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A B S T R A C T   

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death among non-contagious 
diseases in the world. PDE inhibitors are among current medicines prescribed for COPD treatment of which, 
PDE-4 family is the predominant PDE isoform involved in hydrolyzing cyclic adenosine monophosphate (cAMP) 
that regulates the inflammatory responses in neutrophils, lymphocytes, macrophages and epithelial cells The aim 
of this study is to investigate the cellular and molecular mechanisms of cAMP-PDE signaling, as an important 
pathway in the treatment management of patients with COPD. In this review, a comprehensive literature review 
was performed about the effect of PDEs in COPD. Generally, PDEs are overexpressed in COPD patients, resulting 
in cAMP inactivation and decreased cAMP hydrolysis from AMP. At normal amounts, cAMP is one of the essential 
agents in regulating metabolism and suppressing inflammatory responses. Low amount of cAMP lead to acti
vation of downstream inflammatory signaling pathways. PDE4 and PDE7 mRNA transcript levels were not 
altered in polymorphonuclear leukocytes and CD8 lymphocytes originating from the peripheral venous blood of 
stable COPD subjects compared to healthy controls. Therefore, cAMP-PDE signaling pathway is one of the most 
important signaling pathways involved in COPD. By examining the effects of different drugs in this signaling 
pathway critical steps can be taken in the treatment of this disease.   

1. Introduction 

As one of the top ten non-infectious diseases, chronic obstructive 
pulmonary disease (COPD) is a chronic inflammatory lung disease that 
causes obstructed airflow from the lungs [1]. 300 million individuals 
worldwide have COPD, with a prevalence of around 7.2% in 2021, the 
WHO proposed COPD as the third leading cause of death among 
non-contagious diseases by 2020. Alarmingly, COPD took third place in 
2016, four years ahead of WHO estimation. The majority of COPD pa
tients experience pulmonary inflammatory exacerbations resulting in 
greater mortality, increased hospitalization costs [1–4], necessitating 
appropriate clinical management. Viral and bacterial infections trigger 
inflammation exacerbations in COPD patients. Patients with exacerba
tion are susceptible to repeated acute exacerbations (AECOPD) [5], 

which accelerates the decline of lung function and increase the rates 
morbidity and mortality [6]. COPD exacerbations also significantly 
boost inflammatory mediators such as c-reactive protein [7], IL-6 [8], 
and TNF-α levels [9], for which, a variety of anti-inflammatory medi
cations targeting primary inflammatory pathways have been developed 
to date, though with a wide range of side effects and adverse reactions. 
Inhaled corticosteroids (ICS) are linked to an increased risk of oral 
candidiasis, hoarseness, skin bruising, and pneumonia [10], as well as 
increased incidence of hip and upper extremities fractures in high dos
ages [11]. According to the GOLD 2018 study, although bronchodilators 
are used to ameliorate symptoms, using short-acting bronchodilators on 
a regular basis is not advisable [12]. Accordingly, drugs that target 
cAMP-phosphodiesterase (PDE) signaling pathway have recently gained 
particular attention for the treatment of COPD [13]. There are at least 11 
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different families of PDE enzymes in mammals, encoding more than 50 
isoforms [14], some of which show tissue-specific expression. PDE11A3, 
PDE7B2, and PDE11A4 are expressed specifically in the testis and 
prostate tissues [15,16], while PDE3, PDE4, and PDE7 are specific to 
lungs [17,18]. These gene families have been classified according to 
their functional characteristic such as affinities for cAMP and cGMP, 
inhibitor sensitivity, response to specific effectors, and mechanism of 
regulation [4]. cAMP and cGMP modulate several intracellular signaling 
pathways, thus playing a pivotal role in the regulation of different 
physiologic processes, including apoptosis, cell proliferation, inflam
mation, immune response, and bone remodeling [4]. Conversely, the 
inhibition of cAMP and cGMP biological effects by PDEs seems to be a 
pathogenic mechanism involved in the onset and maintenance of 
different pathological states, including COPD, depression, diabetes, 
erectile dysfunction, inflammatory bowel diseases (IBD), and psoriatic 
arthritis [19]. Therefore, as drugs targeting the cAMP-PDE signaling 
pathway may be effective in the treatment of COPD, a large number of 
studies have focused on targeting PDEs, particularly PDE4, as a novel 
treatment for COPD. These drugs have several effects on signaling 
pathways in various cells, including neutrophils, lymphocytes, macro
phages, and epithelial cells [20,21]. On the other hand, cAMP plays a 
key role in balancing the microbiome content and mucosal immune 
system. The microbiome subpopulations ferment fiber rich nutrients and 
produce short-chain fatty acids such as butyrate and acetate and thus 
increase cAMP levels that in turn, regulate the mucosal immune system 
to reach a homeostasis in the body that can dysregulate through any 
infection or antibiotic administration. Therefore, co-administration of 
PDE inhibitors is recommended for the treatment and control of in
flammatory diseases such as COPD [22], despite considerable side ef
fects in case of PDE4 inhibitors [23,24]. This review aims to evaluate 
data on cAMP-PDE signaling pathway and PDE4 inhibitors mechanism 
of action to elucidate the efficacy of targeting cAMP-PDE signaling 
pathway as a promising therapeutic strategy in COPD patients. 

2. Role of cAMP-PDE signaling pathway in COPD pathogenesis 

Although a number of PDE inhibitors are used in clinical practice 
(Table 1), PDE-4 is the major therapeutic target in respiratory diseases, 
including COPD and asthma [24–28]. As previously mentioned, PDE-4 is 
the predominant isoform involved in the catabolism of cAMP that reg
ulates the inflammatory responses in several cells. 

As a second messenger molecule, cAMP is a critical component in 
metabolic regulation. The E class of G Protein-Coupled Receptors 
(GPCRs) is tightly regulated by cAMP [40]. Currently, it has been found 
that this ubiquitous second messenger molecule is stimulated in 
response to a multitude of extracellular and intracellular stimuli to 
trigger a mass of downstream biochemical and signaling pathways, 
including PKA, AMPK, and Epac signaling modules. These three major 
signaling pathways are involved in the regulation of inflammation and 
energy metabolism [41,42]. The final cellular concentration of cAMP 
depends on several parameters, including energy metabolism and ac
tivity of PDEs. A normal concentration of cAMP suppresses key in
flammatory responses. However, augmented level of PDEs hydrolyzes 
the cAMP to its inactive form, AMP, which leads to the decline in cAMP. 
Finally, decreased amount of cAMP leads to the activation of down
stream inflammatory signaling pathways [23,41]. Since an abnormal 
inflammatory response to noxious irritants is a critical hallmark of 
COPD, efforts to treat COPD patients have been focused on blocking 
inflammation enhancers. Inhaled corticosteroids (ICS) are 
anti-inflammatory drugs that decrease the transcription of 
pro-inflammatory genes such as NF-κB genes in COPD patients [43]. 
Furthermore, PDE inhibitors have recently introduced as 
anti-inflammatory regulators with demonstrated anti-exacerbation ca
pabilities in COPD [44]. PDE inhibition raises cAMP concentrations in 
inflammatory cells, resulting in inflammation suppression, smooth 
muscle relaxation, bronchodilation, and sensory nerve modulation [14, 

45,46]. 
PDE4 is the most common type of PDE in COPD-related inflamma

tory cells, and PDE4A4 isoform has significantly different expression 
levels in COPD patients’ macrophages [47]. As macrophages are the 
hallmark of inflammation in COPD, and PDE4 inhibitors are cost effec
tive drugs, PDE signaling pathway is an appropriate target in the war 
against COPD [48,49]. Roflumilast (a PDE4 inhibitor) suppresses severe 
skeletal muscle wasting and sputum neutrophilia in COPD patients [50, 
51]. A clinical trial comprising more than 4000 COPD patients demon
strated that Roflumilast reduced both moderate and severe COPD ex
acerbations by 12% and 16%, respectively. The efficacy of Roflumilast is 
positively associated strongly with higher count of eosinophils [52]. 
Moreover, the numbers of neutrophils are also associated with severity 
and frequency of COPD exacerbations [53–56]. But despite its efficacy, 
the side effects reported with Roflumilast have limited the use of this 
drug [57]. It seems that inhibition of PDEs, especially PDE4, to reduce 
inflammatory responses and exacerbation shows a promising treatment 
in COPD patients with acceptable side effects [58]. This necessitates 
detecting key regulators of cAMP concentration in PDE signaling path
ways (Fig. 1). 

