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Abstract A land use regression (LUR) model for the
mapping of NO, concentrations in Ottawa, Canada was
created based on data from 29 passive air quality samplers
from the City of Ottawa’s National Capital Air Quality
Mapping Project and two permanent stations. Model
sensitivity was assessed against three spatial representations
of population: population at the dissemination area level,
population at the dissemination block level and a dasy-
metrically derived population representation. A spatial data-
base with land use, roads, population, zoning, greenspaces
and elevation was created. Polycategorical zoning data were
used in dasymetric mapping to spatially focus population
data derived from the dissemination blocks to a sub-block
level for comparison purposes. Dasymetric population map-
ping provided no significant LUR model improvement in
explained variance when compared to block level popula-
tion; however, both the former were significantly better than
the dissemination area level population representations.
However, where block level population is not available
or too costly to acquire, our method using polycategorical
zoning data provides a viable alternative in LUR modelling
endeavours.

Keywords GIS, LUR, Dasymetric mapping, Scale LUR,
Land use regression - NO,, Nitrogen dioxide - DA,
Dissemination area - DISB, Dissemination block - CMA,
Census Metropolitan Area - GIS, Geographical Information
System - PDF, Population density fraction - AR, Area ratio -

M.-P. Parenteau + M. C. Sawada (I<)

Department of Geography,

Laboratory for Applied Geomatics and GIS Science (LAGGISS),
University of Ottawa,

Simard Hall, 60 University Pvt., Room 047,

Ottawa, Ontario KIN 6N5, Canada

e-mail: msawada@uottawa.ca

TF, Total fraction - RMSE, Root-mean-square error -
VIF, Variation inflation factor- CI, Condition index -
LOOCY, Leave-one-out cross-validation -

MAE, Mean absolute error

Introduction

Modelling chronic air pollution exposure to constituents
like nitrogen dioxide (NO,) at an intra-urban scale is
fundamental for health planning and intervention within
cities. The land use regression (LUR) model was first
introduced in 1997 by a team of European researchers
(Briggs et al. 1997), but it was not until 2005 that a first
attempt at using this methodology in North America was
published (Gilbert et al. 2005). Since then, LUR models
have been developed for only a limited number of large
centres in Canada (Gilbert et al. 2005; Henderson et al.
2007; Jerrett et al. 2007; Marshall et al. 2008; Su et al.
2008; Wheeler et al. 2008; Sahsuvaroglu et al. 2009;
Poplawski et al. 2009). The modelling of air quality based
on LUR requires accurate data on a number of human and
environmental factors such as land use, street networks,
location of greenspace and population distribution. Each of
these variables can, and has been, integrated within LUR
models using a wide variety of spatial representations and
spatial scales. As the number of articles published that
employ land use regression models has been increasing,
a research agenda that focuses on the role of spatial
representation and scale in the LUR model performance is
warranted.

In order to improve LUR model development and
choice, our principal objective is to examine the role of
spatial representation of the LUR-independent variables
used to model atmospheric NO, concentrations. A second
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objective of this research aims at developing a reasonably
accurate LUR model for Ottawa, Canada, which has not
been attempted before. Ottawa is often considered a unique
city because of its small manufacturing base and large
government and technology sector activities. So, develop-
ing a LUR for this city is challenging considering the size
of Ottawa and the low industrial activity found within its
boundaries (Wentz et al. 2002; Jerrett et al. 2007). The use
of a population independent predictor is the key element
that many published European and North American LUR
models have in common. There are a numerous ways in
which population has been represented in LUR modelling
efforts and these commonly include the number of dwell-
ings per unit area, the population count per unit area and
population density (Henderson et al. 2007; Ryan et al.
2008; Beelen et al. 2009). For the most part, operationalis-
ing the population variable is achieved by using available
census data at different geographic levels. The use of
multiple population representations found in the learned
literature begs the question: how robust are LUR results to
the use of different population representations at different
spatial scales? Since the question of spatial representation
is a fundamental consideration, the modifiable areal unit
problem (Openshaw 1984) in population representation is a
concern (Andresen and Brantingham 2008). With regard to
our present LUR undertaking, we have tried to limit our
scope by looking more specifically at the spatial represen-
tation of the population variable and its ensuing effects
on LUR model output performance. We thus address the
specific question: How robust are LUR models to different
population representations as independent variables?

To our knowledge, no research has yet studied the role
of spatial representation in the development of a LUR
model, more specifically for the population variable. With
this research, we propose to address this issue for the first
time by developing regression models based on three
different representations of population from the Canadian
Census of Population: the population count at the dissem-
ination area (DA) level, the population count at the
dissemination block (DISB) level and the population count
at a sub-dissemination block level using dasymetric
mapping (DASYM).

