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Abstract

We present a simple model of genetic regulatory networks in which regulatory connections among genes are mediated by
a limited number of signaling molecules. Each gene in our model produces (publishes) a single gene product, which
regulates the expression of other genes by binding to regulatory regions that correspond (subscribe) to that product. We
explore the consequences of this publish-subscribe model of regulation for the properties of single networks and for the
evolution of populations of networks. Degree distributions of randomly constructed networks, particularly multimodal in-
degree distributions, which depend on the length of the regulatory sequences and the number of possible gene products,
differed from simpler Boolean NK models. In simulated evolution of populations of networks, single mutations in regulatory
or coding regions resulted in multiple changes in regulatory connections among genes, or alternatively in neutral change
that had no effect on phenotype. This resulted in remarkable evolvability in both number and length of attractors, leading
to evolved networks far beyond the expectation of these measures based on random distributions. Surprisingly, this rapid
evolution was not accompanied by changes in degree distribution; degree distribution in the evolved networks was not
substantially different from that of randomly generated networks. The publish-subscribe model also allows exogenous gene
products to create an environment, which may be noisy or stable, in which dynamic behavior occurs. In simulations,
networks were able to evolve moderate levels of both mutational and environmental robustness.
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Introduction

Models of genetic regulatory networks hold the promise of a

deeper understanding of two fundamental processes in biology.

First, the relationship between genotype and phenotype in each

individual depends on the dynamic behavior of genes interacting

with each other and their environment. Second, natural selection

acts on the resulting phenotypes produced by this interaction, thus

the response to selection and the long-term course of evolution

depend on how variation in network properties can be altered by

mutation and recombination. Of particular interest is understand-

ing the connection between these two processes, as our

assumptions about how these networks are formed affect how

they operate at a time, and simultaneously how they can change over

time. As with all modeling efforts, constructing these models

requires a balance between simple, general, and easily interpreted

models on the one hand, and more complex, specific, and

predictive models on the other. Here we present what we call a

publish-subscribe model of gene regulation. This model adds a layer

of complexity to an existing simple model, Kauffman’s NK

networks [1,2]. Our model produces networks that operate

similarly to those in the NK model–a number of regulatory genes

affect each other, producing a series of activation states that

stabilizes to a point or cyclic attractor. What differs is the fashion

in which the regulatory connections are made, and hence how

they can evolve. The changes we introduce allow for indepen-

dently mutable regulatory and transcribed regions of a gene, and

for regulatory connections to be made via intermediary products.

This enables significantly different evolutionary dynamics (for

example, significant neutral change can take place) and allows the

network dynamics to change in different environments, as the

intermediary products can be exogenously introduced. The

‘‘environment’’ of the network may be the external environment

or neighboring cells in a multicellular organism. The focal network

may also be a module within the total genetic network of an

organism [3], in which case its environment includes other

components of that larger network. We explore some consequenc-

es of these changes for the properties of single networks and the

evolution of populations of networks.

The NK model has been used to explore the properties and

dynamic behavior of genetic networks (e.g. [2,4,5]). This model

represents a set of N genes, where the activation of these genes is

represented by a binary state that is expressed (1) or not expressed

(0). Each gene is influenced by K other genes. Whether or not a

gene is expressed at time t is decided by a Boolean operation on

the previous expression state (at time t21) of the K other genes that

influence it. In the absence of stochasticity or perturbation, the

activation of these N genes moves through a series of expression

states depending on the initial conditions, ending up in either a

stable state or periodic attractor. The entire state space can be

described, and each possible attractor enumerated, by starting the

network in each of its 2N possible states and constructing a directed

graph in which the nodes are possible states of the network and the

edges are transitions among them. These transitions depend only
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on the connections between the genes and the specific Boolean

rules associated with each gene.