2.1. cAMP-PKA-RhoA signaling axis 

PKA (protein kinase A) is a cAMP effector. Despite unchanged 
expression level in the lung tissue of COPD patients, PKA activation by a 
selective cAMP-dependent PKA activator (i.e., 6-Bnz-cAMP) can 
completely reverse the IL-8 expression levels induced by cigarette smoke 
in the airway smooth muscle cell line [59]. Therefore, high levels of IL-8 
in the serum of COPD patients can be a sign of attenuated PKA activity 
subsequent to reduced cAMP [60–62]. Normally, higher levels of cAMP 
activate PKA which, in turn, suppress the pro-inflammatory effector 
RhoA (a small G-protein). But, RhoA is significantly hyperactive in 
proximal pulmonary arteries of COPD patients compared to non-smoker 
healthy controls [63]. In addition, the GTP-RhoA family (ROCK-I or 
ROCKb and ROCK-II or ROCKa) is involved in endothelial dysfunction in 
both healthy smokers and COPD patients. The activity of RhoA can 
potentially activate NF-kB signaling pathway mediating COPD inflam
mation both at stable and exacerbation COPD phases [64–66]. Induction 
of the NF-kB pathway results in the secretion of several 
pro-inflammatory cytokines, chemokines, and proteases such as IL-1B, 
IL-18, IL-8, IL-6, TNF-α, MMP2, and MMP9 in COPD [62,66,67]. Be
sides, RELB, a subunit of NF-kB that is a suppressor of cigarette-smoke 
induced inflammation [68], is significantly downregulated in patients 
at acute exacerbation of AECOPD compared to stable patients (Fig. 2) 
[69]. 

Matrix Metalloproteinases (MMPs) play pivotal roles in lung devel
opment and repair processes [70]. This zinc-dependent protease family 
consists of 24 endopeptidases that are important in lung inflammatory 
diseases such as asthma and COPD. The imbalance of protease (MMPs) 
and antiproteases (TIMP-1) is the hallmark of COPD that involved in 
immune cell infiltration and migration and tissue destruction. For 
instance, serum level of MMP1 is significantly higher in COPD patients 
compared to healthy control [70]. Accordingly, blockade of MMP1 using 
Duloxetine, a selective serotonin reuptake inhibitor, resulted in 
decreased levels of TLR4 and IL8, and prevented alveolar tissue damage 
[71]. MMP-9, another member of MMP family that acts as gelatinase and 
degrades collagen IV, fibronectin, and plasminogen is believed to 
initiate angiogenesis [72]. Under hyperoxia conditions, the expression 
levels (both in mRNA and protein) and the activity of MMP-9 are 
decreased, and TIMP-1 protein level is elevated, both of which may lead 
to lung remodeling [73]. Nevertheless, under hypoxia conditions, 
MMP-9 and MMP-2 levels have been shown to be upregulated subse
quent to tissue ischemia, which is involved in neoangiogenesis initiali
zation through degrading nonfibrillar collagens [74–76]. MMP-9 level is 
also elevated in chronic bronchitis and emphysema, which can increase 
the risk of COPD development [76]. The MMP-9 expression level is 
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Table 1 
List of clinical trials assessing the efficacy of different PDE inhibitors in COPD. (COPD: Chronic Obstructive Pulmonary Disease, PDE: Phosphodiesterases, BID: 
abbreviation for “bis in die” which in Latin means twice a day.)  

1 NCT Numbera Drug used last update condition Mechanism of action Dosing Phases Enrollment Publication 

2 NCT02097992 Roflumilast November 
2017 

Airway Blood Flow as 
an Expression of 
Airway Inflammation 
in COPD 

inhibition of the PDE(4) 
isoenzyme with a 
consequent increase of 
cyclic adenosine 
monophosphate 

500ug daily, 
followed by a 4 
week 

Phase 1 
Phase 2 

11 
participants 

[29] 

3 NCT01973998 Roflumilast March 
2020 

COPD inhibition of the PDE (4) 500 μg tablet 
daily for 180 
days 

Phase 3 68 
participants 

– 

4 NCT01313494 Roflumilast February 
2017 

COPD inhibition of the PDE (4) 500 μg, tablet, 
oral, once daily 
for up to 24 
weeks 

Phase 3 626 
participants 

[30] 

5 NCT01572948 Roflumilast October 
2015 

Inflammation in COPD inhibition of the PDE (4) – Not 
Applicable 

27 
participants 

[31] 

6 NCT00242320 Roflumilast December 
2016 

Patients Older Than 40 
Years With COPD 

inhibition of the PDE (4) 500 μg, tablet, 
oral, once daily 
for 12 weeks 

Phase 3 551 
participants 

– 

7 NCT00062582 Roflumilast November 
2016 

Pulmonary Function 
and Respiratory 
Symptoms in Patients 
With COPD 

inhibition of the PDE (4) 500 mcg Daily 
for 12 weeks 

Phase 3 1000 
participants 

– 

8 NCT01509677 Roflumilast November 
2019 

COPD inhibition of the PDE (4) 500 μg tablets 
once daily 

Phase 3 158 
participants 

[32] 

9 NCT00297102 Roflumilast January 
2017 

COPD inhibition of the PDE (4) 500 mcg, once 
daily, oral for 56 
weeks 

Phase 3 1523 
participants 

[33] 

10 NCT01745848 Roflumilast August 
2016 

Bone Metabolism and 
Endothelial Function in 
COPD 

inhibition of the PDE (4) 500 μg daily for 
30 days 

Phase 4 26 
participants 

– 

11 NCT02165826 Roflumilast April 2017 Evaluation of 
Tolerability and 
Pharmacokinetics of 
Roflumilast, 250 μg and 
500 μg, as add-on to 
Standard COPD 
Treatment to Treat 
Severe COPD 

inhibition of the PDE (4) 250 μg and 500 
μg OD for 12 
weeks 

Phase 3 1323 
participants 

[34] 

12 NCT00103922 Cilomilast October 
2016 

COPD inhibition of the PDE (4) ARIFLO® (15 
mg BID) for 24 
weeks 

Phase 3 600 
participants 

– 

13 NCT00671151 Theophylline May 2008 COPD It acts as a competitive 
nonselective 
phosphodiesterase 
inhibitor (inhibiting type 
III and type IV 
phosphodiesterase), which 
increases the 
concentration of 
intracellular cAMP 

100 mg bid for 3 
months 

Not 
Applicable 

35 
participants 

[35] 

14 NCT00299858 Theophylline July 2017 COPD competitive nonselective 
phosphodiesterase 
inhibitor (inhibiting type 
III and type IV 
phosphodiesterase) 

10 mg/kg, 
titrated to blood 
levels between 
55 and 110 
μmol/L, for a 
period of 4 
weeks. 