The need for data integration arises when one wants to
use data collected under a different spatial division (e.g.
non-census tract or non-dissemination area level but a finer
or custom geographic boundary set) than the one used by
the census (Fisher and Langford 1996) or when wanting to
understand or intervene at a scale that is finer than that
collected by the census. This would be the case when the
goal is to examine natural socioeconomic processes that are
indifferent to the imposed non-physical boundaries. As
such, spatial units are often incompatible with respect to the
required or intended needs of the researcher and so areal
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interpolation techniques are required (Langford 2007).
Solving this problem of incompatibility requires the
assignment of one aggregated dataset to another incompat-
ible dataset using various available spatial algorithms
(Sadahiro 1999; Mennis 2003; Reibel and Bufalino 2005;
Reibel and Agrawal 2007; Langford 2007). The approaches
developed to solve the problem of incompatible spatial
units have the capability of generating a more precise map
of population distribution or many other census derived
variables. Dasymetric mapping, which can also be pycno-
phylactic (Tobler 1979) in nature, is the spatial interpolation
method used in this research. It is a method that is based on
the integration of ancillary spatial data. Ancillary datasets
like roads, greenspace, water, land use and cadastral data
can help to define both where people could live as well as
where they cannot live within a predefined area. As such, a
dasymetric approach provides a method by which the
original dataset representing, for example, population
counts in census tracts can be disaggregated and redis-
tributed to a finer spatial scale. The use of this approach
also corresponds to the last goal of this research, which is to
work toward the development of a standardised methodol-
ogy for dasymetric mapping (Langford and Higgs 2006).
We use dasymetric mapping in the context of LUR, but it
could also have numerous other applications where popu-
lation data at fine spatial resolutions are required. For
example, the availability of an accurate representation of
the population distribution for governance (the governance
of oneself and of others) is very important for the task of
administrating services (Crampton 2004). It can be argued
that an accurate map of human population is essential to
municipal planning; even more so for public health planning
and healthcare provisions (Hay et al. 2005). Global disaster
management for the developing world has given rise to
projects like LandScan (Bhaduri et al. 2007) and others that
are producing dasymetric gridded global population esti-
mates at fine spatial resolutions that compare well with
known population distributions in the developed world
(Sutton et al. 2003; Sabesan et al. 2007; Patterson et al.
2009). It is clear that accurate data on the spatial distribution
of population is fundamental to a number of endeavours (Liu
et al. 2008), but few studies have focused on the question of
spatial representation in terms of population distribution and
its impact on policies. One of the few examples of research
on the subject is the work of Langford and Higgs (2006)
who investigated the influence of alternative spatial popula-
tion representations to the measure of potential access to
primary healthcare services. The authors found that the
modelling method for population impacted the results. The
authors concluded that the use of dasymetric mapping con-
sistently provides lower estimates of accessibility to health-
care, which in terms of policy and planning could have a
significant impact. Research in the field of environmental
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justice has also started addressing the question of using
alternative population representations (Most et al. 2004;
Brindley et al. 2005; Mohai and Saha 2006, 2007). Hence,
this research will also contribute to the advancement of these
other fields of studies.

In Europe and North America, LUR modelling efforts
to map exposure to NO, have performed generally well
with R? values varying from approximately 0.5 to 0.9. In
general, Canadian research has yielded acceptable results,
with R? values between 0.54 and 0.77. Even though the
predictor variables have been generally the same for most
studies, their specifications have been significantly different
(Jerrett et al. 2007; Ryan and LeMasters 2007). Hence, not
only it is very important to understand the sensitivity of the
models to spatial representation in order to obtain consistency
in the results but it is also very important as these exposure
models are in most cases one of the first steps in the study of
the relationship between exposure and health. Exposure
models with an improved spatial resolution have been found
to produce more robust associations (Sahsuvaroglu et al.
2009) when compared to health conditions. We expect
dasymetric mapping will aid in obtaining better LUR
models. Hence, better LUR models will contribute to the
literature on the relationship between exposure and health.
Still, the main objective of this research is to give a first
approximation to the role of spatial representation in the
development of LUR models and contribute to the research
agenda on the role of spatial representation more generally.

Land use regression model

Land use regression models were developed for application
in European cities, and research on the subject was first
published by Briggs et al. (1997). Those authors were
interested in exposure models that would allow the study
of the relationship between health and air pollution at a
local scale. Work by these authors also corresponds to the
period when academia started to be interested in the spatial
distribution of pollutants, not only in the context of inter-
urban studies but also for intra-urban studies (Jerrett et al.
2005).

