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Introduction: Research related to the automatic detection of Alzheimer’s disease

(AD) is important, given the high prevalence of AD and the high cost of traditional

diagnostic methods. Since AD significantly affects the content and acoustics of

spontaneous speech, natural language processing, and machine learning provide

promising techniques for reliably detecting AD. There has been a recent proliferation

of classification models for AD, but these vary in the datasets used, model types and

training and testing paradigms. In this study, we compare and contrast the performance

of two common approaches for automatic AD detection from speech on the same,

well-matched dataset, to determine the advantages of using domain knowledge vs.

pre-trained transfer models.

Methods: Audio recordings and corresponding manually-transcribed speech

transcripts of a picture description task administered to 156 demographically matched

older adults, 78 with Alzheimer’s Disease (AD) and 78 cognitively intact (healthy) were

classified using machine learning and natural language processing as “AD” or “non-AD.”

The audio was acoustically-enhanced, and post-processed to improve quality of the

speech recording as well control for variation caused by recording conditions. Two

approaches were used for classification of these speech samples: (1) using domain

knowledge: extracting an extensive set of clinically relevant linguistic and acoustic

features derived from speech and transcripts based on prior literature, and (2) using

transfer-learning and leveraging large pre-trained machine learning models: using

transcript-representations that are automatically derived from state-of-the-art pre-trained

languagemodels, by fine-tuning Bidirectional Encoder Representations from Transformer

(BERT)-based sequence classification models.

Results: We compared the utility of speech transcript representations obtained from

recent natural language processing models (i.e., BERT) to more clinically-interpretable

language feature-based methods. Both the feature-based approaches and fine-tuned

BERT models significantly outperformed the baseline linguistic model using a small set

of linguistic features, demonstrating the importance of extensive linguistic information

for detecting cognitive impairments relating to AD. We observed that fine-tuned BERT
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models numerically outperformed feature-based approaches on the AD detection

task, but the difference was not statistically significant. Our main contribution is the

observation that when tested on the same, demographically balanced dataset and

tested on independent, unseen data, both domain knowledge and pretrained linguistic

models have good predictive performance for detecting AD based on speech. It is

notable that linguistic information alone is capable of achieving comparable, and even

numerically better, performance than models including both acoustic and linguistic

features here. We also try to shed light on the inner workings of the more black-box

natural language processing model by performing an interpretability analysis, and find

that attention weights reveal interesting patterns such as higher attribution to more

important information content units in the picture description task, as well as pauses

and filler words.

Conclusion: This approach supports the value of well-performing machine learning

and linguistically-focussed processing techniques to detect AD from speech and

highlights the need to compare model performance on carefully balanced datasets, using

consistent same training parameters and independent test datasets in order to determine

the best performing predictive model.

Keywords: Alzheimer’s disease, dementia detection, MMSE regression, BERT, feature engineering, transfer

learning

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease that causes problems with memory, thinking, and
behavior. AD affects over 40 million people worldwide with
high costs of acute and long-term care (Prince et al., 2016).
Current forms of diagnosis are both time consuming and
expensive (Prabhakaran et al., 2018), which might explain why
almost half of those living with AD do not receive a timely
diagnosis (Jammeh et al., 2018).

Studies have shown that valuable clinical information
indicative of cognition can be obtained from spontaneous speech
elicited using pictures (Goodglass et al., 2001). Studies have
capitalized on this clinical observation, using speech analysis,
natural language processing (NLP), and machine learning (ML)
to distinguish between speech from healthy and cognitively
impaired participants in datasets including semi-structured
speech tasks such as picture description. Some of the first papers
on this topic reported ML methods for automatic AD-detection
using speech datasets achieving high classification performance
(between 82 and 93% accuracy) (König et al., 2015; Fraser
et al., 2016; Noorian et al., 2017; Karlekar et al., 2018; Zhu
et al., 2018; Gosztolya et al., 2019). These models serve as
quick, objective, and non-invasive assessments of an individual’s
cognitive status which could be developed into more accessible
tools to facilitate clinical screening and diagnosis. Since these
initial reports, there has been a proliferation of studies reporting
classification models for AD based on speech, as described by
recent reviews and meta-analyses (Slegers et al., 2018; de la
Fuente Garcia et al., 2020; Petti et al., 2020; Pulido et al.,
2020), but the field still lacks validation of predictive models

on publicly-available, balanced, and standardized benchmark
datasets.

The existing studies that have addressed differences between
AD and non-AD speech and worked on developing speech-based
AD biomarkers, are often descriptive rather than predictive.
Thus, they often overlook common biases in evaluations of
AD detection methods, such as repeated occurrences of speech
from the same participant, variations in audio quality of speech
samples, and imbalances of gender and age distribution in the
used datasets, as noted in the systematic reviews and meta-
analyses published on this topic (Slegers et al., 2018; Chen
et al., 2020; Petti et al., 2020). As such, the existing ML models
may be prone to the biases introduced in available data. In
addition, the performance of the previously developed predictive
AD-detection models has been evaluated using either random
train/test split or a cross-validation technique, which may result
in artificially increased reported performance of ML models (i.e.,
overfitting) as compared to their evaluation on a held out unseen
dataset (more details on evaluation techniques are provided in
the section 2.3.1.2), especially when it comes to smaller and
unbalanced datasets (Johnson et al., 2018). Due to these reasons,
it’s difficult to compare model performance across papers and
datasets, since they are rarely matched in terms of data and
model characteristics.