Phase 2/ 
Phase 3 

24 
participants 

[36] 

15 NCT02261727 Theophylline August 
2021 

Theophylline and 
Steroids in COPD 

competitive nonselective 
phosphodiesterase 
inhibitor (inhibiting type 
III and type IV 
phosphodiesterase) 

Theophylline 
100 mg 1 tab 
twice daily and 
Prednisone 
placebo 1 tab 
once daily 

Phase 4 1670 
participants 

[37] 

16 NCT01599871 Theophylline August 
2017 

Low-dose Theophylline 
as Anti-inflammatory 
Enhancer in Severe 
COPD 

competitive nonselective 
phosphodiesterase 
inhibitor (inhibiting type 
III and type IV 
phosphodiesterase) 

100 mg, twice a 
day for 52 Weeks 

Phase 3 70 
participants 

[38] 

17 NCT03984188 Theophylline 
ER 

May 2022 Management of 
Biomass-Associated 
COPD 

competitive nonselective 
phosphodiesterase 
inhibitor (inhibiting type 
III and type IV 
phosphodiesterase) 

200 mg 
extended release 
(ER) low-dose 
theophylline 
taken orally 
daily 

Phase 3 110 
participants 

[39] 

(continued on next page) 
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significantly higher in COPD patients in comparison with controls [77]. 
The MMP-9 overexpression is also involved in AECOPD than healthy 
controls and asthmatic patients [78]. The MMP-9 expression level is 
simultaneously correlated negatively with lung function and positively 
with smoking index, suggesting a link between higher smoking index, 
higher MMP-9 expression level, and lower pulmonary function [67]. The 
mean total activity of MMP-9 and MMP-8 is significantly higher in the 
sputum of COPD patients compared to adjusted healthy controls [79]. 
Taking all these data together indicate that MMPs’ higher expression has 
been correctly considered as a key factor for development of COPD. 
According to the basic function of MMP-9 in normal alveolarizations 

[73,80], in addition to damaging lung parenchyma alveoli cell wall 
leading to emphysema, the MMP-9 expression and activity may increase 
for repairing damaged alveoli either. cAMP- activated PKA also interacts 
with AMPK (AMP-activated protein kinase) which normally suppresses 
Janus kinase (JAK)–signal transducer and activator of transcription 
(STAT) signaling pathway through JAK phosphorylation and inhibits 
inflammation [81]. 

2.2. cAMP-Epac signaling axis 

The exchange protein directly activated by cAMP (Epac) was the 

Table 1 (continued ) 

1 NCT Numbera Drug used last update condition Mechanism of action Dosing Phases Enrollment Publication 

18 NCT02340520 Theophylline 
and 
Roflumilast 

June 2018 Enhancement of 
Corticosteroid Efficacy 
in COPD 

inhibition of the PDE (4) Theophylline for 
one week, 
followed by the 
addition of 
Roflumilast for a 
further one 
week. 

Phase 3 13 
participants 

–  

a ClinicalTrials.gov Identifier. 

Fig. 1. A) The E class of G Protein-Coupled Receptors (GPCRs) is tightly regulated by cAMP. PDE causes the deactivation of AMP and the conversion of cAMP to 
AMP. In response to a wide range of stimuli, cAMP is universally produced and controlled, influencing a wide range of downstream biochemical and signaling 
pathways, including PKA, AMPK, and Epac signaling modules, which modulates inflammatory responses. B) Increased cAMP levels trigger PKA, which then inhibits 
the pro-inflammatory effector RhoA (NF-κB pathway activator). In addition, endothelial dysfunction in individuals with COPD is related to the GTP-RhoA family 
(ROCK). C) Epac is a cAMP-sensitive guanine exchange factor (GEF) that connects members of the Ras superfamily including Rho, Rac, and Ras at the molecular level. 
Pro-inflammatory interleukins are less activated when Epac1 is activated by cAMP by altering many signaling pathways, such as PI3k/Akt, ERK, phospholipase D, 
and NF-κB. D) AMPK (AMP-activated protein kinase) interacts with cAMP- stimulated PKA to restrict the Janus kinase (JAK)-signal transducer and activator of 
transcription (STAT) signaling pathway and reduce inflammation. The oxidant-antioxidant balance is related to AMPK’s anti-inflammatory properties, and AMPK 
activation increases Nrf2 expression. Furthermore, AMPK regulates protein synthesis by activating tuberous sclerosis complex 2 (TSC2), suppressing mTORC1, and 
regulating autophagy via ULK1 (UNC51-like kinase 1). STAT3 may be blocked by both cAMP and AMPK triggered by cAMP, which inhibits the downstream in
flammatory pathways. E) The effect of symbiosis and dysbiosis in the downstream signaling pathways and their effect on cAMP turn-over. 
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answer to how several cAMP-mediated cellular functions happen in a 
PKA-independent manner. Scientists came up with Epac by looking for 
cAMP-dependent but PKA-insensitive activation of Rap1 small GTPase 
(RAP1A, a member of the RAS oncogene family) in 1998 [82,83]. Epac, 
a cAMP-sensitive guanine exchange factor (GEF) catalyzing GTP/GDP 
exchange, serves as a molecular link between Ras superfamily members 
such as Rho, Rac, and Ras [84]. Epac1 (cAMP-GEFI), Epac2 (cAMP-
GEFII), and GEFs of Rap1 and Rap2 regulate calcium handling, cell 
migration, differentiation, proliferation, and inflammatory responses 
through targeting various downstream targets, including phospholipase 
D, Phospholipase C-ε, phosphoinositide 3-kinase dependent 
protein-kinase B (PKB)/Akt, Extracellular signal-regulated kinases 
(ERK1/2), and NF-κB [85]. Since Epac hurdles the induction of 
pro-inflammatory molecules (Fig. 1), decreased expression level of 
Epac1 in lung tissue of COPD patients can resulted in NF-κB activation 
that is crucial for inducing IL-8 production in response to cigarette 
smoke extract (CSE) [59,86,87]. Increased activation of PI3k/Akt 
signaling pathway has been shown in the airway epithelial of COPD 
patients [88]. The expression levels of phosphatase and tensin homolog 
deleted from chromosome 10 (PTEN) decrease significantly in COPD 
patients. PTEN is a negative regulator of PI3K, a convertor of 
phosphatidylinositol-3, 4, 5-phosphate (PIP3) to phosphatidylinositol-4, 
5-phosphate (PIP2). 

Activated Akt phosphorylates the forkhead transcription factor 
FOXO3a and provokes its accumulation, ubiquitination, and degrada
tion in the cytoplasm [89]. Accordingly, in COPD patients’ bronchial 
epithelial cells, reduced expression of nuclear FOXO3a results in a 
higher IL-8 expression [88]. Based on CSE-treated human bronchial 
cells, FOXO3a normally inhibits NF-кB binding to the IL-8 promoter 
through interacting with the RelA/p65 component of NF-κB in the nu
cleus [90]. Following the activation of the PI3K/Akt signaling pathway 
inflammatory cytokines are produced with lower levels of PTEN and 
FOXO3A expression levels that leads to greater levels of IL-6 and IL-8 
cytokines, respectively (Fig. 3). 

2.3. cAMP-AMPK signaling axis 

In COPD pathogenesis, AMPK plays a critical role through modu
lating inflammatory signaling pathways, mitochondrial impairment, 
metabolic irregularities, and senescence. AMPK has three subunits, 

including the catalytic subunit α (α1 & α2), and two regulatory subunits 
β (β1, β2) and γ (γ1, γ2, γ3) [91]. AMPK α1 genetic deletion under 
cigarette smoke and poly conditions (I:C) lead to elevated airway in
flammatory responses and emphysema in mice [92]. While AMPK ac
tivators such as 5-aminoimidazole-4-carboxamide ribonucleotide 
(AICAR) and metformin reduce the release of IL-6 and IL-8 inflammatory 
mediators in human lung epithelial cell lines, AMPK inhibitors such as 
THE compound C increase their release [93]. In mouse model of COPD, 
prophylactic treatment with AICAR and compound C resulted in lower 
level of CXCL1 and higher level of CCL2 in BAL fluid [93]. In mice 
intratracheally injected with CSE, metformin decreased not only CXCL1 
and CCL2 but also IL-6. This anti-inflammatory effect of AMPK is linked 
to oxidant-antioxidant balance where AMPK activation causes higher 
Nrf2 expression [94]. Nrf2 and NFE2L2 (found in rodents and human, 
respectively) are critical lung defensive mechanisms against oxidative 
stress [95,96]. Moreover, AMPK is involved in controlling protein syn
thesis through activation of tuberous sclerosis complex 2 (TSC2), 
inhibiting the mTORC1 (Fig. 1), and regulating autophagy by ULK1 
(UNC51-like kinase 1) [97,98]. Therefore, AMPK pathways may offer 
novel prospective therapeutic possibilities for COPD. However, under 
stress conditions, epithelial cells and macrophages in patients with 
COPD produce CSE, which activates AMPK, leading to the production of 
inflammatory mediators [99,100]. AMPK activation in inflammatory 
conditions can vary depending on the type of activated tissue and the 
type of disease; therefore, more research is needed to understand this 
important pathway in a variety of diseases, including COPD. 