The general approach to modelling aims at predicting
concentration (NO, or other pollutants) at an arbitrary
location using observed concentrations at selected sampling
sites together with a number of spatial explanatory variables
characterising the environment in the proximity of those
air quality sampling sites (Jerrett et al. 2005; Ryan and
LeMasters 2007; Hoek et al. 2008). LUR is, hence, based
on two important principals: “1) environmental conditions
for the variable of interest can be estimated from a small
number of readily measurable predictor variables 2) the
relationship between the target variable and these predictors

can be reliably assessed on the basis of a small sample
survey or training area” (Briggs et al. 2000). Among the
main advantages of this approach are the facts that it can
easily be adapted to the environment in which the study is
taking place and that the development of such a model is
less costly than increasing the observed air quality sampling
network (Jerrett et al. 2005).

Over the last few years, a number of North American
studies have been published (Kanaroglou et al. 2005;
Gilbert et al. 2005; Jerrett et al. 2007; Wheeler et al.
2008). The results of these studies confirm the potential of
LUR (Jerrett et al. 2007). An element that makes the
development of a LUR model for Ottawa, Canada
challenging is the reality that most published studies took
place in large urban centres (Hoek et al. 2008). The City
of Ottawa, part of Ottawa-Gatieau census metropolitan
area (CMA; Ontario part) may be one of the largest cities
in Canada with a population count of 812,129 in 2006
(Statistics Canada 2007), but it cannot be compared to large
European and American cities in terms of population, and
particularly, as mentioned, Ottawa lacks significant indus-
trial activities.

In a literature review looking at the published LUR
models, Hoek et al. (2008) found that a number of
explanatory variables were more frequently used then
others. Variables for population, traffic, land use, altitude,
meteorology and location tended to be included in the LUR
models developed. In addition, Hoek et al. (2008) found
that problems frequently associated with spatial data, such
as completeness and precision, had not been addressed in
an appropriate manner within LUR methodologies. In
particular, the role of spatial representation of the explan-
atory spatial variables in LUR modelling requires more
attention.

Areal interpolation

When data are compiled according to different geographic
boundaries, one is faced with a problem of geographic
mismatch. Areal interpolation methods have been devel-
oped as a solution to this problem. Different methods of
areal interpolation are available, the majority are based on a
spatial overlay algorithm and each method is based on a
number of different assumptions. Areal interpolation meth-
ods are generally classified into two broad categories: (1)
techniques not using ancillary data; (2) techniques using
ancillary data. In this article, dasymetric mapping, which
falls in the category of techniques that use ancillary data, is
considered. Dasymetric mapping can be implemented
without a lot of additional data (Hay et al. 2005) and has
the ability to provide results that are closer to the under-
lying spatial processes (Langford et al. 2008).
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Dasymetric mapping

Dasymetric mapping is an areal interpolation method that
takes advantage of ancillary data and so considers the
heterogeneous distribution of a phenomenon through space.
Poulsen and Kennedy (2004) describe dasymetric mapping
as “a technique that involves estimating the distribution of
aggregated data within the units of analysis, by adding
additional information that provides insights on how these
data are potentially distributed”. Through the use of
ancillary data, dasymetric mapping is capable of creating
subzones with a higher level of homogeneity than the initial
source zones and so more accurately represents the
underlying geographic patterns of population when com-
pared to the finest available enumeration areas (Fisher and
Langford 1996; Mennis 2003; Holt et al. 2004; Langford
and Higgs 2006; Fiedler et al. 2006; Mennis and Hultgren
2006). To date, this approach has relied in most cases on
classified multi-spectral satellite imagery as a source of
ancillary data for the identification of non-residential
discontinuities such as parks and cemeteries in the urban
environment (Reibel and Bufalino 2005; Langford and
Higgs 2006; Langford 2007; Langford et al. 2008). The
general reliance on remotely sensed imagery may have
been an obstacle to the implementation of this areal
interpolation method as it requires expertise in the field of
remote sensing (Langford 2007) and the cost of image
acquisition. An alternative to the use of satellite imagery,
and raster data more generally, has been proposed. A non-
image-based technique uses street network data (Reibel and
Bufalino 2005) and has been successfully implemented in a
few studies. In its simplest form, dasymetric mapping
distinguishes between inhabited and uninhabited areas,
which is called binary dasymetric mapping (Langford and
Higgs 2006; Mennis and Hultgren 2006). It is the
traditional approach to dasymetric mapping and has proven
to perform better than area-weighted interpolation or other
methods of areal interpolation that do not exploit ancillary
data. The second type of dasymetric mapping is a
polycategorical approach where three or more population
density (land use) classes or categories are defined and is
considered a more advanced and complex method to
implement (Langford 2007; Eicher and Brewer 2001).

For the modelling of air quality, dasymetric mapping has
been used only in research by Beelen et al. (2009). That
study is quite different from the one presented here as
Beelen et al. (2009) were interested in the possibility of
modelling air quality over a large geographical area,
namely the European Union using the LUR. They used
dasymetric mapping to refine population distribution from
NUTS-5 level using CORINE land cover and light
emissions data. Conceptually, our work resembles the
research of Beelen et al. (2009), but our goal is not to
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determine how well the LUR can perform at a large scale
using data at a coarse spatial resolution but rather how
using different spatial representations, all at a fairly high
resolution, will have an impact on the performance of the
LUR.