To overcome the problem of bias and overfitting and
introduce a common dataset to compare model performance,
the ADReSS challenge (Luz et al., 2020) was introduced in 2020,
in which the organizers provided an age/sex-matched balanced
speech dataset, which consisted of speech from AD and non-
AD participants describing a picture. The challenge consisted of
two key tasks: (1) Speech classification task: classifying speech as
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AD or non-AD. (2) Neuropsychological score regression task:
predicting Mini-Mental State Examination (MMSE) (Cockrell
and Folstein, 2002) scores from speech. The organizers restricted
access to the test dataset to make it completely unseen for
participants to ensure the fair evaluation of models’ performance.
The work presented in this paper is focused entirely on this new
balanced dataset and follows the ADReSS challenge’s evaluation
process. As such, the models presented in this paper are
more generalizable to unseen data than those developed in the
previously discussed studies.

In this work, we developMLmodels to detect AD from speech
using picture description data of the demographically-matched
ADReSS Challenge speech dataset (Luz et al., 2020), and compare
the following training regimes and input representations to detect
AD:

1. Using domain knowledge: with this approach, we extract
clinically relevant linguistic features from transcripts of
speech, and acoustic features from corresponding audio files
for binary AD vs. non-AD classification and MMSE score
regression. The features extracted are informed by previous
clinical and ML research in the space of cognitive impairment
detection (Fraser et al., 2016).

2. Using transfer learning: with this approach, we fine-tune pre-
trained BERT (Devlin et al., 2019) text classification models at
transcript-level.

We describe below the details of each approach.

1.1. Domain Knowledge-Based Approach
The overwhelming majority of NLP and ML approaches on
AD detection from speech are still based on hand-crafted
engineering of clinically-relevant features (de la Fuente Garcia
et al., 2020). Previous work that focused on automatic AD
detection from speech uses certain acoustic features (such as
zero-crossing rate, Mel-frequency cepstral coefficients etc.) and
linguistic features (such as proportions of various parts-of-speech
(POS) tags (Orimaye et al., 2015; Fraser et al., 2016; Noorian et al.,
2017), etc.) from speech transcripts. Fraser et al. (2016) extracted
370 linguistic and acoustic features from picture descriptions
in the DementiaBank dataset, and obtained an AD detection
accuracy of 82% at transcript-level. Fraser et al.’s model was
evaluated using cross-validation. More recent studies showed the
addition of normative data helped increase accuracy up to 93%,
when evaluated using a random train/test split (Noorian et al.,
2017; Balagopalan et al., 2018). Yancheva et al. (2015) showedML
models are capable of predicting the MMSE scores from features
of speech elicited via picture descriptions, with mean absolute
error of 2.91-3.83.

Detecting AD or predicting MMSE scores with pre-
engineered features of speech and thereby infusing domain
knowledge into the task has several advantages, such as more
interpretable model decisions, the possibility to represent speech
in different modalities (both acoustic and linguistic), and
potentially lower computational resource requirements when
paired with conventional ML models. However, there are also
a few disadvantages, e.g., a feature engineering process is very
expensive and time-consuming, it requires clinical expertise, is

prone to biases in data, and carries the risk of missing highly
relevant features.

1.2. Transfer Learning-Based Approach
In the recent years, transfer learning, or in other words,
utilizing language representations from huge pre-trained neural
models that learn robust representations for text, has become
ubiquitous in NLP (Young et al., 2018). One of the most
popular transfer learning models is BERT (Devlin et al., 2019),
which trains “contextual embeddings” wherein a representation
of a sentence (or transcript) is influenced by the context in
which the words occur in sentences. This model offers enhanced
parallelization and better modeling of long-range dependencies
in text and as such, has achieved state-of-the-art performance
on a variety of tasks in NLP. Previous research (Jawahar et al.,
2019; Rogers et al., 2021) has suggested that it encodes language
information (lexical, syntactic etc.) that is known to be important
for performing complex natural language tasks, including AD
detection from speech.

BERT uses powerful attention mechanisms to encode global
dependencies between the input and output. This allows it to
achieve state-of-the-art results on a suite of benchmarks (Devlin
et al., 2019). Fine-tuning BERT for a few epochs can potentially
attain good performance even on small datasets.

The transfer learning technique in general and BERT model
specifically are promising approaches to apply to the task of
AD detection from speech because such a technique eliminates
the need of expensive and time-consuming feature engineering,
mitigates the need of big training datasets, and potentially results
in more generalizable models. However, the common critique
is that BERT is pre-trained on the corpus of healthy language
and as such is not usable for detecting AD. In addition, BERT is
not directly interpretable, unlike feature-based models. Finally,
the original version of the BERT model is only able to use
text as input, thus eliminating the possibility to employ the
acoustic modality of speech, when detecting AD. All these may
be the reasons why BERT was not previously used for developing
predictive models for AD detection, even though its performance
on many other NLP tasks is exceptional.