2.4. Inhibition of AMPK through inactived PKA 

The mRNA expression level of STAT3 is 4 times higher in lung tissue 
of smokers COPD patients compared to healthy controls. The remaining 
STAT3 downstream genes are also moderately more expressed in COPD 
than in healthy controls [101]. The activated JAK/STAT signaling 
pathway plays a pathological role in inflammatory diseases such as 
atherosclerosis [102], rheumatoid arthritis [103], and COPD [104]. The 
reason why PDE inhibitors, especially PDE-4 inhibitor Roflumilast, are 
highly effective in diminishing the frequency of COPD exacerbations 
may be due to HIF-1 signaling inhibition caused by the inactivation of 
STAT3 by cAMP second messenger, as declared in our network. 
mTORC1 (mammalian target of rapamycin complex 1), Transforming 
growth factor (TGF) β1, and IL-6 can also activate JAKs, all of which are 
significantly activated in COPD patients [61,105–107]. Activated JAKs 
can stimulate STAT3, as JAKs bound to IL-6 receptor signal transducing 
subunit (gp130) are activated following IL-6-receptor complex forma
tion and then stimulate STAT3 [108,109]. HIF-1 (Hypoxia inducible 
factor 1) can be stimulated by significantly high expression levels of 
STAT3 in smokers and nonsmokers with COPD. Although HIF-1 

Fig. 2. PDE inhibitor drugs prevent the conversion of cAMP to AMP, thereby 
activating cAMP. Activation of PKA is one of the downstream pathways of 
cAMP, which can inactivate and reverse many inflammatory pathways involved 
in COPD. Suppressing the pro-inflammatory factor RhoA as a result of inhibiting 
the inflammatory pathways of p38 MAPK and finally the transcription factor 
NFKB, leads to inhibiting the release of many inflammatory factors such as IL- 
1B, IL-18, IL-8, IL-6, TNF-α, MMP2, and MMP9. PKA also leads to phosphory
lation and inhibition of JAK-STAT3 and mTORC1 through AMPK, which can 
prevent the progress of inflammation by cytokines such as IL-22, IL-17 and IL- 
22. The activation of AMPK can also lead to the activation of FOXO family 
transcription factors, which will result in the inhibition of NFKB and pro- 
inflammatory factors. Finally, the blocking of the HIF1 pathway and the inac
tivation of IL17 leads to a decrease in the concentration of MMPs, preventing 
tissue damage due to the overactivation of the immune system. 

Fig. 3. Epac1 is activated by the inhibition of PDEs and as a result the acti
vation of cAMP and leads to the inhibition of the PI3K/Akt pathway, which as a 
result of this inhibition and dephosphorylation of FOXO3 (activation) blocks 
NF-KB and other inflammatory factors caused by it. PTEN is a negative regu
lator of PI3K, converting phosphatidylinositol-3,4,5-phosphate (PIP3) to 
phosphatidyl-4,5-phosphate (PIP2), which results in the production of many 
pro-inflammatory factors such as IL6, IL1, IL-8 and TNFA are inhibited and 
inflammation is prevented. 
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expression has been shown to be lower in COPD patients than non-COPD 
patients, because more than half of non-COPD controls had lung cancer, 
it was unreliable [102]. Higher expression levels of HIF-1α correlate 
with poor prognosis in lung cancer patients [110]. However, following 
ex vivo hypoxia condition, induction levels of HIF-1α and its down
stream VEGF (vascular endothelial growth factor), and subsequently, 
the activity of HIF-1α signaling pathway decrease dramatically in 
PBMCs of COPD patients [111]. However, both HIF-1α and VEGF 
expression increased in the muscles of COPD patients [112], which can 
be due to lower gas exchange in the lung of COPD patients. The 
following downstream molecule of HIF-1α is the retinoic-acid-related 
orphan receptor (ROR) gamma t (ROR gamma t), which is the most 
critical component for the development of IL-17 producing T cell, and is 
highly expressed in lung tissue of COPD patients [113,114]. Accord
ingly, expression levels of IL-17A and its correlating cytokines IL-22 and 

IL-23 are increased dramatically in the peripheral [115] and epithelium 
of lungs in end-stage COPD patients [116]. 

3. PDE inhibitors in treatment of COPD 

3.1. Corticosteroid resistance in COPD 

Inhaled corticosteroids (ICSs) act by binding to the cytoplasmic 
glucocorticoid receptor (GR) and produce a complex that penetrates the 
nucleus and prevents transcription factors that activate multiple in
flammatory genes [43]. In addition to reducing the frequency of exac
erbations, ICSs improve quality of life, lung function, and symptoms in 
COPD cases with FEV1<50% predicted [117,118]. However, long-term 
oral immunotherapy is not recommended in COPD patients due to 
several side effects, including hoarseness of voice, oral candidiasis, skin 

Table 2 
Genes involved in PDE signaling in COPD in different biological samples.  

Biological Sample Gene Difference Case Control P-Value Ref(s) 

ADIPOSE TISSUE CD40 Up AECOPD COPD (Stable) 0.013 [144] 
IKBKAP 0.014 
MADD 0.011 
MAP2K4 0.017 
MAP2K4 0.002 
MAPK8 0.002 
MAPK8 0.001 
NFKBIA 0.021 
TRAF2 0.017 

BLOOD CCR2 Up COPD Healthy control 0.001 [145] 
DNTTIP2 Down COPD 0.001 
GDAP1 Down COPD 0.01 
IL6R Up COPD 0.001 
LIPE (HSL) Down COPD 0.01 
MMP2 Up AECOPD 0.05 [146] 
MMP2 Up AECOPD COPD (Stable) 0.05 
MyD88 Up COPD Healthy control 0.01 [147] 
PPP2CB Down COPD 0.01 [145] 
RASSF2 Up COPD 0.001 
WTAP (Wt1 Associated protein) Up COPD 0.001 

LUNG BIOPSY FOXP3 Down COPD Smoker/Non-smoker <0.05 [113] 
IL6 Up AECOPD (Phlegm-dampness syndrome) AECOPD (Phlegm-heat syndrome) 0.01 [148] 
PPARG Down COPD Non-Smoker 0.001 [149] 
RAPGEF3 (Epac1) Down COPD Healthy control 0.05 [59] 
RHOA activity Up COPD Healthy control 0.001 [63] 
RHOA Expression Up COPD Healthy control 0.5 
RORG Up COPD Smoker/Non-smoker <0.05 [113] 
STAT3 Up COPD Healthy control 0.05 [101] 
TGFB1 Up COPD Healthy Non-smoker 0.01 [107] 
TNF Up AECOPD (Phlegm-heat syndrome) AECOPD 0.01 [148] 

PLSAMA CXCL8 Up AECOPD Healthy 0.05 [9] 
IL6 Up AECOPD COPD (Stable) 0.001 [150] 
MMP9 Down AECOPD (Stage III&IV) Healthy control 0.077 [151] 
MMP9 Down COPD (Stage III&IV) Healthy control 0.077 

SERUM IFNG Up AECOPD COPD (Stable) 0.05 [112] 
Healthy control 0.05 

IL17A Up COPD Healthy Smoker 0.00302 [60] 
IL1A Up COPD (Stable) Healthy smoker 0.00096 
IL2 Down AECOPD Healthy control 0.014 [152] 
TNF Up COPD (Stable) 0.001 [62] 