Sources of ancillary data

As mentioned, most implementation cases of dasymetric
mapping have been based on the use of satellite imagery as
a source of ancillary data. A study by Fisher and Langford
(1996) showed that population estimates by dasymetric
mapping based on Landsat imagery are robust. Given the
wide availability of free Landsat imagery, their approach is
feasible if the modeller has the remote sensing expertise
and the available imagery is sufficient. However, in their
research, the authors found that dasymetric mapping still
outperforms other areal interpolation techniques in those
instances where low image classification accuracy is
involved. In fact, they found that it takes classification
accuracy as low as 60% for other areal interpolation
methods to perform better. Where there is a lack of
ancillary data, remote sensing approach is necessary and
will provide the best estimate.

An alternative to the use of raster data for dasymetric
mapping is the use of street network data (Xie 1995),
making this approach more accessible to analysts who may
not have the raster GIS skills (Reibel and Bufalino 2005).
This use of the vector data is based on the assumption that
population distribution is closely linked to the configuration
of roads across the landscape (Hawley and Moellering
2005). Results of research show that the use of the street
network data, which is a simple solution to the problem in
comparison to the use of satellite imagery, provides better
results than areal weighted interpolation (Xie 1995; Reibel
and Bufalino 2005). Since areal weighting redistributes
population based solely on the intersection of the target
zone and the source zone, a homogeneous distribution of
the population is assumed. The methodology implemented
in this research takes into account both this aspect of the
problem but adds another component that allows us to
account for the differences in population density of the
target zones.

Methods

Study design

We developed a LUR model for the mapping of NO,
concentrations in Ottawa, Canada. Our focus is on the role

of different spatial representations on model performance.
Air pollution data were obtained from the City of Ottawa
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through the National Capital Air Quality Mapping Project.
In order to develop the LUR model, a spatial database
that contained information on land use, roads, population,
zoning, greenspaces and elevation was created. This data-
base was also used for the mapping of population using the
dasymetric mapping approach and will be discussed in the
following sections.

Data

The National Capital Air Quality Mapping Project was
launched in the fall of 2007 by the City of Ottawa with the
help of Environment Canada and Health Canada. Through
this project, 30 Ogawa passive samplers were installed
throughout the City of Ottawa on three different occasions,
each time for a period of 2 weeks (Fig. 1). Unfortunately,
due to logistical problems, only the data collected from 29
samplers over the period of 29 September 2007-13 October
2007 could be used in the development of the LUR model.
The monitor removed from the analysis (AQMP-09) was
located in Gatineau, Quebec. The information collected at
this location would have had a minor impact on the
variation of the NO, concentrations (output of LUR model)
in Ottawa. The monitor was located in a quiet residential
area, very similar to the environmental setting of AQMP-17
and AQMP-26. As a consequence, removing AQMP-09 did
not translate into the loss of key information.

The samplers measured the concentration in NO,, O;
and SO, at each location. Data collected at two permanent

stations were also added to the dataset. Even though data on
O; and SO, were available, only the NO, modelling is part
of this ongoing research as it is an essential marker for
traffic-related air pollution and strongly correlated with
other common air-quality indices. This pollutant has been
used as a proxy to evaluate exposure to traffic emissions
(Jerrett et al. 2007).

Spatial data from Statistics Canada are made available to
Canadian universities through the Data Liberation Initiative
(Statistics Canada 2009). For this particular reason, the
2008 street network file from Statistics Canada was used as
it represents the 2007 streets in Ottawa. The 2006
dissemination block spatial boundary file from Statistics
Canada was also used as it corresponds to the most recent
Census of Population in Canada. The dissemination block
is a spatial unit defined on all sides by roads and/or
boundaries and is the smallest geographic area for which
population and dwelling counts are publicly reported
(Statistics Canada 2007). Another important dataset used
in the current research is the zoning data obtained from the
City of Ottawa. The original dataset contained 39 zoning
classes or categories which were reclassified into 23 classes
according to the permitted uses for each of the main zoning
types as described in the City of Ottawa Zoning By-law
2008-250 Consolidation (Table 1).