1.3. Motivation and Contributions
Our motivation in this work is to benchmark a BERT training
procedure on transcripts from a pathological speech dataset, and
evaluate the effectiveness of high-level language representations
from BERT in detecting AD. We are specifically interested in
understanding whether BERT has a potential to outperform
traditional widely used domain-knowledge based approaches
given that it does not include acoustic features, and at the same
time increase the generalizability of the predictive models.

To eliminate the biases of unbalanced data, we perform all our
experiments on the carefully demographically-matched ADReSS
dataset. To understand how well the presented models generalize
to unseen data, we evaluate performance of themodels using both
cross-validation and testing on unseen held out dataset.

We find that the feature-based SVM model with RBF
kernel outperforms all the other models, and performs on
par with BERT, when evaluated using cross-validation. When
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TABLE 1 | Basic characteristics of the patients in each group in the ADReSS

challenge dataset are more balanced in comparison to DementiaBank.

Dataset Class

AD Non-AD

ADReSS Train Male 24 24

Female 30 30

ADReSS Test Male 11 11

Female 13 13

DementiaBank (Becker

et al., 1994)

– Male 125 83

Female 197 146

evaluation is performed on the unseen held out test data, the
fine-tuned BERT text sequence classification models achieve
the highest AD detection accuracy of 83.3%. This BERT
model numerically, though not significantly, outperforms the
SVM model that achieves 81.3% accuracy on the unseen test
set. These results show that: (1) Extensive feature-based—i.e.,
containing linguistic information for various aspects of language
such as semantics, syntax, and lexicon—classification models
significantly outperforms the linguistic baseline provided in the
challenge showing that feature engineering to capture various
aspects of language such as semantics and syntax helps with
reliable detection of AD from speech, (2) BERT proved to be a
generalizable model comparable to feature-based ones that make
use of domain knowledge via hand-crafted feature engineering
as shown by its higher performance on the independent test set
in our case, (3) linguistic-only information encoded in BERT
is sufficient for the strong predictive performance of the AD
detection models.

2. MATERIALS AND METHODS

2.1. ADReSS Dataset
Our data are derived from the ADReSS Challenge dataset (Luz
et al., 2020), which consists of 156 speech recordings and
associated transcripts from non-AD (N = 78) and AD (N
= 78) English-speaking participants. Speech is elicited from
participants through the Cookie Theft picture from the Boston
Diagnostic Aphasia exam (Goodglass et al., 2001). Transcripts
were annotated using the CHAT coding system (MacWhinney,
2000). In contrast to other speech datasets for AD detection
such as DementiaBank’s English Pitt Corpus (Becker et al., 1994),
the ADReSS challenge dataset is carefully matched for age and
gender in order to minimize risk of bias in the prediction
tasks (Tables 1–3). Recordings were acoustically enhanced by the
challenge organizers with stationary noise removal and audio
volume normalization was applied across all speech segments
to control for variation caused by recording conditions such as
microphone placement (Luz et al., 2020). The speech dataset
is divided into the train set and the unseen held out test set.
MMSE (Cockrell and Folstein, 2002) scores are available for all
but one of the participants in the train set.

TABLE 2 | ADReSS Training set from Luz et al. (2020): basic characteristics of the

patients in each group (M, male; F, female).

AD Non-AD

Age M F MMSE (sd) M F MMSE (sd)

[50, 55) 1 0 30.0 (n/a) 1 0 29.0 (n/a)

[55, 60) 5 4 16.3 (4.9) 5 4 29.0 (1.3)

[60, 65) 3 6 18.3 (6.1) 3 6 29.3 (1.3)

[65, 70) 6 10 16.9 (5.8) 6 10 29.1 (0.9)

[70, 75) 6 8 15.8 (4.5) 6 8 29.1 (0.8)

[75, 80) 3 2 17.2 (5.4) 3 2 28.8 (0.4)

Total 24 30 17.0 (5.5) 24 30 29.1 (1.0)

TABLE 3 | ADReSS test set from Luz et al. (2020): basic characteristics of the

patients in each group (M, male; F, female).

AD Non-AD

Age M F MMSE (sd) M F MMSE (sd)

[50, 55) 1 0 23.0 (n.a) 1 0 28.0 (n.a)

[55, 60) 2 2 18.7 (1.0) 2 2 28.5 (1.2)

[60, 65) 1 3 14.7 (3.7) 1 3 28.7 (0.9)

[65, 70) 3 4 23.2 (4.0) 3 4 29.4 (0.7)

[70, 75) 3 3 17.3 (6.9) 3 3 28.0 (2.4)

[75, 80) 1 1 21.5 (6.3) 1 1 30.0 (0.0)

Total 11 13 19.5 (5.3) 11 13 28.8 (1.5)

2.2. Feature Extraction
The speech transcripts in the dataset are manually transcribed
as per the CHAT protocol (MacWhinney, 2000), and include
speech segments from both the participant and an investigator.
We only use the portion of the transcripts corresponding to
the participant. Additionally, we combine all participant speech
segments corresponding to a single picture description for
extracting acoustic features.

We extract 509 manually-engineered features from transcripts
and associated audio files (see Tables 4–6). These features are
identified as indicators of cognitive impairment in previous
literature, and hence encode domain knowledge.