The use of discrete, Boolean rules for gene regulation appears

justified as a first approximation to data from living organisms [6–

8]. In a real network, the interactions among genes are mediated

by gene products, transcription factors, signaling pathways,

cellular machinery, and diffusion processes [9]. In the NK network

model, all of these processes are collapsed into the edges linking

one gene to another. This may be a good assumption in part

because biological networks must be somewhat environmentally

robust, i.e. buffered against perturbations and stochasticity

[10,11]. This may preclude, for example, dependence on

sensitively fine-tuned levels of gene expression. Thus simple NK

networks seem to capture many of the fundamental dynamics of

genetic networks.

However, the assumption of these simple gene-to-gene connec-

tions may affect our understanding of the two basic questions raised

above. Consider the first issue, the relationship between genotype

and phenotype. We wish to know, for example, combinations of

parameters for which networks exhibit a certain behavior (e.g. [9]).

Randomly generated NK networks can provide an estimate, but

models including other parts of the genetic regulatory process may

widen the volume of parameter space in which solutions are found

[12], or change our understanding of the effect on network

properties of processes such as gene duplication [13].

Consider also the second issue, the evolution of populations of

networks. Evolution is often envisaged by constructing a fitness

landscape, a multidimensional surface defined by fitness as a

function of genotype (or phenotype), where a single ‘‘step’’ on the

surface is equivalent to a one locus mutation of the genotype [14].

Our assessment of the ruggedness of the landscape, and therefore

the ability of populations to evolve toward global optima rather than

remain on isolated local peaks, depends on the details of the model.

In particular, what constitutes a single mutational step determines

the structure of variation available to evolution. So we must consider

not just how these networks operate, but also how changes in the

genotype affect fitness, for this will be crucial to constructing the

statistical properties of the fitness landscape. The simplest type of

mutation in NK networks is the addition or removal of a single

connection (or ‘‘edge’’) between genes in the network (e.g. [2]).

Changes in such regulatory influence are often represented as

changes to values in a connection matrix (e.g. [9]). Of course,

simulated evolution of a population of NK networks can proceed by

multiple such changes in a single generation or by other types of

mutation, such as gene duplication or loss (e.g. [4]), and this has

been a productive avenue for research on network evolution.

Nonetheless, our view of the landscape of possible network

configurations–whether it has a single or multiple adaptive peaks

[2] or how connected is the ‘‘metagraph’’ of networks possessing

some quality like robustness [8]–depends on which networks are

connected to each other by a single mutational step.

In our model, we explicitly consider the process of gene

regulation by introducing gene products that mediate the

regulatory connections among genes. These gene products may

represent proteins, or they may be any of a variety of non-protein

regulatory molecules whose role is just beginning to be understood

[15]. Each gene is separated into a coding region, which produces

a gene product, and a regulatory region, to which gene products

may bind. The coding region of each gene acts as a binary switch,

either expressed or not in each time step. Whether a gene is

expressed–whether the coding region produces its product–

depends on the products that are bound to its regulatory region

and a set of Boolean rules that translates the binding state of the

regulatory region into the expression state of the coding region.

The regulatory connections are therefore not specified directly, but

rather are an upshot of the correspondence between coding

regions and regulatory regions.

For instance, the coding region of a particular gene might

produce some product w. Any gene that has the binding site for w
in its regulatory region will then be regulated by that gene, and

also any other gene that produces product w. This has an effect on

the range of variation in network behavior and on what constitutes

a single mutational step. We can think of coding regions that

contain a conserved DNA motif [16] as transmitting or publishing a

signal on a certain channel, and regulatory binding sites which

bind this motif as subscribing on that same channel. If a publisher

(coding region) stops transmitting on a channel, then all

subscribers (regulatory binding sites) tuned to that channel will

be affected. Likewise, if a subscriber is tuned to a channel over

which multiple publishers are sending signals, it will be affected by

each of these multiple signals. In this way, the equivalent of several

connections among genes in the network can be created or

destroyed by a single genetic mutation. What constitutes a single

step on the adaptive landscape is now significantly different than a

model that directly connects or disconnects the regulatory

interactions by adding or removing an edge or changing the

weight in a connection matrix.

It is worth noting that what we have described here as publish-

subscribe has a relevant parallel in the area of modern software

construction (indeed, that is where we derived the name) [17,18].