The zoning data eliminates the need to use remote sensing
data, which in many cases is an obstacle to the implementation
of dasymetric mapping (Langford 2007; Reibel and Agrawal
2007). Zoning data provides information that allows the

Fig. 1 Distribution of the
passive samplers (red) and
permanent stations (black) in
Ottawa
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Table 1 Aggregation of the zoning classes according to the City of
Ottawa Zoning By-law 2008-250 Consolidation

Original zoning type New New definition
zoning
type
Agricultural zone AG Agricultural zone
Arterial mainstreet AM Arterial mainstreet zone
zone
Development reserve DR Development reserve zone
zone
Environment EP Environment protection zone
protection zone
General mixed use GM General mixed use zone
zone
Minor institutional NoPop  No population
zone
Major institutional NoPop  No population
zone
General industrial 1G General industrial zone
zone

Heavy industrial zone ~ NoPop

Light industrial zone IL

No population
Light industrial zone

Business park P
industrial Zone

Business park industrial zone

Community leisure NoPop  No population
facility zone
Major leisure facility NoPop  No population
zone
Central experimental NoPop  No population
farm zone
Local commercial R3 Local commercial zone
zone

Mixed use centre zone ~ MC Mixed use centre zone

Mixed use downtown MD Mixed use downtown zone

zone
Mineral extraction ME Mineral extraction zone/mineral
zone aggregate reserve zone
Mineral aggregate ME Mineral extraction zone/mineral

réserve zone aggregate reserve zone

Parks and open space 01 Parks and open space zone

zone

Residential first R1 Residential first density zone
density zone

Residential second R2 Residential second density zone
density zone

Residential third R3 Residential third density zone
density zone

Residential fourth R4 Residential fourth density zone
density zone

Residential fifth RS Residential fifth density zone

density zone

Rural commercial NoPop  No population
zone

Rural general NoPop  No population
industrial zone

Rural heavy industrial ~ NoPop  No population
zone

Rural institutional NoPop  No population
zone

Mobile home park RM Mobile home park zone
zone

Rural residential zone RR Rural residential zone
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Table 1 (continued)

New New definition
zoning

type

Original zoning type

Rural countryside zone  RU Rural countryside zone

Air transportation NoPop  No population
facility zone
Ground transportation ~ NoPop  No population

facility zone

Traditional main street TM Traditional main street zone

zone

Village mixed use VillRes  Village residential
zone

Village residential first ~ VillRes  Village residential
density zone

Village residential VillRes  Village residential
second density zone

Village residential VillRes  Village residential

third density zone

identification of uninhabited areas as well as detailed
information on the different levels of population density
throughout the region. We attributed a population count
value of zero to zoning types where residential habitation use
is not allowed and the other zoning types were set aside for
the evaluation of the population density fraction (PDF). The
calculation of the PDF is one of the main steps of dasymetric

mapping.
Dasymetric mapping

Dasymetric mapping was undertaken at three scales, first at
the scale of the dissemination block, second using the
zoning data and third, the fusion of both datasets provided
us with the necessary information to further refine the
spatial resolution of the Census population data.

Because the zoning data were reclassified into 23 classes of
land use, the dasymetric approach used in this research is
polycategorical. This approach should represent an improve-
ment in comparison to the traditional binary approach where
information on the different levels of population densities
within a census reporting zone are not accounted for
(Langford and Higgs 2006). Our methodology also facilitates
the implementation of dasymetric mapping, requiring no data
or knowledge of remote sensing. This approach also has the
advantage of overcoming the misclassification problem that
can occur between residential apartment buildings and
commercial facilities (Langford 2007).

The methodology used in this research is based on the
work of Mennis (2003). Mennis’ approach has four main
steps: (1) calculation of the PDF; (2) calculation of the area
ratio (AR); (3) calculation of the TF, and (4) the mapping of
population (or other variable). The main difficulty with the
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implementation of the polycategorical approach is the
identification/calculation of the different relative ratios of
the PDF values that are assigned to each population density
class/category (land use class). Our approach to overcom-
ing that issue is accomplished using selective sampling
within the dataset (for more details, see Mennis 2003). The
Mennis’ method was selected for its simplicity, as one
of our goals is to define a methodology that can be
implemented by local governments without the need for
considerable expertise. The downside of this approach is
that it requires that some source zones are totally nested
into one single population density class in order to be able
to calculate the relative ratios of population density values
(Mennis 2003; Langford and Higgs 2006; Reibel and
Agrawal 2007). For example, in this study, the source zones
were the dissemination blocks. Hence, it was necessary to
have at least several blocks that were completely contained
within one single land use class for the calculation of the
PDF. This approach was first implemented by Mennis
(2003); alternative approaches are found in Eicher and
Brewer (2001) and Yuan et al. (1997). These may not have
the problem associated with selective sampling but present
other issues such as vulnerability to outliers and incorrect
sampling in the case of the centroid method (Mennis and
Hultgren 2006).

The use of dasymetric mapping allowed us to refine the
census geography, defining a smaller geographic scale than
the dissemination block. Considering that population data
are not disseminated at a lower geographic level than the
dissemination block, our methodology represents a solution
for the production of a population map at a sub-census unit
level. For example, with the use of dasymetric mapping, we
were able to split a dissemination block into a number of
parts (Fig. 2). Some of these parts, for example, do not have
residential as a permitted land use and so they were
attributed a population value of zero (see Table 1) and the
total population count was reassigned within the larger

census zone to the new sub-units according to the PDF and
the AR.