SPUTUM CXCL8 Up Healthy 0.05 [9] 
IL18 Up COPD (Stable) Healthy control 0.01 [153] 
IL18 Up AECOPD COPD (Stable) 0.5 
IL1B Up Healthy (Smoker&nonsmoker) 0.05 [154] 
IL1B Up COPD (Stable) 0.05 
IL6 Up Healthy control 0.05 [105] 
TNF Up Healthy 0.05 [9] 

IKBKAP: inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex-associated protein, MADD: MAP Kinase Activating Death Domain, MAP2K4: 
Mitogen-Activated Protein Kinase 4, NFKBIA: NFKB Inhibitor Alpha, TRAF2: TNF receptor-associated factor 2, CCR2: C–C Motif Chemokine Receptor 2, DNTTIP2: 
Deoxynucleotidyltransferase Terminal Interacting Protein 2, MMP2: Matrix Metallopeptidase 2, MYD88: Innate Immune Signal Transduction Adaptor, PPP2CB: 
Protein Phosphatase 2 Catalytic Subunit Beta, RASSF2: Ras Association Domain Family Member 2, FOXP3: Forkhead Box P3, PPARG: Peroxisome proliferator- 
activated receptor gamma, Epac: Exchange protein directly activated by cAMP, RHOA: Ras Homolog Family Member A, RORG: RAR-related orphan receptor 
gamma, STAT3: Signal Transducer And Activator Of Transcription 3, TGFB1: Transforming Growth Factor Beta 1, IFNG: Interferon Gamma, CXCL8: C-X-C Motif 
Chemokine Ligand 8. 
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bruising, and a higher risk of pneumonia during long-term administra
tion, especially in the case of fluticasone propionate [117,119–121]. 
Fluticasone also causes higher rates of morbidity in COPD patients 
compared to other ICSs as well as no ICS therapy [122]. Using cortico
steroids also exacerbates muscle dysfunction in COPD [123]. Further
more, not only corticosteroids are less effective in COPD patients than in 
asthmatics, but also COPD responders sometimes lose responsiveness to 
the anti-inflammatory action of corticosteroids [124,125]. Corticoste
roid resistance in COPD is mediated by inflammatory components such 
as IL-17, p38 MAPK, PI3K/Akt, and JAK/STAT signaling pathways 
[126–129]. Blocking p38 MAPK with the GW856553 inhibitor restores 
the suppressive effect of dexamethasone on IL-8 and IL-6 in PBMCs of 
COPD patients [128]. Unfortunately, corticosteroids have little or no 
effect on modulating chronic inflammation in COPD. ICSs are prescribed 
to 42–86% of COPD patients as mono- or combination therapy regard
less of exacerbation risk and COPD severity [130–132]. Because of the 
predominance of eosinophilic bronchial inflammation in this group, ICS 
therapy may be more effective for asthma-COPD syndrome (ACOS) pa
tients [133,134]. While ICS/LABA treatment has already been suggested 
by GOLD for patients with ≥2 exacerbations, the combination is 
currently proposed for patients with exacerbating ACOS. In addition, 
PDE-4 inhibitor Roflumilast should be prescribed for chronic bronchitis 
[134,135]. Therefore, comprehensive molecular and clinical studies on 
COPD inflammation signaling pathways are demanded to provide phy
sicians with either novel drugs or strategies to improve ICS efficacy 
(Table 3). Much data is available demonstrating the effectiveness of 
long-acting bronchodilators, up to 20–30% with long-acting β2-agonist 
(LABA) and 35% with long-acting muscarinic antagonist (LAMA), for 
exacerbation reduction in COPD patients. Interestingly, combining 
LABA and LAMA resulted in a risk reduction compared with LAMA 

alone, and more importantly, a significant reduction compared with 
LABA/ICS [136–139]. However, there is growing evidence indicating 
that not all COPD patients respond to ICS treatment. Given the potential 
for pneumonia and other important side effects of ICS, emerging data 
have revealed that it may be possible to withdraw the ICS component in 
certain COPD patient groups provided that an adequate bronchodilation 
is in place (Table 2) [139–143]. 

3.2. The impact of Roflumilast in COPD 

A hallmark feature of COPD exacerbations is a marked increase in 
systemic inflammatory mediators [150,155–157] which are appropriate 
therapeutic targets. Roflumilast, the only FDA-approved oral PDE4 in
hibitor, blocks cAMP hydrolysis to AMP in inflammatory cells, and 
thereby raises intracellular cAMP level. cAMP activates 
anti-inflammatory signaling pathways that reduce cytokines production, 
neutrophil inflammatory mediators, and cell surface indicators of 
numerous cell types, allergen, and lipopolysaccharide-induced inflam
mation, and finally result in fewer exacerbations [158–162]. The fre
quency of exacerbations requiring corticosteroids can be reduced by 
Roflumilast in moderate to severe COPD patients suffering from chronic 
bronchitis [33]. In addition, Roflumilast results in a decreased rate of 
exacerbation-induced hospitalization and adverse events in high risk 
COPD patients despite ICS and LABA therapy [163]. Furthermore, it 
improves forced expiratory volume (FEV1) and lowers hyperinflation 
[164]. Roflumilast can also be used with corticosteroids. In comparison 
to dexamethasone alone, coadministration of Roflumilast with dexa
methasone causes significant anti-inflammatory effects on CD8+ T cells 
isolated from COPD patients through hindering releasing IL-2 and IFN-γ 
[165]. Nonetheless, Roflumilast caused adverse effects as well as an 

Table 3 
Pharmacokinetics difference between the PDE inhibitor drugs.  

Drug name Absorption Metabolism Route of elimination Half-life Possible adverse reactions 

Roflumilast After 500mcg 
measurements, the 
bioavailability of 
roflumilast is 
approximately 80%. 
Greatest plasma 
concentrations are come 
to in 0.5–2 h [180]. 

Roflumilast is metabolized to 
roflumilast N-oxide, the active 
metabolite of roflumilast in 
humans, by CYP3A4 and 
CYP1A2 [180,181]. 

Roflumilast is excreted 70% 
in the urine as roflumilast N- 
oxide [181]. 

Taking after oral 
organization, the plasma 
half-lives of roflumilast and 
roflumilast N-oxide are 17 h 
and 30 h, individually [182]. 

Headache, gastrointestinal 
disorders, dizziness, 
palpitations, lightheadedness, 
clamminess, arterial 
hypotension and weight loss 
[183]. 

Cilomilast Totally absorbed taking 
after oral organization and 
has unimportant first-pass 
digestion system, 
bioavailability is reliably 
near to 100% [184]. 

Plasma clearance (around 2 L/h) 
is nearly completely metabolic, 
through numerous parallel 
pathways. The most 
inexhaustible metabolite, 
shaped by the activity of 
cytochrome P450 2C8, has 
<10% of the movement of the 
parent molecule [185]. 

Most of the drug is excreted 
in the urine (~90%) and 
faeces (6–7%) with 
unchanged cilomilast 
accounting for less than 1% 
of the administered dose 
[185]. 

Its terminal elimination half- 
life is around 6.5 h and 
relentless state is quickly 
accomplished with twice- 
daily administration [185]. 

Gastrointestinal adverse 
events, nausea, vomiting, and 
headache [186]. 

Theophyline Theophylline is rapidly 
and completely absorbed 
after oral administration 
in solution or immediate- 
release solid oral dosage 
form [187]. 

Biotransformation takes put 
through demethylation to 1- 
methylxanthine and 3-methyl
xanthine. Approximately 6% of 
a theophylline dosage is N- 
methylated to caffeine. Caffeine 
and 3-methylxanthine are the as 
it were theophylline metabolites 
with pharmacologic activity 
[188]. 

Renal excretion of unaltered 
theophylline in neonates 
sums to almost 50% of the 
dosage, compared to 
approximately 10% in 
children more seasoned than 
three months and in grown- 
ups [187]. 

Serum half-lives ranges from 
approximately 3–12.8 
(normal 7–9) hours in 
something else sound, 
nonsmoking asthmatic 
grown-ups, from almost 
1.5–9.5 h in children, and 
from around 15–58 h in 
untimely newborn children 
[187]. 

