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likelihood a new trial will demonstrate the
efficacy of a new treatment
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Abstract

Background: The common frequentist approach is limited in providing investigators with appropriate measures for
conducting a new trial. To answer such important questions and one has to look at Bayesian statistics.

Methods: As a worked example, we conducted a Bayesian cumulative meta-analysis to summarize the benefit of
patient-specific instrumentation on the alignment of total knee replacement from previously published evidence.
Data were sourced from Medline, Embase, and Cochrane databases. All randomised controlled comparisons of the
effect of patient-specific instrumentation on the coronal alignment of total knee replacement were included. The
main outcome was the risk difference measured by the proportion of failures in the control group minus the
proportion of failures in the experimental group. Through Bayesian statistics, we estimated cumulatively over
publication time of the trial results: the posterior probabilities that the risk difference was more than 5 and 10%; the
posterior probabilities that given the results of all previous published trials an additional fictive trial would achieve a
risk difference of at least 5%; and the predictive probabilities that observed failure rate differ from 5% across arms.

Results: Thirteen trials were identified including 1092 patients, 554 in the experimental group and 538 in the
control group. The cumulative mean risk difference was 0.5% (95% CrI: −5.7%; +4.5%). The posterior probabilities
that the risk difference be superior to 5 and 10% was less than 5% after trial #4 and trial #2 respectively. The
predictive probability that the difference in failure rates was at least 5% dropped from 45% after the first trial down
to 11% after the 13th. Last, only unrealistic trial design parameters could change the overall evidence accumulated
to date.

Conclusions: Bayesian probabilities are readily understandable when discussing the relevance of performing a new
trial. It provides investigators the current probability that an experimental treatment be superior to a reference
treatment. In case a trial is designed, it also provides the predictive probability that this new trial will reach the
targeted risk difference in failure rates.

Trial registration: CRD42015024176.

Keywords: Meta-analysis, Bayesian statistics, Cumulative, Direct probability, Posterior probability, Predictive
probability, Superiority
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Background
For the past decade efforts have been made, both by scien-
tists, journal editors and funding sources, to increase value
and reduce waste of medical research [1]. As early as 1996,
the CONSORT statement required that data from a new
trial should be interpreted “in the light of the totality of the
available evidence” [2]. Editors later joined in by asking
those submitting RCTs to set the new results in the con-
text of systematic reviews or meta-analyses of the re-
sults of any other relevant RCTs [3, 4]. The effect of
such a policy has yet to be seen however [5, 6]. Fun-
ders are also participating in order to avoid wasting
of financial resources. Recently the National Institute
for Health Research has stated that it “will only fund
primary research where the proposed research is in-
formed by a review of the existing evidence” [7].
Overall, when planning a trial researchers would like to

answer three questions given the available previous evi-
dence: the first is “what is the likelihood that the
experimental treatment is superior to the control treat-
ment given the evidence accumulated so far?”; the second
is “what is the likelihood that a new trial, given some de-
sign parameters and previous evidence, will demonstrate
the superiority of the experimental treatment?”; and the
last is “what are is likelihood that this new planned trial
shifts the overall evidence accumulated in the literature?”.
To summarize evidence from the literature, meta-analyses
are used, based on fixed or random-effect models. In the
fixed-effects model, the parameter of interest is assumed
to be identical across studies and the difference between
the observed proportion and the mean is only due to sam-
pling error. In the random-effects model, the observed dif-
ference between the proportions and the mean cannot be
entirely attributed to sampling error but may rely to other
unobserved factors. However, these common frequentist’s
approaches are unable to answer such important ques-
tions. By contrast, Bayesian statistics, that also consider
the parameter of interest as a random variable, and com-
bining accumulated evidence from different sources, ap-
pear to fit naturally this situation. Indeed, it provides
direct probability statements with regards to effect sizes
and/or predictive distributions. These probabilities, for in-
stance the likelihood that an experimental treatment is
superior to a control treatment, can then be used to ap-
preciate how any future trial would change the conclusion
of the available literature [8]. In the specific setting of cu-
mulative meta-analyses with recursive access to informa-
tion, Bayesian approaches appear quite appropriate to
identify the time when another trial becomes superfluous.
For instance, a current question among the orthopaedic

community is whether patient-specific instrumentation, a
recent innovative technology used during total knee re-
placement to improve implant positioning, is superior to
conventional instrumentation [9]. To ensure the long term

