooling kernels which are depicted in panels B1
(cos-phase) and B2 (sin-phase). The second scheme
consists of an ensemble of spatial pooling energy
mechanisms whose centers are positioned on a spatial
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Figure A.2. Impact of spatial pooling. High spatial frequency regime of contrast sensitivity functions computed using different spatial
pooling mechanisms in the presence of fixational eye movements. (A) Retinal image of a 40 c/deg test stimulus with a spatial support
of 0.16 × 0.16 deg. (B) The spatial pooling extent of a single energy mechanism which pools cone responses over a 0.3 × 0.3 deg
region (black circle) is depicted superimposed on the cone mosaic. (C) The spatial pooling extents of a 3 × 3 ensemble of
spatially-offset energy mechanisms (each pooling over a 0.16 × 0.16 deg) with a 1.7 arc min separation are depicted in black, blue
and cyan circles. (B1 & B2). The quadrature-phase pooling kernels for the single, spatially-extended energy mechanism depicted in
panel B. (C1 & C2). Cos-phase pooling kernels for 2 pooling mechanisms in the 3 × 3 ensemble, outlined in blue and cyan in panel (C,
D, & E). Performance of different spatial pooling mechanisms at the level of cone photopigment excitations and cone photocurrents,
respectively. The CSF obtained using stimulus-matched spatial pooling filters serves as the reference CSF (gray disks). All CSFs are
computed for a 3 mm pupil, typical subject wavefront-based optics and eccentricity-based cone mosaics.

grid which also extends beyond the spatial support of
the retinal image. In the example shown in panel C
we depict a 3 × 3 grid. For this mechanism the input
to the SVM classifier is the ensemble of temporal
responses of 9 spatial filters. The cos-phase pooling
kernels for 2 of these mechanisms (outlined in blue and
cyan in panel C) are depicted in panels C1 and C2,
respectively.

CSFs (high frequency regime) computed in the
presence of fixational eye movements using these
different spatial pooling mechanisms are depicted in

panels D and E of Appendix Figure A2, for cone
photopigment excitation and cone photocurrent
signals, respectively. Here, the CSFs computed
using the stimulus-matched pooling mechanism are
depicted by the gray disks and serve as reference
CSFs. Red disks depict the CSFs derived using the
single, spatially-extended, energy mechanism and blue
disks depict the CSFs derived using the ensemble of
spatially-offset energy mechanisms. Note that at the
level of cone photopigment excitations (panel D), the
single spatially-extended pooling energy mechanism
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Figure A.3. Impact of background luminance. Contrast
sensitivity functions computed at different background levels,
based on the cone photopigment excitation response (A) and
the cone photocurrent response (B). These CSFs were
computed for a 3 mm pupil, typical subject wavefront-based
optics, eccentricity-based cone mosaics, in the absence of eye
movements and using the SVM-Template-Linear computational
observer. The reference CSF (gray disks) is computed for 34
cd/m2, the background used in all other computations in this
paper. At the level of cone photopigment excitations (A), the
ratios of sensitivity with respect to the reference CSF follows
the square root law of Poisson noise limited sensitivity. At the
level of cone photocurrents (B), where noise is additive and
sensitivity is regulated by the phototransduction dynamics, the
contrast sensitivity increase with luminance level is closer to
Weber’s law which implies no change in contrast sensitivity
with luminance. Note that our photocurrent model has been
validated against experimental data up to a luminance of about
100 cd/m2, so the performance shown for 340 cd/m2

represents an extrapolation.

(red disks) performs worse than the stimulus-matched
pooling mechanism (gray disks). On the other hand,
the performance of the ensemble of spatial pooling
energy mechanisms (blue disks) is slightly better than
the performance of both the spatially-extended and the
stimulus-matched single spatial pooling mechanisms.
At the level of photocurrents (panel E), the ensemble
of spatial pooling filters mechanisms again slightly
outperforms both the stimulus-matched and the
spatially extended single spatial pooling mechanisms
at 32 and 40 c/deg, whereas at spatial frequencies > 40
c/deg we were not able to obtain a detection threshold
for any spatial pooling mechanism in the presence of
eye movements.

Figure A.4. Impact of pupil size. Contrast sensitivity functions
computed for 2 and 3 mm pupils based on cone photopigment
excitation (A) and cone photocurrent responses (B). These CSFs
were computed for typical subject wavefront-based optics,
eccentricity-based cone mosaics, and in the absence of eye
movements using the SVM-Template-Linear computational
observer. The reference CSF (gray disks) is computed for 3 mm
pupil, the pupil size used in most computations in this paper.
The 2 mm pupil size (red disks) was used for the calculations
shown in Figure A4 for comparison to the human
psychophysical data of Banks et al. (1987). At the level of cone
photopigment excitations (A), the ratio of sensitivity with
respect to the reference CSF cluster around 2/3, i.e., the ratio of
pupil diameters. This is expected since the cone photopigment
excitation is a Poisson noise signal and its sensitivity increases
with the square root of retinal irradiance, and retinal irradiance
is proportional to the square of pupil size. The 50 and 60 c/deg
ratio significantly departs from the 2/3 ratio. This is presumably
related to changes in the wavefront-aberration based optics
which depend on pupil size. At the level of cone photocurrents
(B), sensitivity is also reduced as the pupil diameter decreases
from 3 to 2 mm by a factor that varies from 0.67 at the lowest
frequency (4 c/deg) to 0.4 at the highest frequency (50 c/deg).
The somewhat increased sensitivity loss at 50 c/deg is again
likely related to changes in the wavefront-aberration based
optics with pupil size.