LUR

The measured concentrations of NO, at the sampling locations
(dependent variable) were used in a multiple least-squares
regression model (Ryan and LeMasters 2007). Multiple
explanatory variables were identified based on the literature,
with an emphasis on the representation of the population
variable. As such, population variables were created based on
the population data at the DA, the DISB and the refined
dissemination block using DASYM. Buffers ranging from 50
to 2,000 m at an interval of 50 m were created for each of the
sampling sites. At each interval, each explanatory variable
was compared with NO, concentrations (40 comparisons per
covariate). The use of the series of buffers provided a means
by which to determine an optimised distance for each spatial
covariate (Su et al. 2008). As NO, concentrations are known
to fluctuate over distances as small as 50 m, the use of
multiple buffers allowed us to identify the distance at which
the measured correlation between the pollutant (mean NO,
concentrations for the 2-week period) and the different
covariates was the strongest. This preliminary analysis used
Pearson’s 7 coefficient of correlation and bivariate regressions
to look at the absolute strength of the variables and possible
deviations from linear relationships with NO, by examination
of residual plots (Poplawski et al. 2009). This analysis
provided us with initial information on the relationship
between the variables and measured NO, concentrations as
well as a way to confirm the anticipated direction of the effect
(positive or negative) (Henderson et al. 2007). For each
variable, the distance of maximum correlation was used to
define the explanatory variable used in the model building
exercise. Because we were undertaking multiple tests (n=40),
for each variable, we interpreted statistical significance at a
Bonferroni corrected level of p=0.05/40 (Cooper 1968).

d oise

2006 Population: 1,108

200m

b DASYM

\ 16 5336475
16.53368475

Fig. 2 Example of dasymetric mapping using zoning data. The population is redistributed (b) within census zone (DISB) shown in (a) as some of

the zoning types within the selected DISB does not allow residential use
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All three representations of the population variable had
the strongest correlation with NO, at a distance of 1,750 m,
showing coherence. Pearson’s r for the correlation between
the measured NO, concentration and population at the DA
level only has a value of 0.28719 and is not statistically
significant. The population at the DISB level and DASYM
has similar Pearson’s r values for the same relationship,
with the dasymetric mapping having a slightly higher level
(0.78968 versus 0.78893). However, NO, and DISB and
DASYM are statistically significant as indicated in Table 2
but not significantly different from each other.

Since this research is concerned with the role of spatial
representation, three different LUR models were developed.
The first model included a population variable derived from
DASYM, the second model’s population variable was
derived by the use of the data at the geographic level of
the DISB and the third model had population derived from
the DA level. Stepwise selection was the method used to
develop the different regression models (Jerrett et al. 2007,
Su et al. 2008). Variables in the model had to be statistically
significant at p=0.05 and models were evaluated based on
the R* values, RMSE, VIF eigenvalues and the CI. The
methodology used for the development of all the regression
models was the same. For example, to develop the model
using population at the DA level, DISB population and
DASYM population representations were excluded from
the list of covariates. All models were tested for spatial
autocorrelation in the residuals using Moran’s | statistic
(Bailey and Gatrell 1995), and no significant spatial
autocorrelation was present.

The model containing the DASYM population variable
(model 1) provided an R* of 0.8055 (Table 3) while the
model using the DISB variable provided a very similar
value of 0.8038 (model 2). Using the population data at the
geographic level of the DA, model 3 did perform poorly,
yielding a result of R* of 0.6962, much lower than models 1
and 2. Study of the correlation between the variables and
NO, concentration as well as the development and
evaluation of the regression models was achieved in the
environment of SAS Enterprise (version 3.0).

The two models using the finest levels of aggregation as
spatial representations of the population variables are very
similar in terms of the variables included in the models,
parameter estimates and statistics to evaluate the perfor-

Table 2 Correlation between NO, concentration and the different
population representations

Spatial representation Pearson’s r Prob>|r|
DA 0.28719 0.1141
DISB 0.78893 <0.0001
DASYM 0.78968 <0.0001

@ Springer

Table 3 Definition of the LUR models using different population
representations

Variable Parameter estimate Pr>t VIF
Model 1 (R*=0.8055)
Intercept 3.66507 0.0027 0
Maj Rds 250m 0.00041824 0.0116 1.47569
PopDasym_1750m 0.00010586 0.001 2.24357
Greenspace 700m —0.00000216 0.0229 2.39553
Industrial 250m 0.00005783 0.0398 1.28638
Model 2 (R*=0.8038)
Intercept 3.49419 0.0058 0
Maj_Rds 250m 0.00041876 0.0119 1.47878
PopDISB_1750m 0.00010492 0.0011 2.35903
Greenspace 700m —0.00000206 0.03046 2.53099
Industrial 250m 0.00002917 0.037 1.29209
Model 3 (R*=0.6962)
Intercept 7.18141 <0.0001 0
Maj Rds 250m 0.00065638 0.0009 1.2866
PopDA_1750m 0.00001609 0.2665 1.26329
Greenspace_700m —0.00000488 <0.0001 1.02323