success of a knee replacement it is paramount that the
best limb alignment (180°) is achieved during the oper-
ation: knees which deviate by more than 3° from this angle
are more likely to fail early. The standard procedure to en-
sure limb alignment is to use intra-medullary jigs. Re-
cently, patient specific guides based on a preoperative
scanner or MRI have been developed to improve the pre-
cision of limb alignment during the surgery. Seventeen
studies and 10 reviews or meta-analyses have been pub-
lished to address the issue in less than 4 years and there is
still no evidence for a difference between both treatments.
We therefore conducted a Bayesian cumulative meta-

analysis of patient-specific instrumentation compared to
conventional instrumentation in patients undergoing
total knee replacement. We first estimated the probabil-
ity that the experimental treatment is superior to the
control treatment cumulatively through time given the
evidence accumulated. We then estimated the probabil-
ity that a new fictive trial, based on previous evidence,
would demonstrate the superiority of the experimental
treatment. Last, we estimated the design requirements
for a trial to change the overall evidence accumulated.

Methods
Protocol and registration
Eligibility criteria, information sources, data items and
methods of the analysis were specified in advance and
documented in a protocol. The protocol was registered at
PROSPERO (protocol registration number: CRD420150
24176). PRISMA guidelines were followed [10].

Eligibility criteria, information sources, and search
strategy
Two reviewers (SB, LC) independently evaluated studies for
eligibility; disagreements between the reviewers were re-
solved by consensus, and if necessary, by consultation with
a third reviewer (DB). Randomized clinical trials studying
conventional versus patient-specific instrumentation for
total knee replacement were eligible. We considered studies
including participants of any age, undergoing total knee re-
placement for any reason. Conventional instrumentation
included intra- or extra-medullary alignment techniques;
patient-specific instrumentation included CT- or MRI-
based preoperative planning. Total knee replacements per-
formed with computer navigation were excluded. The pri-
mary outcome measure was the proportion of failures.
Failures were defined as patient with a frontal alignment
departing from neutral by more than three degrees, in varus
or valgus. No restriction was made on the method used for
measuring the frontal alignment.
Publication in English, until January 1st, 2016 were

examined. Studies were identified by searching Medline via
PubMed, EMBASE and the Cochrane library. The last
search was performed on May 1, 2016. Two authors (SB,
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LC) selected eligible studies first on titles and abstracts and
then on full text for selection criteria. Finally, the references
of included studies were hand searched in order to detect
additional studies. We excluded duplicate reports, pilot
studies, and abstracts from meeting proceedings unless
published as full-text reports in a peer-reviewed journal,
given concerns related to their small sample size and study
design. We used, in various relevant combinations, key-
words pertinent to the groups and intervention of interest:
custom-fit, custom, patient-specific, psi, patient specific in-
strumentation, and knee replacement.

Data items and risk of bias in individual studies
Two investigators (SB, LC) independently extracted data
from the primary texts, Appendix and Additional file 1,
using a data abstraction sheet that contained fields for:
first author name, trial name, year of publication and re-
cruitment period, number of patients in each treatment
group, crossover, imaging method used for preoperative
planning in the patient-specific instrumentation group
and surgical technique used in the conventional instru-
mentation group, number of failures, details regarding
trial design. Disagreements were resolved by consensus,
and if necessary, after consultation with a third and
fourth reviewer (DB, MH). The risk of bias in individual
studies was assessed at the outcome level using the
Cochrane collaboration’s tool [11]. Authors were con-
tacted to provide additional information when relevant.

Summary measures, synthesis of results, and risk of bias
across studies
Bayesian meta-analysis was performed cumulatively, on
trials ordered according to publication time (Entrez date
on PubMed). The risk of publication bias was assessed by
funnel plots of effect estimates against sample size [12].
Consider K comparative studies reporting summary bin-
ary outcomes. The data from each study, j = 1, …, K, con-
stitutes a pair of independent binomial variables, X1J and
X2j, the number of events out of n1 and n2 subjects in the
treatment and control arms.: X1j ~ Binom (n1, p1j) and
X2j ~ Binom (n2, p2j), where pij for i = 1, 2 are the risks in
the treatment and the control arm, respectively. In a
Bayesian framework, the proportion of failures pij was
modelled through a beta-binomial model in each random-
ized arm (i = 1, 2), separately. Our prior information with
regards to each of these proportions is formalized by a
prior that is then actualized along the meta-analyses into a
posterior distribution. Indeed, the beta distribution is the
conjugate prior distribution for the parameter if the data
are binomial, so that the posterior is still a beta distribu-
tion. First, non-informative Beta priors (i.e., uniform
priors), were used to represent the large uncertainty with
regards to the outcomes before any published trial data.
Then, the posterior distributions computed after the trial,