Overall, these results indicate that ensembles of
spatially-overlapping energy mechanisms can slightly
enhance performance at high spatial frequencies in the
presence of fixational eye movements. The performance
of the ensemble mechanisms depends on the amount of
spatial overlap and the width of the component filters,
but this dependence is not examined in the present
work.
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Figure A.5. Impact of stimulus duration. Contrast sensitivity
functions computed for different stimulus durations, at the level
of cone photopigment excitations (left) and cone photocurrents
(right). These CSFs were computed for a 3 mm pupil, typical
subject wavefront-based optics, eccentricity-based cone
mosaics, and in the absence of eye movements using the
SVM-Template-Linear computational observer. The reference
CSF (gray disks) is computed for 100 ms, the duration used in all
computations in this paper. Note that at the level of cone
photopigment excitations, ratios of CSFs with respect to the
reference CSF (100 ms) cluster around

√
2.0 for 200 ms,

√
0.5

for 50 ms, and
√
0.25 for 25 ms, as expected from the square

root law of Poisson noise limited sensitivity. At the level of cone
photocurrents, where noise is additive and sensitivity is
regulated by the phototransduction dynamics, there is a more
dramatic effect of stimulus duration on performance.

Impact of background luminance

Appendix Figure A3 depicts contrast sensitivity
functions for different background luminance levels at
the level of cone photopigment excitations (panel A)
and cone photocurrents (panel B). There is no change
in the shape of the contrast sensitivity function as
luminance varies at either response stage.

Impact of pupil size

Appendix Figure A4 depicts contrast sensitivity
functions for 3 and 2 mm pupils, assessed at the level
of cone photopigment excitations (panel A) and cone
photocurrents (panel B). Note that changes in the pupil
size affect not only the retinal irradiance but also the

wavefront aberration function and therefore the point
spread function. The sensitivity ratios depicted in the
bottom panels of Appendix Figure A4 are relatively
constant for spatial frequencies up to 50 c/deg with
small deviations at 50 and 60 c/deg. Therefore, except
for the very high spatial frequencies, changing the pupil
size from 2 to 3 mm does not impact the shape of the
CSF. In this paper, we conduct most of our simulations
using a 3 mm pupil size, because this is a more realistic
pupil size for natural viewing of laboratory created
stimuli, as discussed in Cottaris, Jiang, Ding, Wandell,
and Brainard (2019). The 2 mm pupil size was used for
the calculations shown in Figure A4 for comparison to
the human psychophysical data of Banks, Geisler, and
Bennett (1987).

Impact of stimulus duration

Appendix Figure A5 depicts the impact of stimulus
duration. At the level of the Poisson-limited cone
photopigment excitations, and under the assumption
of full temporal integration of responses, we expect
a square-root law reduction in sensitivity as stimulus
duration is decreased, and this is what is observed in
panel A. At the level of cone photocurrents, depicted in
panel B, we see a more dramatic reduction in sensitivity
as stimulus duration is decreased. This reduction occurs
because of the temporal integration of cone excitation
responses during phototransduction. This effect can be
observed directly in Figure 1F, where temporally-sharp
modulations in the cone photopigment excitation
response result in severely attenuated corresponding
cone photocurrent modulations.

Impact of spatial summation

Crowell and Banks (unpublished manuscript)
measured contrast sensitivity functions for Gabor
patches of different sizes, in an attempt to discover
possible sources underlying the 20-fold discrepancy
between ideal and human observer performance. Their
rationale was that the ideal observer is allowed to
combine responses across the entire stimulus patch,
whereas detection mechanisms in the visual system may
have a more limited spatial summation window. Crowell
and Banks found that as grating patch size decreased,
the ratio of ideal to human performance also decreased,
bringing the ideal and human performance gap closer
to 5–10 fold. We compare the performance of our
computational observer to the performance of the two
human observers examined by Crowell and Banks. We
thank M.S. Banks for suggesting the comparison and
for providing us with the unpublished manuscript.

The three panels of Appendix Figure A6 depict
contrast sensitivity functions for three patch sizes
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Figure A.6. Impact of spatial summation. Contrast sensitivity functions computed for different sizes of Gabor patches: (A) 3.3 cycles,
(B), 1.7 cycles, (C) 0.4 cycles. Red disks depict computational observer performance assessed at the level of cone photocurrents, in
the presence of fixational eye movements, and computed using the SVM-Template-Energy inference engine. Gray triangles:
performance of the two subjects measured by Crowell and Banks. Subject JAC (light gray triangles) has a lower high frequency
sensitivity than subject MSB, and was not able to detect stimuli of certain patch size and spatial frequencies at any contrast. The
simulated stimulus conditions (matched to the experiment of Crowell and Banks) were: 100 cd/m2 mean luminance, 100 ms pulsed
stimulus presentation, 2.5 mm pupil size, and performance threshold set to 75% correct.

(expressed as number of grating cycles within the
2 × σ of the Gabor stimulus) examined by Crowell
and Banks. The red disks depict the performance
of our computational observer assessed at the
level of cone photocurrents, in the presence of
fixational eye movements, and computed using the
SVM-Template-Energy inference engine. The gray
triangles depict the performance of the two subjects
measured by Crowell and Banks. Note that, for spatial
frequencies greater than 5 c/deg, the performance
of our computational observer lies between the
performance of the two subjects10 for all three patch

sizes. Also note that at 2.5 c/deg, the computational
observer performance is significantly higher than
human performance. This is presumably because
the antagonistic center/surround interactions in
the receptive fields of post-receptoral neurons (e.g.,
ganglion cells), which reduce sensitivity to low spatial
frequency achromatic stimuli, are not included in our
computational observer. These results provide further
support for the ability of our computational observer to
capture the medium to high spatial frequency sensitivity
loss that occurs due to processing early in the visual
system.