Chest pain or discomfort, 
dizziness 
fainting 
fast, slow, or irregular 
heartbeat 
increase in urine volume 
lightheadedness 
persistent vomiting 
pounding or rapid pulse 
seizures 
shakiness 
[187] 

ensifentrine 
(RPL554) 

Not Available metabolized by CYP2C9 [189] Not Available Not Available According to the information 
obtained from the clinical trial 
studies, the side effects are 
very few compared to the 
previous PDA inhibitor drugs, 
except for rare cases of cough, 
shortness of breath, headache 
and liver problems [189].  
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unexpected pharmacological response in these surveys [30,33]. Roflu
milast therapy is now discontinued due to a variety of adverse effects, 
including diarrhea, nausea, pneumonia, headache, and carcinogenic risk 
[163,166–168]. Weight loss is another common systemic side effect of 
Roflumilast that is associated with higher primary BMI and is thought to 
be a consequence of elevated cAMP effects on regulating signaling 
pathways of lipolysis [44,169]. According to FDA report, Roflumilast 
therapy is also associated with more psychiatric symptoms than placebo 
[170]. In fact, in comparison with other inhaled medications, PDE4 
inhibitors have more side effects in COPD, in a dose dependent manner 
[23]. Compared with 500 μg/day dose of Roflumilast, 250 μg/day reg
imens correlated with much less side effects, including nausea, vomit
ing, and diarrhea, lack of appetite, gastrointestinal difficulties, and 
cessation [171–173]. The severity of COPD also affects the efficacy and 
side effects of Roflumilast. The beneficial effects of Roflumilast are 
higher in patients with a prior history of an acute exacerbation induced 
hospitalization [174,175]. In terms of health status and quality of life 
scores, patients with moderate-to-severe frequent exacerbations also 
experience greater benefit of Roflumilast therapy than patients with 
non-frequent exacerbations [176]. Furthermore, as with 
ICS-responsiveness, Roflumilast efficacy is positively associated with 
eosinophil count in COPD patients [52], a criterion for the selection of 
appropriate cases. To avoid side effects, much lower dosages of a drug 
can be used if multiple drugs with distinct targets or drugs with different 
pharmaceutical actions are administered [177]. Ensifentrine, a 
bi-functional PDE3/PDE4 inhibitor, causes an apparent synergic effect. 
It was previously known as Ensifentrine [LS-193,855; 9,10-dimethoxy-2, 
4,6-trimethylphenylimino)-3-(N-carbamoyl-2-aminoethyl)-3,4,6,7-tet
rahydro-2 H-pyrimido- [6,1-a] iso. While the exact mechanism of this 
effect is unclear, it is thought to be due to different pools of cAMP 
regulated by these two isozymes; PDE3 is predominantly located in a 
particulate cellular fraction and PDE4 is predominantly cytosolic 
(Table 3) [178,179]. Considering PDE4 inhibitors as rare, effective, and 
long-lasting therapies in COPD compared to early stage and short-term 
therapies (i.e., bronchodilators), further investigations are required to 
come up with an appropriate strategy to make PDE4 inhibitors, espe
cially Roflumilast, side effects ignorable. 

4. The effect of PDE inhibitors on different cells in COPD 

4.1. Neutrophils 

Neutrophil elevation is associated with chronic inflammation in 
COPD patients. A further enhancement in neutrophil frequency also 
occurs in the peripheral blood of COPD patients based on the disease 
severity [7,190]. Nonetheless, there is a discrepancy in the neutrophil 
count in COPD patients’ BAL and sputum [191] that can be due to dif
ferences in the disease stage or applied experimental techniques. In 
response to higher levels of chemoattractants such as IL-8 and IL-6, 
neutrophils infiltrate lung tissue and secreting neutrophil elastase 
(NE), oxidative reaction species, and MMPs to contribute in local tissue 
damage [192], which results in emphysema and reduced lung function. 
In terms of COPD therapeutic interventions, it seems that neutrophils 
play a decisive role. While the inefficacy of glucocorticoids [193,194] is 
linked to neutrophil dominance in COPD [195], PDE4 inhibitors, 
ASP3258, and Roflumilast (but not prednisolone) are effective. They 
significantly inhibit human neutrophil chemotaxis and superoxide pro
duction [196], which finally lead to neutrophil migration suppression. 
Roflumilast reduces the rate of neutrophils (35%) and eosinophils (50%) 
in sputum of COPD patients [177]. Roflumilast’s reversed inhibitory 
mechanism on CXCL1-induced neutrophil migration by the exchange 
factor directly activated by cAMP1 (Epac1) specific (CE3F4) and 
pan-Epac (ESI-09) inhibitors shows that Epac1 is a mediator of Roflu
milast’s anti-neutrophil migration impact [197]. PDE7 exists in human 
peripheral blood and airway neutrophils [198]. In contrast to Roflumi
last that significantly inhibits neutrophil degranulation, PDE7 

isoenzyme selective inhibitor PF 0332040 had no inhibitory effect on NE 
from human peripheral blood neutrophils stimulated with FMLP 
(N-Formyl-methionyl-leucyl-phenylalanine) [18]. Due to higher level of 
TNF-α in the serum and sputum of COPD patients, the responsiveness of 
FMLP-induced neutrophils to a given stimulus or the integrin-mediated 
ability of neutrophils to adhere to human umbilical vein endothelial 
cells (HUVECs) improves. PDE4 inhibitors hinder not only hypersensi
tivity and neutrophil degranulation, but also inhibit neutrophil HUVEC 
adhesion through lowered secretion of NE, Myeloproxidase (MPO), and 
MMP-9 under both presence and absence of TNF-α [9,60,199]. There
fore, further studies are required on the mechanism of action of PDE 
inhibitors on neutrophils, as a biomarker of COPD, to deepen our un
derstanding of COPD pathogenesis and design novel therapeutic 
interventions. 

4.2. Macrophages 

According to the T-helper immune response, there are two main 
types of macrophages including macrophage 1 (M − 1) linked to Th1, 
and macrophage 2 (M − 2) linked to Th2. While the former plays role in 
the progression of inflammation, the latter is important in resolution and 
tissue remodeling [200,201]. Macrophages aggregate in the lung of 
frequent smokers and COPD patients. Due to the augmentation of 
circulating monocyte recruitment, they usually accumulate in the 
alveoli, bronchiole, and small airways. Elevated levels of chemokines 
such as CCL2 and CXCL1 in the sputum and BAL fluid of COPD patients 
attract circulating monocytes chemotactically [202]. In the lungs of 
young smokers, macrophages also accumulate in the bronchiolar region 
and cause bronchiolitis [203,204]. The higher numbers of airway 
macrophages correlate with COPD severity that can be explained partly 
by macrophage participation in the emphysema process [205]. Higher 
rates of inflammatory cells, including macrophages, lymphocytes, and 
neutrophils, have been significantly shown in the emphysematous lung 
tissues and airspaces of emphysema patients as well as heavy smokers. 
The highest number of inflammatory cells belongs to macrophages, 
indicating their possibly critical role in emphysema progression [206]. 
Since cytokine and chemokine production by BAL derived macrophages 
are lower, the alveolar macrophages of smokers do not regulate pul
monary inflammation through production of proinflammatory cytokines 
[207–209]. Given the role of alveolar macrophages in COPD progression 
as well as the presence of several PDE isoforms in alveolar macrophages, 
it seems that PDE inhibition is a logical approach to blocking COPD 
inflammation [210,211]. In a mouse model of COPD, treatment with the 
PDE-4 inhibitor Piclamilast prevented significantly the smoke-induced 
increase of alveolar macrophages [212]. Furthermore, another PDE4 
inhibitor, ASP3258, also significantly decreased neutrophil and macro
phage infiltration into alveoli in the LPS-instilled lung of rats [196]. 
While alveolar macrophages express PDE3, 4, and 7A [213], inhibitors 
of both PDE3 and PDE4 isoforms suppress macrophage activity. How
ever, PDE4 inhibitors are less effective in macrophages than monocytes 
[214]. Therefore, it seems that the attenuation of macrophages (CD68+

cells) with Cilomilast, a PDE4 inhibitor, in the airway of COPD patients 
during a clinical trial is through the blockade of monocyte recruitment 
into the lungs [215]. 