were used as the priors for the next trial, and so on. We
defined the posterior probability that the failure propor-
tion in the experimental arm is below that in the controls,
namely the risk difference, as the treatment effect meas-
ure. The risk of bias across studies was assessed visually
for each of the seven Cochrane collaboration’s items [11].
First, we estimated the posterior probabilities that the pro-

portion of failures in the experimental group was below that
observed in the control group by 5 and 10% according to
the accumulated evidence, i.e. after the inclusion of each
new trial in the cumulative meta-analysis; such values were
considered of clinical importance in this particular setting.
We then computed the predictive probabilities that given
the results of all previous published trials (a priori informa-
tion), the next scheduled trial would achieve a risk difference
of observed failure rates of at least 5% or 10% in favour of
the experimental treatment. We also assessed the likelihood
that a new planned trial shifts the overall evidence accumu-
lated in the literature, by simulating samples of patients with
response rate in the control arm drawn from the last poster-
ior (obtained at the end of the meta-analysis), with varying
sample sizes and failure probability in the intervention arm,
then computing the posterior probability of reaching a dif-
ference of at least 5% between arms.
We finally computed the required sample size of a

new trial to reach a 95% coverage probability on average
for the posterior credible interval (CrI) of 5% length for
the risk difference. All point estimates are presented
with 95% CrI and were computed using Markov Chain
Monte Carlo (MCMC) simulation (see Additional file 1
for details).
As a sensitivity analysis, frequentist cumulative and

non-cumulative standard random effects meta-analyses
were also performed. We used a Binomial-normal model
that imposed a normal distribution on log-odds odds in
treatment and control arms to incorporate the between-
studies heterogeneity. Estimates of the risk difference were
obtained from random-effect models using the DerSimo-
nian and Laird method [13], with 95% confidence inter-
vals. According to the Cochrane principles, a value of 0.5
was added to arms where no failure occurred; trials where
no failures occurred were excluded from the analysis. I2

was used to quantify heterogeneity and we used the Q
chi-squared statistic to test heterogeneity across trials with
P < 0.1 being considered significant.
All computations were performed on R version 3.2.2

(https://www.R-project.org/), using the R2jags (https://
cran.r-project.org/web/packages/R2jags/) and rmeta
(https://cran.r-project.org/web/packages/rmeta/) packages.

Patient involvement
No patients were involved in setting the research question
or the outcome measures, nor were they involved in devel-
oping plans for design or implementation of the study. No
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patients were asked to advice on interpretation or writing
up of results. There are no plans to disseminate the results
of the research to study participants or the relevant patient
community.

Results
Study selection, study characteristics, results of individual
studies, and risk of bias within studies
Thirteen trials, published between 2013 and 2015, were
identified and used, based on complete text review
(Appendix Figure 4) [14–26]. Overall, 1092 patients with a
mean age of 68 [67–70] years old and a mean BMI of 29.5
[28.5–30.5] were included, 554 in the experimental group
and 538 in the control group (Table 1). Six studies used
MRI for preoperative planning, five CT, and two studies
used both (when necessary, groups were pooled to avoid
the duplicate counts of patients). Individual risk differ-
ences ranged from −25 to +18.5% (Appendix Figure 5a).
Due to the procedure evaluated, the risk of bias was sig-
nificant for all individual studies with regards to blinding
since surgeons could not be blinded; however, for most
studies, the outcome assessor was blinded (Table 1). Based
on the funnel plot of the effect sizes of all studies we did
could not identify any serious evidence in favour of a
publication bias (Appendix Figure 6).

Synthesis of results, and risk of bias across studies
Based on the information accumulated after the last trial, the
mean posterior estimates of failure probabilities in each group
evolved over time to stop at 24.1% (95% CrI: 20.7%; 27.7%) in
the experimental arm compared to 24.6% (95%CrI: 21.0%;
28.4%) in the control arm (Fig. 1; Table 2). In other words,
patient-specific instrumentation decreased the estimated

proportion of failures by 0.5% (95% CrI: −5.7%; +4.5%)
(Fig. 2; Table 2); there was no important difference
with the pooled estimate obtained from the sensitivity
frequentist random-effect meta-analysis (Appendix
Figure 5b). The risk of bias across studies was, by
design, maximum for blinding of care providers, pos-
sibly significant for the randomisation and allocation
concealment procedures (Appendix Figure 7).

What is the likelihood that the experimental treatment is
superior to the control treatment given the evidence
accumulated so far?
The posterior probabilities that the proportion of failures
in the experimental group be inferior to the proportion
of failures in the control group by 5 and 10% was less
than 5% after trial #4 and trial #2 respectively. After all
the available evidence, these probabilities were 4.2 and
0.013% (Table 2). The likelihood that the experimental
treatment is superior to the control treatment is there-
fore marginal at best.