Probability and variation inflation factor values associated with each
of the variables

Pr Probability, VIF variation inflation factor, # Student’s t distribution

mance of the models. The model making use of spatial
representation based on the data at the DA level had a
different composition in terms of covariates, with the
Industrial 250m variable being excluded from the model.
Most importantly, the population variable included in the
DA model, PopDA 1750m, was not statistically significant
at 95% level.

As mentioned earlier, all three model residuals were
tested for spatial autocorrelation, and none showed signif-
icant spatial dependency. As such, we are not concerned
that spatial autocorrelation in the residuals will affect the
size and significance of risk estimates from this analysis as
others have found (Jerrett and Finkelstein 2005). Graphical
representation of the residuals does not indicate presence
of trends in any of the three models (Fig. 3). Once again,
plots of the residuals of models 1 and 2 (Fig. 3a and
3b respectively) are very similar, but the residual plot of
model 3 (Fig. 3c¢) is clearly different.

Model validation

Validation of the LUR model was achieved using leave-
one-out cross-validation (LOOCV) (Hoek et al. 2008;
Mukerjee et al. 2009). Using this methodology, the regres-
sion model was re-estimated 31 times, each time leaving out
one observation (n—1). The root-mean-square error and the
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Fig. 3 Regression (left) and a
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mean absolute error were computed in order to assess the
performance of the model. The results (RMSE=1.05 ppb and
MAE=0.86 ppb) indicate that the NO, values predicted by
the model are reliable.

Discussion

Our results indicate that the accuracy of the land use
regression model is affected by the use of different spatial
representations of the population variable. The mapping of
population at a sub-block geographic level using the
dasymetric approach showed no significant differences
over using population at the dissemination block. On the
other hand, both of these models outperformed the model

based on dissemination area population data. As such, LUR
model performance increases with mapping population
distribution at a lower geographic level than the dissemi-
nation area. In addition, with the more detailed population,
estimates of other socioeconomic and demographic cova-
riates can potentially be better focused spatially to where
the population resides.

With an R? of 0.8055, 0.8038 and 0.6962, all three LUR
models have explained variances within the range found in
the literature (Hoek et al. 2008). These values also
demonstrate that it is possible to use the LUR model in a
smaller city where the air quality is often considered
generally good. This finding for Ottawa is important as it
enlarges the applicability of the model to a number of
additional centres, especially in Canada—where the number
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of large urban centres is limited. The NO, surface created
through the implementation of the LUR model corroborates
a priori knowledge of the air quality in Ottawa with pockets
of higher NO, concentration located in areas known to have
air quality problems. The variables included in the LUR
model for Ottawa (length of major roads, population count,
area of greenspace and industrial land use) are generally the
same as those included in similar models developed for
other Canadian cities. The size of the buffers is also within
the same range as those found within the literature on
Canadian LUR models (Henderson et al. 2007; Jerrett et al.
2007; Marshall et al. 2008; Wheeler et al. 2008; Sahsuvar-
oglu et al. 2009). The main difference we found when
building the LUR model for Ottawa was the importance of
the variable “Greenspace”. The only other model with a
similar variable was published by Sahsuvaroglu et al.
(2009) where a LUR model for Hamilton, Ontario is
developed using a variable “Open land use”. The presence
of greenspaces is an important feature of the landscape in
Ottawa, explaining why it is not found in most other LUR
models developed for Canadian cities.

The City of Ottawa has a unique landscape created by the
existence of a large corridor of greenspace that represents the
boundary between the urban and the suburban part of the city
(Fig. 4). Included in the original planning of the city in 1950
by Jacques Greber, a French planner, the purpose of the
‘Greenbelt’ was to prevent urban sprawl and protect the rural
land surrounding the city (NCC 2009). Due to population

growth, residential and commercial developments were
constructed beyond the greenbelt. The location of the
greenbelt can easily be identified in the LUR NO,
concentration surface map; it corresponds to the large linear
area where the concentration of NO, is considerably lower
than the surroundings. Hence, the existence of the greenbelt
potentially has a strong effect on residents’ health.

We believe the combination of a number of factors is
behind the fact that the use of dasymetric mapping did not
significantly improve the results of NO, modelling. One
first factor is potentially found in the level of heterogeneity
of the DISBs within Ottawa. In general, population
distribution within a particular dissemination block is
highly homogeneous. As a consequence, refinement of
population distribution is not significant enough to consid-
erably improve the results of the modelling.