All the features are divided into three higher-level
categories:

1. Lexico-syntactic features (297): Frequencies of various
production rules from the constituency parsing tree of the
transcripts (Chae and Nenkova, 2009), speech-graph based
features (Mota et al., 2012), lexical norm-based features (e.g.,
average sentiment valence of all words in a transcript, average
imageability of all words in a transcript; Warriner et al., 2013),
features indicative of lexical richness.We also extract syntactic
features (Ai and Lu, 2010) such as the proportion of various
POS-tags, and similarity between consecutive utterances.

2. Acoustic and temporal features (187): Mel-frequency
cepstral coefficients (MFCCs), fundamental frequency,
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TABLE 4 | Summary of all lexico-syntactic features extracted.

Feature type #Features Brief Description

Syntactic

complexity

36 L2 Analyzer features; utterance length, depth of

syntactic parse tree

Production rules 104 Proportion of production type

Phrasal type ratios 13 Proportion, average length and rate of phrase types

Lexical

norm-based

12 Average lexical norms across words for (e.g.,

imageability)

Lexical richness 6 Type-token ratios; brunet; Honor’s statistic

Word category 5 Proportion of demonstratives, function words,

Light verbs and inflected verbs, and propositions

Noun ratio 3 Ratios nouns:(nouns+verbs); nouns:verbs;

pronouns:(nouns+pronouns)

Length measures 1 Average word length

Universal POS

proportions

18 Proportions of Spacy universal POS tags

POS tag

proportions

53 Proportions of Penn Treebank POS tags

Local coherence 15 Similarity between word2vec representations of

utterances

Utterance

distances

5 Fraction of pairs of utterances below a similarity

threshold (0.5, 0.3, 0); avg/min distance

Speech-graph

features

13 Representing words as nodes in a graph and

computing density, number of loops, etc.

Utterance

cohesion

1 Number of switches in verb tense across utterances

divided by total number of utterances

Rate 2 Ratios—number of words: duration of audio;

number of syllables: duration of speech,

Invalid words 1 Proportion of words not in the English dictionary

Sentiment

norm-based

9 Average sentiment norms across all words, noun,

and verbs

The number of features in each subtype is shown in the second column (titled

“#Features”).

TABLE 5 | Summary of all acoustic/temporal features extracted.

Feature type #Features Brief description

Pauses and fillers 9 Total and mean duration of pauses; long

and short pause counts;

pause to word ratio; fillers (um, uh);

duration of pauses to word durations

Fundamental frequency 4 Avg/min/max/median fundamental

frequency of audio

Duration-related 2 Duration of audio and spoken segment of

audio

Zero-crossing rate 4 Avg/variance/skewness/kurtosis of

zero-crossing rate

MFCC 168 Avg/variance/skewness/kurtosis of 42

MFCC coefficients

The number of features in each subtype is shown in the second column (titled

“#Features”).

statistics related to zero-crossing rate, as well as proportion of
various pauses (for example, filled and unfilled pauses, ratio
of a number of pauses to a number of words etc.; Davis and
Maclagan, 2009).

TABLE 6 | Summary of all semantic features extracted.

Feature type #Features Brief description

Word frequency 10 Proportion of lemmatized words

occurrences

Global coherence 15 Cosine distances between word2vec

utterances and content units

The number of features in each subtype is shown in the second column (titled

“#Features”).

3. Semantic features based on picture description content

(25): Proportions of various information content units used
in the picture, identified as being relevant to memory
impairment in prior literature (Croisile et al., 1996).

2.3. Experiments
2.3.1. AD vs. Non-AD Classification

2.3.1.1. Training Regimes
We benchmark the following training regimes for classification:
classifying features extracted at transcript-level and a BERT
model fine-tuned on transcripts.

Domain knowledge-based approach: We classify
lexicosyntactic, semantic, and acoustic features extracted at
transcript-level with four conventional ML models (SVM),
neural network (NN), random forest (RF), naïve Bayes (NB)1.

Hyperparameter tuning: All parameters in classification
models were tuned to the best possible setting by searching within
a grid of possible parameter values using 10-fold cross validation
on the ADReSS challenge “train” set.

The random forest classifier fits 200 decision trees and
considers

√

features when looking for the best split. The
minimum number of samples required to split an internal node
is 2, and the minimum number of samples required to be at a leaf
node is 2. Bootstrap samples are used when building trees. All
other parameters are set to the default value.

The Gaussian Naive Bayes classifier is fit with balanced priors
and variance smoothing coefficient set to 1e − 10 and all other
parameters default in each case.

The SVM is trained with a radial basis function kernel with
kernel coefficient(γ ) 0.001, and regularization parameter set
to 100.

The NN used consists of two layers of 10 units each (note
we varied both the number of units and number of layers
while tuning for the optimal hyperparameter setting). The ReLU
activation function is used at each hidden layer. The model is
trained using Adam (Kingma and Ba, 2014) for 200 epochs and
with a batch size of number of samples in train set in each fold.
All other parameters are default.

We perform feature selection by choosing top-k number of
features, based on ANOVA F-value between label/features. The
number of features is jointly optimized with the classification
model parameters.