What is the likelihood that the next trial, given some
design parameters and previous evidence, will
demonstrate the superiority of the experimental
treatment?
When designing a new trial according to the evidence
accumulated previously, we computed that the predict-
ive probability that the failure rate was below that ob-
served in controls by 5% dropped from 45% after the
first trial down to 11% after the 13th; when considering
difference of at least 10%, these figures decreased from
21 to 0.5%, respectively (Table 2). This argues in some

Table 1 Description of the retrieved trials

First author e-date Imaging Female/malea Age (mean) BMI (mean) RSG AC BOPH BOA IOD SR OB

Chareancholvanich 02/03/2013 mri 70/10 70 28 low uk high low low low uk

Victor 26/04/2013 mri/ct 86/42 67 - uk low high low high low high

Roh 03/08/2013 ct 82/8 70 27 low low high uk high low uk

Hamilton 06/08/2013 ct 31/21 68 31 uk uk high low high low uk

Boonen 10/08/2013 mri 106/74 67 30 low low high low low low low

Parratte 15/08/2013 mri 24/16 71 29 high low high low low low uk

Chotanaphuti 04/09/2013 ct 70/10 70 25 uk uk high low low low low

Woolson 07/03/2014 ct 0/63 66 33 low low high low high low low

Kotela 28/06/2014 ct 66/29 67 30 uk uk high low low low low

Pfitzner 16/07/2014 mri/ct 51/39 65b 30 low low high low low low low

Yan 14/09/2014 mri 41/19 69 - low uk high low low low uk

Abane 09/01/2015 mri 88/52 69 29 low uk high low high low low

Molicnik 04/03/2015 mri 31/7 67 33 uk uk high uk uk low uk

RSG random sequence generation, AC allocation concealment, BOPH blinding of participants/care providers, BOA blinding of outcome assessors, IOD incomplete
outcome data, SR selective reporting, OB other biases. a sex ratio in shown for patients randomized and outcome is shown for patients analyzed, therefore
numbers may differ. b mean of group’s median
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sense that the likelihood of any consequent benefit for
patients in the new trial is rather low.

What is the likelihood that a new planned trial shifts the
overall evidence accumulated in the literature?
Given the evidence provided by the meta-analysis, that
is a 24.1% of failures in the experimental vs. 24.6% in the
control arm, the predictive probabilities that a new 14th
fictive simulated trial shifts the evidence in favour of the
patient-specific instrumentation were rather small unless
the number of patients included were large and the pro-
portion of failures in the experimental group low com-
pared to previous estimates (Fig. 3).

Discussion
The increasing number of randomized controlled trials
(RCT) reported in the medical literature is associated with
redundancy [27]. Scientists, journal editors and funding
sources, are increasingly aware of this issue and actions
are gradually being taken in order to reduce the waste of
medical research [1, 3, 4, 7]. Using Bayesian inference we
were able to answer three important questions an investi-
gator should ask when considering another trial. In the
present case we showed that, after the fourth trial, the
probabilities that the experimental treatment decreases
the proportion of failures by 5% was less than 20%, and by
10% less than 2%. After the next trial, these proportions
dropped to 1% or less erasing all hopes of ever demon-
strating the superiority of the experimental treatment.
Moreover, the planning of another trial at that time, given
reasonable design parameters relative to previous trials,
had only a 2% probability of demonstrating the superiority
of the experimental treatment. Last we showed that only

an overly-optimistic effect size can pretend changing the
evidence accumulated after the last trial.
Our work has several limitations. First, the analyses pre-

sented are performed on the basis that the evidence pub-
lished is appropriate, based on quality-based trials. We only
considered RCTs while pooling results from RCTs and non-
randomized studies using Bayesian methods appears
promising [28]. Moreover, initial evidence is sometimes un-
reliable, for various reasons, and initially favourable or un-
favourable results can later be challenged [29]. Investigators
could therefore plan a trial contrary to the evidence accu-
mulated. Second, trialists and methodologists usually see the
evidential landscape from a different perspective. The
former will think their study is unique and target usually
large effect sizes contrary to what is suggested by the evi-
dence accumulated by the latter [30]. Numerous reasons,
beyond optimism bias, can explain this discrepancy, such as
differences in patient selection and improvements of the ex-
perimental treatment. Last, we only considered beta-
binomial models for each trial arm, assuming independence
between the failures from the two arms of each trial, while
joint model such as that proposed by Sarmanov could have
been used to handle potential sources of correlation within
each trial [31]. Note also that beta-binomial model has been
recently reported as a feasible alternative to the standard
random-effects model for meta-analysis of odds ratios [32].
Frequentist methods have limited reach to help investiga-