Also, the scale at which NO, concentration varies is of
importance. Refinement of the map of population distribu-
tion at a geographic level lower than the dissemination
block may be much finer a scale than at which we can
observe NO, variations. For this reason, spatial representa-
tion does not appear to be playing an important role when
comparing population counts at the block level and
dasymetric population. On the contrary, the role of spatial
representation is significant when comparing LUR with
block or sub-block level data and DA level data.

Lastly, the poor contribution of dasymetric mapping to
the LUR may be due to the fact that population count (all

Fig. 4 LUR for NO,
concentrations (ppb) in Ottawa
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representations) is highly correlated to NO, concentration
at a distance of 1,750 m from the sampling sites. In a study
on the evaluation of population at risk using dasymetric
mapping, Higgs and Langford (2009) conclude that “as
[the] buffer size increases with respect to census tracts,
partial intersections proportionately decrease and corre-
spondingly the results [of different population representa-
tions] tend to converge”. This suggests that if the strongest
correlation of population with NO, would have been
measured at a smaller distance, potentially the use of
dasymetric mapping could have considerably improved the
results. Such a hypothesis begs testing in this urban area by
using data in different seasons for example.

Our results indicate that the use of dasymetric mapping
to refine the population data at the sub-dissemination block
level is possible. In terms of model improvement, the result
is not significantly different from using block level popu-
lation representations, and we could not recommend the use
of this approach when population data are available at a
fine geographic level (as the dissemination block). On the
other hand, we perceive this methodological approach to be
of great value not only to redistribute population aggregated
at a higher geographic level but also for a number of other
applications. In addition, our approach would be beneficial
for local level governments that have access to local zoning
data but who may not have access or who do not want the
added expense of utilising block level population in Canada
and elsewhere in urban areas where block level population
may not be collected.

The main limitation of this study is the City of Ottawa’s
geography. The City of Ottawa is located on the Ontario
side of the Ottawa River, representing only one side of the
Ottawa-Gatineau CMA. The other side of the Ottawa River
is the City of Gatineau, located in the nation of Québec.
The data used in the modelling of the NO, with the LUR
model were acquired from the City of Ottawa and do not
cover the City of Gatineau. An airshed does not follow
political boundaries, and it is realistic to assume that the
integration of the Québec portion would have resulted in a
more accurate model.

Another limitation of this research is the fact that the NO,
data used were collected through a limited air sampler
deployment. Considering that Ottawa is characterised by
large variability in temperatures measured at different times
of the year, model improvements could certainly be made
with NO, measurements taken during different seasons. As
stated earlier, seasonal variations in the spatial correlation of
NO, with covariates might improve model predictions.
However, Wheeler et al. (2008), in a study of the correlation
between NO, measurements taken throughout different
Canadian seasons with yearly averages, found that all
seasons were highly correlated with the annual average.
The problem would then be one of overestimation or

underestimation, depending on the season at which measure-
ments were taken and would not affect the general spatial
distribution of NO, concentrations.

Also, the location of the samplers did not include rural
sites. As a large proportion of the territory of the City of
Ottawa is rural, having sampling sites in these areas would
have potentially improved the models beyond the urban
core and in the suburbs. The location of the samplers may
be more important than the number or samplers deployed
(Ryan and LeMasters 2007). However, such was out of our
control but should be considered in the future deployments
by the city. Lastly, the importance of the temporal period of
sampler deployment and resultant effects on NO, modelling
in regard to the selection of covariates needs attention and
were beyond the scope of this study.

Conclusion

As the land use regression model grows in popularity as a
simple modelling approach, we believe that it is time that
the research community focuses on the question of spatial
representation and the impact on the mapping of pollutants.
The secondary goal of this research was to develop a LUR
model for Ottawa. Our results indicate that it is possible to
develop such a model for a smaller urban centre where air
quality is considered to be good.

Our results point to the fact that the output of LUR
modelling for NO, mapping is affected by the use of
different spatial representations of population. Where we
had expected the LUR model using results of dasymetric
mapping to outperform the one using block level popula-
tion counts, we did find essentially identical results. This
confirms the work of Higgs and Langford (2009) who
found that the best results with dasymetric mapping arise
at small buffer sizes. Consequently, we recommend the use
of dasymetric mapping for LUR models if the strongest
correlation between NO, and population is found in close
proximity of the air quality sampling sites. Moreover, the
availability of zoning datasets by municipalities can easily
replace the need for block level population in cases where
such data are not available or too costly to acquire. In
general, the use of zoning data obtained in a vector format
did allow the refinement of population distribution with
the dasymetric mapping methodology. This also has the
advantage of easy adoption by local governments for the
creation of population maps at a sub-block level without
the need to use remote sensing data.
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