1https://scikit-learn.org/stable/.
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Transfer learning-based approach: In order to leverage the
language information encoded by BERT (Devlin et al., 2019),
we use pre-trained model weights to initialize our classification
model. All our experiments are based on the bert-base-uncased
variant (Devlin et al., 2019), which consists of 12 layers, each
having a hidden size of 768 and 12 attention heads. Maximum
input length is 512 tokens. Initial learning rate is set to 2e−5, and
Adam optimizer (Kingma and Ba, 2014) is used. Cross-entropy
loss is used while fine-tuning for AD detection.

While the base BERT model is pre-trained with sentence
pairs, our input to the model consists of speech transcripts
with several transcribed utterances with start and separator
special tokens from the BERT vocabulary at the beginning and
end of each utterance respectively, following Liu and Lapata
(2019). This is performed to ensure that utterance boundaries
are easily encoded, since cross-utterance information such as
coherence and utterance transitions is important for reliable
AD detection (Fraser et al., 2016). An embedding, following
Devlin et al. (2019), pooling information across all tokenized
units in the transcript is extracted as the aggregate transcript
representation from the BERT base for each transcript. This is
then passed to the classification layer, and the combined model is
fine-tuned on the AD detection task—all using an open-source
PyTorch (Paszke et al., 2019) implementation of BERT-based
text sequence classification models and tokenizers (Wolf et al.,
2019). As noted by Devlin et al. (2019), this pooled embedding
representation heavily depends on the fine-tuning task—in our
case, AD detection at transcript level.

The transcript input to the classification model consists of
several transcribed utterances with corresponding start and end
tokens for each utterance, following (Liu and Lapata, 2019). The
final hidden state corresponding to the first start ([CLS]) token
in the transcript which summarizes the information across all
tokens in the transcript using the self-attention mechanism in
BERT is used as the aggregate representation, and passed to the
classification layer (Devlin et al., 2019; Wolf et al., 2019). This
model is then fine-tuned on training data.

Hyperparameter tuning: We optimize the number of epochs
to 10 by varying it from 1 to 12 during CV. Adam
optimizer (Kingma and Ba, 2014) and linear scheduling for the
learning rate (Paszke et al., 2019) are used. Learning rate and
other parameters are set based on prior work on fine-tuning
BERT (Devlin et al., 2019; Wolf et al., 2019).

2.3.1.2. Evaluation
Cross-validation on ADReSS train set: We use two CV
strategies in our work—leave-one-subject-out CV (LOSO CV)
and 10-fold CV at transcript level. We report evaluation metrics
with LOSO CV for all models except fine-tuned BERT for
direct comparison to challenge baselines. Due to computational
constraints of GPUmemory, we are unable to perform LOSOCV
for the BERT model. Hence, we perform 10-fold CV to compare
feature-based classification models with fine-tuned BERT. Values
of performance metrics for each model are averaged across three
runs with different random seeds in all cases.
Predictions on ADReSS test set: We generate three predictions
with different seeds from each hyperparameter-optimized

classifier trained on the complete train set, and then produce a
majority prediction to avoid overfitting. We report performance
on the challenge test set, as obtained from the challenge
organizers. We evaluate task performance primarily using
accuracy scores, since all train/test sets are known to be balanced.
We also report precision, recall, specificity, and F1 with respect
to the positive class (AD).

2.3.2. MMSE Score Regression

2.3.2.1. Training regimes
Domain knowledge-based approach: For this task, we
benchmark two kinds of regression models, linear, and ridge,
using pre-engineered features as input. MMSE scores are always
within the range of 0–30, and so predictions are clipped to a
range between 0 and 30.
Hyperparameter tuning: Each model’s performance is optimized
using hyperparameters selected via grid-search LOSO CV. We
perform feature selection by choosing top-k number of features,
based on an F-Score computed from the correlation of each
feature with MMSE score. The number of features is optimized
for all models. For ridge regression, the number of features is
jointly optimized with the coefficient for L2 regularization, α.

2.3.2.2. Evaluation
We report root mean squared error (RMSE) and mean absolute
error (MAE) for the predictions produced by each of the
models on the training set with LOSO CV. In addition, we
include the RMSE for two models’ predictions on the ADReSS
test set. Hyperparameters for these models were selected based
on performance in grid-search 10-fold cross validation on the
training set, motivated by the thought that 10-fold CV better
demonstrates how well a model will generalize to the test set.

3. RESULTS

3.1. AD vs. Non-AD Classification
In Table 7, the classification performance with all the models
evaluated on the train set via 10-fold CV is displayed.We observe
that BERT numerically outperforms all domain knowledge-based
ML models with respect to all metrics, with an average accuracy
of 81.8%. SVM is the best-performing domain knowledge-based
model. However, accuracy of the fine-tuned BERT model is not
significantly higher than that of the SVM classifier based on an
Kruskal-WallisH-test (H = 0.4838, p > 0.05). Note that we used
a Kruskal-Wallis H-test here, and in performance-comparisons
in sections below since we observe that accuracy is not normally
distributed on varying the random seed while training/inference.