4.3. Lymphocytes 

Together with macrophages and neutrophils, lymphocytes are 
characterized factors of inflammatory infiltration in COPD [216]. 
Through enhancing the recruitment and reactivity of neutrophils, T 
lymphocytes enhance the endothelial cell dysfunction mediated by 
neutrophils, and contribute to the inflammation-induced vascular pro
tein leakage [217,218]. The close positive correlation between neutro
phils and lymphocytes implies the higher lymphocyte count in COPD 
patients. The level of CD8+ lymphocytes is associated with COPD 
severity, with a significant difference in the blood cell count between 
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healthy and stable COPD blood samples, as well as stable and acute 
exacerbation COPD cases [62]. In addition, the rate of NK cells in BAL 
from COPD patients is higher than never-smokers and non-smokers. 
Ex-smokers with COPD had a much larger percentage of NK cells than 
ex-smokers with normal lung function, indicating persistency of this 
difference [219]. PDEs activity can affect lymphocyte proliferation, as 
reduced PDE7 expression levels resulting from the PDE7 antisense 
oligonucleotide could decrease the proliferation of CD4+ lymphocyte 
[220]. Accordingly, combination of PDE4 and PDE7 inhibitors amplified 
inhibition of lymphocyte proliferation [20]. Moreover, both PF 0332040 
and Rolipram, isoenzyme specific inhibitors of PDE7 and PDE4, reduced 
PHA-stimulated proliferation of human peripheral blood mixed mono
nuclear cells (HPBMNC) in a concentration-dependent manner. 
Co-administration of Rolipram and PF 0332040 significantly increased 
the inhibition rate compared to single drug administration [18]. 
Therefore, the effectiveness of PDEs on neutrophils’ function may be 
partly through the blockade of lymphocytes. Besides, Treg cells have a 
key role to immune tolerance network. Recent studies showed that the 
cAMP- induced activation of PKA and EPAC are implicated in the Treg 
homeostasis. Some mechanisms and factors are involved by Treg to 
provide suppression potency. Treg cells apply cAMP in several mecha
nisms due to its inhibitory functions. Treg cells influx cAMP into gap 
junction and microenvironment to affect the effector T cells [221]. 
Second, additional to Treg contain a vast amount of adenosine which 
release into microenvironment, Treg can convert the adenosine 
triphosphate to adenosine by their surface CD39 and CD37 and liberate 
into gap junction to promote the intracellular adenylate cyclase in the 
effector T cells [222]. The downstream cAMP can activate PKA pathway. 
PKA can activate the cAMP responsive element modulator (CREM) 
proteins that affect epigenetic modifications and transcription of cyto
kines involved in T cell differentiation [223]. CREM can repress IL-2 and 
IL-17 gene expression resulting in effector T cell suppression (such as 
Th17 cells). In addition, it seems that cAMP elevating agents such as 
cholerae toxin can induce upregulation of inhibitory molecules such as 
CTLA-4 in Treg cells which acquired suppressive function [222]. 

4.4. Epithelial 

Epithelial cells are the frontline cell population in tracheobronchial 
tree affecting by inhaled environmental irritants through the airways, 
such as cigarette smoke as the major risk factor associated with COPD. 
Epithelial cells play pivotal roles in airway innate immunity with tight 
junctions blocking penetration of microorganisms into the body, and 
anti-protease, anti-oxidant, and anti-bacterial compounds production as 
well as ciliary clearance [224]. Novel histopathological findings such as 
epithelial remodeling and fibrosis in tiny airway sub-epithelial cells are 
now recognized as a major structural change in COPD [225,226]. Hy
perplasia (high levels of mucus exudation) and metaplastic changes in 
epithelial cells of small airway were demonstrated in COPD [227,228]. 
Moreover, the bronchial accumulation of myofibroblasts that causes 
small airway narrowing in COPD can emanate from epithelial to 
mesenchymal transition (EMT) as a part of airway remodeling [229]. 
Following EMT, epithelial cells lose their cellular polarity and adhe
siveness, migration capacity, and develop a mesenchymal phenotype 
[230]. Cigarette smoke can cause EMT and subsequent bronchial nar
rowing [231–233]. EMT-related markers (Vimenting and S100A4) are 
strongly associated with airway obstruction and lower lung function 
[234]. Study of primary bronchial epithelial cells in the small bronchi 
demonstrated the presence of EMT in smokers as well as smoker COPD 
patients [235]. Therefore, studies have focused on EMT inhibition as an 
appropriate therapeutical strategy for COPD. As anti-inflammatory 
drugs, PDE4 inhibitors can curb lung structural remodeling and muco
ciliary malfunction [162]. In vitro administration of Roflumilast N-oxide 
to human bronchial epithelial cells (HBEC) attenuates EMT in cigarette 
smoke-induced EMT [235]. In a treatment procedure, Roflumilast 
reduced the development of bleomycin-induced lung damage and 

alleviated the bleomycin-induced lung fibrotic and vascular remodeling 
responses, the latter of which was resistant to glucocorticoids [236,237]. 
Other COPD drug classes, such as ICSs, are also capable of reducing EMT 
in COPD patients [238]. Next, the surface epithelium of the upper and 
lower respiratory tract is composed of goblet cells that exudate mucin 
[239]. In response to a variety of airway irritants like gasses, bacterial 
products, inflammatory mediators, and cigarette smoke, the frequency 
of airway goblet cells increases following non-granulated progenitor 
cells differentiation [240,241]. Goblet cell hyperplasia and subsequent 
higher mucus exudation is a remarkable characteristic of remodeled 
airway epithelium in COPD that negatively affects exacerbation rates, 
hospitalization, and mortality [242–244]. Roflumilast has also been 
used as an expectorant therapy in attenuating mucus hypersecretion, but 
this function restricts to a small group of patients [242,243,245,246]. In 
addition, it showed some central nervous system related side effects, 
including nausea and vomiting [33]. However, another PDE4 inhibitor 
TAS203 that poses lower emetogenicity suppresses goblet cell hyper
plasia of the airway epithelium in a cigarette smoke induced guinea pig 
model [247]. The continuous inflammation caused by cigarette smoke is 
assumed to be the cause of structural alterations in lungs that contrib
utes to COPD [194]. Inhaled irritants such as cigarette smoke stimulate 
epithelial cells of lung tissue to produce innate inflammatory mediators, 
including TNF-α, IL-1β, IL-6, GM-CSF, and CXCL8 (IL-8) [248] (Table 1 
and Fig. 1). In response to airborne irritants, the epithelium of small 
airways expresses TGF-β, which can enhance the induction of local 
fibrosis [249]. Bronchial epithelial cells cause accumulation of CD8+

cells through expressing higher levels of IP-10. Following the release of 
TNF-α, granzyme B, and perforins by CD8+ cells, apoptosis and cytolysis 
of alveolar epithelial cells and subsequently airway epithelial destruc
tion occur [250,251]. Since ROS induces higher levels of proin
flammatory cytokines through the activation of NF-kB signaling 
pathway in human epithelial cell lines [252], we postulate that cigarette 
smoke-produced ROS promotes airway epithelial inflammation by 
activating the NF-kB, mitochondria, and inflammasome signaling 
pathway [253]. In the bronchial epithelium and submucosa of COPD 
patients, the number of IL-22+ and IL-23+ cells is much higher than in 
non-smokers [116]. IL-23 can induce IL-17A production [254,255] with 
potential positive-feedback loops. IL-17A and IL-17F may recruit neu
trophils indirectly and play an important role in chronic pulmonary 
inflammation [256,257]. Anti-IL-17 and IL-23 antibodies have been 
shown to be effective against neutrophilic inflammation in a variety of 
diseases as well as animal models. Therefore, understanding the un
derlying processes of COPD inflammation may aid in the development of 
new therapeutic targets against COPD [258]. As previously stated, high 
levels of cAMP can activate Treg cells to suppress effector T cells such as 
Th17, and high levels of cAMP can activate CREM to suppress IL-17 gene 
expression. Furthermore, by increasing cAMP levels, PDE4 inhibitors 
such as apremilast reduced pro-inflammatory TNF, IFN, and IL-17 pro
duction while increasing anti-inflammatory IL-10 production [259]. 