tors in deciding if the trial they plan is relevant.
Practitioners and methodologists will usually get an
approximate answer to this question by looking at, or per-
forming, an up-dated meta-analysis of all previous pub-
lished trials to yield a pooled estimate of the treatment
effect. This is, however, rarely done [30, 33, 34]. The first
reason for this failure may be that the pooled estimate of
treatment effect does not speak to a practitioner enough, all
the more when the volume of the evidence accumulated is
small. For instance, in the present cumulative meta-
analysis, after the fourth trial, the estimation of the risk dif-
ference was −0.013 (95% CrI -0.095; 0.069) in favour of the
experimental treatment. Given the rather centred pooled
estimate and its credible interval, one could see that evi-
dence as inconclusive; effect sizes of 5 and 10% in favour of
the experimental treatment could be deemed reasonable
[35]. On the contrary the Bayesian approach provides a
quite readily understandable quantity: there is little chance
that the experimental treatment is superior to the control
treatment. The second reason is that trialists looking at the
previous evidence in a frequentist perspective to define de-
sign parameters are likely to succumb to an optimism bias,
namely the unwarranted belief in the efficacy of new ther-
apies, and hence distort the planning of the trial in favour
of the experimental treatment [36]. In a retrospective ana-
lysis of 359 trials Djulbegovic and colleagues showed that
investigators consistently overestimated the expected

Fig. 1 Evolution over the meta-analysis of the uncertainty in the
proportion of failures in both arms, as quantified by the prior (black line)
then actualized into a posterior distribution after n = 2, 3, 4, 5, and 13 trials
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treatment effect and this was more pronounced for incon-
clusive trials [35]. On the contrary, the formal use of prior
information in a Bayesian framework could help in redu-
cing this optimism bias. In the present study, given the evi-
dence accumulated so far and the sample size used by
investigators, the probabilities that the planned trial had
more than a 80% chance to demonstrate an effect size of at
least 5% quickly fell below 10%.
The Bayesian approach provides readily usable probabil-

ities for clinicians and policymakers. With those, they can
directly appreciate the relevance of a new trial, the prob-
ability that this trial will succeed, and how likely it is to
change the evidence accumulated so far. Moreover meta-
analyses are often performed once a relatively important

amount of evidence has been reached, while one may wish
to repeatedly perform cumulative analysis of all the trial
data accumulated starting at an early time. In this frame-
work, Bayesian methods are particularly useful given their
natural fit to sequentially accumulated data and their dir-
ect translation in terms of probability statements with
regards to the effect size. The Bayesian approach should
not be seen in opposition to the more common frequen-
tist approach but more so as a complementary viewpoint.
If used appropriately, it could help clinicians designing
successful trials early and convince policymakers to aban-
don the funding of unnecessary later trials.
Although the probabilities presented seem more easily

understandable, it remains to be demonstrated that clini-
cians, investigators, and policymakers are more receptive
to those. Frequentist methods provide some help in decid-
ing whether another trial is justified, but they lack clarity
[37]. Bayesian statistics have attracted a rather unreason-
able mistrust over time and may fail to convince trialists
used to look at things from a frequentist standpoint [38].
Future research should aim at measuring how the scien-
tific community is responsive to these estimates.

Conclusions
Bayesian probabilities are readily understandable when
discussing the relevance of performing a new trial. It
provides investigators the current probability, that is
given all previous evidence, that an experimental treat-
ment be superior to a reference treatment. In case a trial
is designed, it also provides the predictive probability
that this new trial be successful, namely that it will reach
the targeted risk difference in failure rates.

Appendix
F4

Fig. 2 Posterior distribution function of the difference in failures
rates across arms; for instance, there was a 0.042 posterior
probability, after the results of the 13 trials that the failures rate in
the experimental was below that of the control by 5%

Fig. 3 Predictive probabilities that a new 14th fictive simulated trial
shifts the evidence in favour of the experimental group according to
various design parameters Fig. 4 Flow diagram of study selection
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F5
F6
F7

Fig. 5 Forest plot of the risk difference in failure rates between the control and experimental groups in a non-cumulative frequentist meta-analysis
(I2 = 45%, Q = 0.04) (a) and in a cumulative frequentist meta-analysis (b). Negative estimates are in favour of the experimental group

Fig. 6 Funnel plots of effect estimates against sample size

Fig. 7 Risk of bias across studies according to the Cochrane collaboration tool [11]
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