We also report the performance of all our classificationmodels
with LOSO CV (Table 9). Each of our classification models
significantly outperform the challenge baseline, which is uses
34 simple language summary statistic measures (e.g., duration,
total utterances, MLU, type-token ratio, percentages of nine parts
of speech) on the CHAT transcripts by a large margin (+10%
accuracy for the best performing model, p = 0.036 with Kruskal-
Wallis H = 4.35 test). Feature selection results in accuracy
increase of about 13% for the SVM classifier.
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Performance results on the unseen, held out challenge test set
are shown in Table 8 and follow the trend of the cross-validated
performance in terms of accuracy, with BERT outperforming the
best feature-based classification model SVM with an accuracy
of 83.33%, but not significantly so (H = 2.4, p > 0.05). The
accuracy with a BERT-based classification model ranges between
85.14 and 81.25%.

3.2. MMSE Score Regression
Performance of regression models evaluated on both train
and test sets is shown in Table 9. Ridge regression with 25
features selected attains the lowest RMSE of 4.56 (with a
corresponding MAE of 3.50, or 11.67% error) during LOSO-
CV on the training set. The results show that feature selection
is impactful for performance and helps achieve a decrease of
up to 1.5 RMSE points (and up to 0.86 of MAE) for a ridge
regressor. Furthermore, a ridge regressor is able to achieve an
RMSE of 4.56 on the ADReSS test set, a decrease of 0.64 from
the baseline. We also experimented with different non-linear
regression methods—however, given the small dataset size and
the difficulty of the task, the linear regression models highlighted
in Table 9 performed the best.

4. DISCUSSION

4.1. Feature Differentiation Analysis
While we extracted a large number of linguistic and acoustic
features to capture a wide range of linguistic and acoustic
changes in speech associated with AD, based on a survey
of prior literature (Yancheva et al., 2015; Fraser et al., 2016;

TABLE 7 | Ten-fold CV results averaged across three runs with different random

seeds on the ADReSS train set.

Model #Features Accuracy Precision Recall Specificity F1

SVM 10 0.796 0.81 0.78 0.82 0.79

NN 10 0.762 0.77 0.75 0.77 0.76

RF 50 0.738 0.73 0.76 0.72 0.74

NB 80 0.750 0.76 0.74 0.76 0.75

BERT – 0.818 0.84 0.79 0.85 0.81

Accuracy for BERT is higher, but not significantly so from SVM (H = 0.4838,p > 0.05

Kruskal-Wallis H-test). Bold indicates the best result.

Pou-Prom and Rudzicz, 2018; Zhu et al., 2019), we are
also interested in identifying the most differentiating features
between AD and non-AD speech. In order to study statistically
significant differences in linguistic/acoustic phenomena, we
perform independent t-tests between feature means for each
class in the ADReSS training set, following the methodology
followed by Eyre et al. (2020). 87 features are significantly
different between the two groups at p < 0.05. Seventy-
nine of these are text-based lexicosyntactic and semantic
features, while eight are acoustic. These eight acoustic features
include the number of long pauses, pause duration, and
mean/skewness/variance-statistics of various MFCC coefficients.
However, after Bonferroni correction for multiple testing, we
identify that only 13 features are significantly different between
AD and non-AD speech at p < 9e − 5, and none of these
features are acoustic (Table 10). This implies that linguistic
features are particularly differentiating between the AD/non-AD
classes here, which explains whymodels trained only on linguistic
features (i.e., BERT models) attain performance well above
random chance.

The features that differentiate the AD and non-AD groups
largely indicate semantic impairments in AD, reflected in
the types of words used and the content of their picture
descriptions. Importantly, many of the differentiating features
replicate findings from Fraser et al. (2016), suggesting that despite
the present dataset being more demographically balanced, many
of the previous findings maintain. In addition, the differentiating
features are consistent with other previous clinical literature

TABLE 9 | LOSO-CV MMSE regression results on the ADReSS train and test sets.

Model #Features α RMSE MAE RMSE

Train set Test set

Baseline (Luz

et al., 2020)

– – 4.38 5.20

LR 15 – 5.37 4.18 4.94

LR 20 – 4.94 3.72 –

Ridge 509 12 6.06 4.36 –

Ridge 35 12 4.87 3.79 4.56

Ridge 25 10 4.56 3.50 –

Bold indicates the best result.

TABLE 8 | AD detection results on unseen, held out ADReSS test set averaged over three runs with different random seeds.

Model #Features Accuracy Precision Recall Specificity F1 AUROC

Baseline (Luz et al., 2020) – 0.7500 – – – 0.7800 –

SVM 10 0.8125 0.8000 0.8333 0.7917 0.8124 0.8125

NN 10 0.7708 0.7671 0.7778 0.7639 0.7708 0.7708

RF 50 0.7569 0.8033 0.6806 0.8333 0.7555 0.7500

NB 80 0.7292 0.7895 0.6250 0.8333 0.7262 0.7292

BERT – 0.8332 0.8389 0.8333 0.8333 0.8327 0.8333

Bold indicates the best result.

Frontiers in Aging Neuroscience | www.frontiersin.org 7 April 2021 | Volume 13 | Article 635945

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Balagopalan et al. Speech-Based Models for AD Prediction

TABLE 10 | Feature differentiation analysis results for the most important features, based on ADReSS train set.