5. Infection and PDE signaling in COPD 

5.1. Microbiome and cAMP- PDE 

Microbiome is microorganisms residing in the human body together 
with their genomes, which lives on the skin and in mucosal surfaces 
[260]. Although the lower respiratory system was not included in the 
“Human Microbiome project”, it did not take long to find out that the 
lower respiratory system is not sterile [261] and contains 103 CFU/ml of 
microorganisms, possibly as a Transient “But Not Resident (TBNR)” 
model, mainly originating from mouth aspiration, gut, and environment 
[262]. Studies have shown that the diversity and frequency of the lung 
microbiome are in intricate homeostasis with the lung immune system 
being beneficial to organize the appropriate composition of residing 
microbiome, known as symbiosis. So, any variation in this balance 
resulting in the loss of beneficial micorbiome (dysbiosis) can result in 
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effector T cells (e.g., Th17) immune response induction, inflammation, 
and, if the host is susceptible, infection. In this regard, the considerable 
theory “vicious cycle” explains that a defective immune system and 
dysbiosis ignite each other cyclically [263,264]. As a crucial second 
messenger, cAMP is pivotal in establishing homeostasis between the 
microbiome and the immune system. The healthy microbiome elevates 
cAMP levels by producing short-chain fatty acids, including butyrate, 
propionate, and acetate, through the fermentation of dietary fibers. 
Higher cAMP levels correspond to Treg-mediated responses and func
tional T cell suppression [265]. The association between cAMP level, 
dysbiosis and symbiosis is depicted in Fig. 4. 

5.2. Infections and cAMP-PDE 

cAMP level is a very important factor in modulating the innate and 
specific immune systems of the host. Accordingly, many pathogenic 
bacteria target the cAMP level in several ways as a virulence strategy to 
suppress host defense immune to regulate the expression of inflamma
tory mediators and reduce the phagocytic activity of host cells [266]. 
Some pathogenic bacteria increase cellular cAMP levels through various 
pathogenic and host immune evasion mechanisms. For example, Bor
detella pertussis and Vibrio cholerae produce ADP-ribosylating toxins 
that inhibit G-protein, and Bartonella Spp. produce BepA metabolite, 
which all increases adenylate cyclase levels in the cells to produce 
cAMP. Some bacteria can produce class III PDE enzymes as the signifi
cant and most frequent class of PDE that can degrade cyclic nucleotides, 
including cAMP and cGMP. For example, Rv0805 is a PDE enzyme of 
Mycobacterium tuberculosis [267]. In addition, CpdA is a top member of 
class III PDE found in E coli [268], Vibrio vulnificus, and Pseudomonas 
aeruginosa [269]. that hydrolyzes cAMP. Bacterial PDEs play roles in 
regulating peptidoglycan biosynthesis, cell wall permeability, and bac
terial virulence. Using CpdA PDE, Pseudomonas aeruginosa can produce 
adenylate cyclase to increase cAMP levels in the cells [270–272]. 
Mycobacterium tuberculosis can produce and inject cAMP directly into the 
host cells [273]. Some important examples of such bacterial mechanisms 
are demonstrated in Fig. 3. Hence, along with antibiotic prescriptions 
that re-establish the symbiotic state and decrease cAMP levels, PDE in
hibitors are sometimes prescribed for exacerbated chronic respiratory 
diseases such as COPD. By inhibiting PDEs, the reduction in the cAMP 
level is compensated. For example, Bacillus subtilis produces a metab
olite Acyl peptide that directly inhibits host PDEs and increases cAMP 

levels of the host cells [271,274]. Another immune defect in exacerbated 
COPD patients is incomplete autophagy [275]. Although in normal 
autophagy, macrophages and neutrophils clear the lungs from invasive 
microorganisms, incomplete autophagy leads to bacterial survival and 
proliferation inside phagocytic cells and causes chronic infection [276]. 
As discussed earlier, dysbiosis and the loss of beneficial microbiome 
members, especially butyrate-producing bacteria, can induce decreased 
cAMP levels that, in turn, aggravate immune responses and autophagy. 
Therefore, in COPD patients with low levels of cAMP, higher levels of 
incomplete autophagy may develop more chronic infections [276,277]. 
As a result, it seems that simultaneous administration of a PDE inhibitor 
and antibiotic may be a therapeutic key in converting dysbiosis to 
symbiosis and managing COPD (Fig. 5). 

6. Conclusion 

COPD is now considered as a global challenge for which many efforts 
are being made to prevent, diagnose, and treat. The administration of 
corticosteroids is currently the main treatment in these patients, but 
drug-resistance is observed in significant number of patients. Recently, 
the cAMP- phosphodiesterase (PDE) signaling pathway has gained much 
attraction of researchers. Beside various in vitro and animal studies, 
several clinical trials have also been conducted to investigate the effi
ciency and efficacy of the PDE-inhibitors as diagnostic and therapeutic 
targets. Among the different isoforms of this molecule, PDE4 has been 
the focus of many studies. Considering the central role of cAMP in cell 
metabolism and body homeostasis, and at the same time, its key role in 
the suppression of inflammatory processes, the activity of PDE mole
cules can adjust the consumption/accumulation of cAMP. According to 
the studies, the accumulation of cAMP suppresses the cellular inflam
mation, and the expression level of PDE4 increases in COPD patients. 
Evidences indicate that PDE-inhibitors can reduce the rate of COPD 
recurrences as well as the duration of hospitalization. Furthermore, 
promising results have been obtained regarding to the combination 
therapy of this drug along with corticosteroids. The current challenge 
with these inhibitors is their side effects, as seen for Roflumilast and 
some others. The medicate ensifentrine (RPL554) is one of the PDE3/4 
inhibitors that different clinical trial studies have been conducted for the 
adequacy of this medicate in COPD patients, and the comes about of 

Fig. 4. The association between cAMP, dysbiosis, and symbiosis. cAMP has a 
central role in the homeostasis between the immune system and the human 
microbiome in the body. In the physiological condition, the symbiotic micro
biome produces short-chain fatty acids that lead to the inhibition of cAMP-CRP 
and thus increase the level of cAMP. cAMP activates T-reg inhibitory responses 
resulting in homeostasis. On the contrary, microbiome dysbiosis decreases 
cAMP levels and leads to local or systemic inflammation. 

Fig. 5. Some important examples of bacterial mechanisms to increase host cell 
levels of cAMP. Pathogenic bacteria directly or indirectly (through producing 
some metabolites that impact cAMP) induce cAMP to increase in the host cells. 
For example, Bordetella pertussis and Vibrio cholerae produce ADP-ribosylating 
toxins, and Bartonella produces BepA metabolite to produce cAMP. Some 
bacteria produce class III PDE enzymes that degrade cAMP. For example, 
Mycobacterium tuberculosis produces Rv0805, and E coli, Vibrio vulnificus, and 
Pseudomonas aeruginosa produce CpdA as a major class III PDE that hydrolyzes 
cAMP. Using CpdA PDE, Pseudomonas aeruginosa can produce adenylate cyclase 
to increase cAMP levels in the cells, and Mycobacterium tuberculosis can produce 
and inject directly cAMP into the host cells. 
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these ponders appear that this medicate (in inhalation form) Alone and 
in combination with other drugs used in COPD, it has been exceptionally 
compelling and has appeared much less side effects than older drugs 
such as Roflumilast and Cilomilast, which can promise the development 
of effective drugs within the treatment of this chronic disease. 
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