Feature Feature type µAD µnon−AD Correlation Weight

Average cosine distance between utterances Semantic 0.91 0.94 – –

Fraction of pairs of utterances below a similarity threshold (0.5) Semantic 0.03 0.01 – –

Cosine distance between word2vec utterances and content units Semantic 0.46 0.38 −0.54* −1.01

Distinct content units mentioned: total content units Semantic 0.27 0.45 0.63* 1.78

Distinct action content units mentioned: total content units Semantic 0.15 0.30 0.49* 1.04

Distinct object content units mentioned: total content units Semantic 0.28 0.47 0.59* 1.72

Cosine distance between GloVe utterances and content units Semantic – – −0.42* −0.03

Average word length (in letters) Lexico-syntactic 3.57 3.78 0.45* 1.07

Proportion of pronouns Lexico-syntactic 0.09 0.06 – –

Ratio (pronouns):(pronouns+nouns) Lexico-syntactic 0.35 0.23 – –

Proportion of personal pronouns Lexico-syntactic 0.09 0.06 – –

Proportion of adverbs Lexico-syntactic 0.06 0.04 −0.41* −0.41

Proportion of adverbial phrases amongst all rules Lexico-syntactic 0.02 0.01 −0.37 −0.74

Proportion of non-dictionary words Lexico-syntactic 0.11 0.08 – –

Proportion of gerund verbs Lexico-syntactic – – 0.37 1.08

Proportion of words in adverb category Lexico-syntactic – – −0.4* −0.49

µAD and µnon−AD show the means of the 13 significantly different features at p < 9e-5 (after Bonferroni correction) for the AD and non-AD group, respectively. We also show Spearman

correlation between MMSE score and features, and regression weights of the features associated with the five greatest and five lowest regression weights from our regression

experiments. *Next to correlation indicates significance at p < 9e-5.

documenting decreased specificity and information content in
AD. For example, the features relating to the content units in the
picture and the cosine similarity between utterances and picture
content units show that the picture descriptions produced in
AD have fewer relevant content words and that the words used
are less semantically related to the themes of the picture. Lower
average cosine distance in AD signifies more repetition in speech.
These findings are consistent with previous studies reporting
reduced information content and coherence in AD (Croisile et al.,
1996; Snowdon et al., 1996; Dijkstra et al., 2004; Forbes-McKay
and Venneri, 2005; Riley et al., 2005; Le et al., 2011; Ahmed et al.,
2013; Boschi et al., 2017). Other differentiating features related
to the use of shorter words, and increased use of pronouns,
adverbs, and words not found in the dictionary. These features
may all reflect the use of less specific and simpler language, and
replicate previous findings of decreased specificity of language
in AD (Le et al., 2011; Ahmed et al., 2013; Szatloczki et al.,
2015; Fraser et al., 2016). Interestingly, while Fraser et al. (2016)
found differences in acoustic features, none of those findings
survived Bonferroni correction in the present study, which may
indicate that this age/sex-balanced dataset reduced the acoustic
differences between groups.

In order to visualize the class-separability of the feature-based
representations, we visualize (t-SNE) t-Distributed Stochastic
Neighbor Embedding (Maaten and Hinton, 2008) plots in
Figure 1. t-SNE is a non-linear dimensionality reduction
algorithm used for exploring high-dimensional data. It maps
multi-dimensional data to two or more dimensions suitable
for human observation. We observe strong class-separation
between the two classes, indicating that a non-linear model
would be capable of good AD detection performance with
these representations.

FIGURE 1 | A t-SNE plot showing class separation. Note we only use the 13

features significantly different between classes (see Table 10) in feature

representation for this plot.

4.2. Interpreting Attention Patterns in
BERT-Based Models
We look at multi-scale attention visualizations of BERT fine-
tuned for the AD detection task, using the BertViz library (Vig,
2019) (Figure 2). Self-attention is an important component
of BERT-based models, and looking at attention patterns can
help us interpret model decisions. We used the BERT-base
model which consists of 12 layers, and 12 attention heads
in each layer. We visualize, for both AD and healthy speech
transcripts, the attention weights for the final “[CLS]” token,
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FIGURE 2 | An attention visualization plot showing attention contributions of

embeddings corresponding to each word to the “pooled” representation. This

example is a sub-sample (first two utterances) of a speech transcript from a

healthy person.

whose representation is passed to the fully-connected layer for
classification. On analyzing the attention weights attributed to
words in both healthy and AD transcripts, we find that:

1. attention weights are often attributed to a few important
“information content units.” which have been identified to be
important speech indicators of AD in prior work (Fraser et al.,
2016) such as “water,” “boy,” etc.

2. attention weights are also sometimes attributed to pauses and
fillers, such as “uh” and “um.”

TABLE 11 | LOSO-CV results averaged across three runs with different random

seeds on the ADReSS train set.

Model #Features Accuracy Precision Recall Specificity F1

Baseline (Luz

et al., 2020)

– 0.768 0.77 0.76 – 0.77

SVM 509 0.741 0.75 0.72 0.76 0.74

SVM 10 0.870 0.90 0.83 0.91 0.87

NN 10 0.836 0.86 0.81 0.86 0.83

RF 50 0.778 0.79 0.77 0.79 0.78

NB 80 0.787 0.80 0.76 0.82 0.78

Accuracy for SVM is significantly higher than NN (H = 4.50,p = 0.034 Kruskal-Wallis

H-test). Bold indicates the best result.

3. attention weights are also attributed to the sentence separator
tokens, and we think this approximates to roughly counting
the number of utterances in the transcript.

Hence, as seen in sections 4.1 and 4.2, we observe that for both
the feature-based classification models and BERT-based models,
information units and fillers such as “uh” and “um” seem to be
important predictors, similar to findings observed by Yuan et al.
(2020).

4.3. Analysing AD Detection Performance
Differences
We observe that both feature-based and BERT-based
classification models are significantly better than the linguistic
baseline, showing the importance of an extensive amount of
linguistic features for detecting AD-related differences. When
compared on this well-matched dataset, BERT tended to have
higher performance, but the difference was not significant.
Based on feature differentiation analysis, we hypothesize
that good performance with a text-focused BERT model on
this speech classification task is due to the strong utility of
linguistic features on this dataset. BERT captures a wide range
of linguistic phenomena due to its training methodology,
potentially encapsulating most of the important lexico-syntactic
and semantic features. It is thus able to use information present
in the lexicon, syntax, and semantics of the transcribed speech
after fine-tuning (Jawahar et al., 2019).
We also see a trend of better performance when increasing the
number of folds (see SVM in Tables 7, 11) in cross-validation.
We postulate that this is due to the small size of the dataset, and
hence differences in training set size in each fold (Ntrain = 107
with LOSO, Ntrain = 98 with 10-fold CV). Note that, in this
dataset, both feature-based and BERT-based classification
methods rely on linguistic features to achieve better classification
than baseline. This implies that the linguistic features from
speech transcripts are quite informative for the AD detection
task. Hence, an interesting direction of future research is
expanding our current set of features to incorporate more
discourse-related features (which could be getting captured to
some degree in fine-tuned BERT models).
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4.4. Regression Weights for MMSE
Prediction
To assess the relative importance of individual input features
for MMSE prediction, we report features with the five highest
and five lowest regression weights reflecting the five strongest
positive and negative relationships withMMSE scores (Table 10).
Each presented value is the average weight assigned to that
feature across each of the LOSO CV folds. We also present the
correlation with MMSE score coefficients for those 10 features,
as well as their significance, in Table 10. We observe that for
each of these highly weighted features, a positive or negative
correlation coefficient is accompanied by a positive or negative
regression weight, respectively. This demonstrates that these
10 features are so distinguishing that, even in the presence of
other regressors, their relationship withMMSE score remains the
same. We also note that all 10 of these are linguistic features,
further demonstrating that linguistic information is particularly
distinguishing when it comes to predicting the severity of a
patient’s AD. Notably, seven of the ten features were among
those that differentiated between AD and non-AD groups,
demonstrating that there is high overlap between the features
relevant to group differentiation and MMSE score prediction.
These features included those relating to the information content
and the coherence of picture descriptions, reflected by content
unit and cosine distance features.Word length and use of adverbs
were also relevant to MMSE prediction, with longer words and
fewer adverbs correlating with higher MMSE scores. The use of
gerund verbs was found to have a high regression weight for
MMSE prediction and positively correlated with MMSE scores,
despite not being significantly different between AD and non-
AD groups after Bonferroni correction. Reduced use of inflected
verbs has been found in some previous research (Ahmed et al.,
2013; Fraser et al., 2016), and is thought to reflect an grammatic
impairment.

5. CONCLUSIONS

In this paper, we rigorously compare two widely used
approaches—linguistic and acoustic feature engineering based on
domain knowledge, and text-only transfer learning using fine-
tuned BERT classification model. Our results show that pre-
trained models that are fine-tuned for the AD classification
task are capable of performing well on AD detection, achieving
comparable, or even slightly improved performance compared
to hand-crafted feature engineering. We observe that linguistic
features are capable of attaining predictive performance well
above chance on this acoustically and demographically balanced
speech dataset, and posit this to be the reason why a text-
only approach with BERT numerically outperforms a multi-
modal feature-engineering based approach. The present findings
highlight the importance of measuring the linguistic, and
especially semantic content of speech, in addition to acoustic
analyses. In future work, it would be interesting to study methods

that combine feature-based and pre-trained neural LM-based
prediction models to optimize AD detection from speech—
this could potentially help harness complementary benefits of
both approaches. It is interesting to note that the winners
of the ADReSS challenge also used a pre-trained language
model, augmented with additional information about speech
disfluencies (Yuan et al., 2020), which outperforms our best
model by 6% in accuracy and F1-score, further indicating the
degree of promise in such an approach. These results build on
previous work to demonstrate how automated speech analysis
can be used to help characterize AD. Speech samples can be
collected quickly and non-invasively, and as demonstrated in
the present results, yield measures relating to the presence and
severity of AD.

Further work will build on these results to develop improved
tools for disease screening and monitoring in AD, improving the
efficiency of clinical research and treatment. In the future, we will
experiment with different neural models such as XLNet (Yang
et al., 2019), and with different tokenization and encoding
strategies for transcript representations. A direction for future
work is developing ML models that combine representations
from BERT and hand-crafted features (Yu et al., 2015). Such
feature-fusion approaches could potentially boost performance
on the cognitive impairment detection task.
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