The move from directly connecting two interacting parts of a

software application to connecting them via this more indirect

manner has an important result. The two processes are now

decoupled, as new upstream processes may influence any processes

subscribed to the right message, and likewise new downstream

processes can react to a message by simply subscribing to it. This

particular kind of ‘‘design pattern’’ [18] ensures that, although the

system remains operationally equivalent to one with direct

connections, it is far easier to implement changes that re-use the

available structure. We might say that implementing the system in

this way makes it more ‘‘evolvable’’, in the sense that modifications

are easier to make, and have less chance of having a catastrophic

effect. In a similar manner, moving from a model where

connections are made directly, to one where the interactions

occur indirectly through such a publish-subscribe paradigm, will

have important implications in how the system may evolve.

Below we describe the model formally. We derive some basic

properties of the structure and dynamic behavior of the networks,

both by sampling randomly constructed networks and by analytic

means. We then consider how this publish-subscribe view of gene

regulatory interactions drives the potential of populations of

networks to evolve in response to different regimes of selection.

Methods

We consider a conceptually simple model of a genetic regulatory

network consisting of N genes, each of which includes a regulatory

region and a coding region (Fig. 1). The regulatory region consists

of a number of binding sites, to which specific gene products may

bind. Let us denote the regulatory region of the ith gene by ri and

its coding region by pi. We define ri and pi as sequences of length l

and 1, respectively:

ri~ xi1, . . . ,xik, . . . ,xilð Þ and pi~xilz1: ð1Þ

Each element xik (where k = 1,…,(l+1)) for the sequence of a

gene is chosen from an alphabet P containing r letters with

Publish-Subscribe Networks
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uniform probability 1/r. So if our alphabet P= {0,1,2,3}, and

length l = 3, then one possible gene would be (1,1,3,2). Here

r= (1,1,3) and p= 2. A network consists of N such genes.

Interaction between two genes is mediated by gene products. If

the ith gene produces a product x that matches a binding site in the

jth gene, then the ith gene may regulate the expression of the jth

gene. We denote the possible interaction (adjacency) matrix by w,

with elements

wij~
1 pi5rj

0 otherwise
:

�
ð2Þ

The in- and out-degree of a gene are calculated by summing the

elements of the adjacency matrix, respectively:

kin~
XN

j~1

wji and kout~
XN

j~1

wij : ð3Þ

Below we show both numerical and analytic estimations of in- and

out-degree distributions [19]. Note that in estimating in- and out-

degree distributions, we do not consider the particular set of

Boolean rules governing the activity state of each gene. For

instance, a given letter x may occur in the regulatory sequence of

gene i. All genes containing x in their coding region (i.e., genes that

may produce the corresponding product) are considered to be

connected to gene i in the calculations of degree below. As with NK

networks, this is the case even if the particular Boolean rules for

gene i imply that the presence of that product has no effect on the

activity state of gene i.

In each time step a set of products R(t) is present, where R(t),P.

Each binding site in the regulatory region ri is bound if the

matching gene product is present (i.e. if xik,R(t)). Products are not

consumed when they bind; thus the product from a single gene is

sufficient for binding the regulatory regions of several genes

(effectively, we ignore quantities of gene products). We denote the

entire binding state for a gene at time t as the vector

Bi tð Þ~ xi1, . . . ,xik, . . . ,xil ,bi1 tð Þ, . . . ,bik tð Þ, . . . ,bil tð Þð Þ, ð4Þ

where bik denotes the binding state (either bound or not) of the kth

site in the binding region,

bik tð Þ~
1 xik5R tð Þ
0 otherwise

:

�
ð5Þ

Note that this state Bi(t) may be equivalent to some other

binding state Bj(t) if the jth gene has the same values in its binding

region. It may also be equivalent to Bi(t2s) if the same products

were present at time t2s. This binding state is used to determine

whether or not the gene is active, and whether the corresponding

value in the coding region will produce a product at time t+1.

The value Bi(t) locates a unique entry in a Boolean table that

returns a value representing whether the corresponding gene is

active or not. This table is common to all genes in the network

(and all networks if there is a population of networks evolving). We

will denote the table as Y. This table contains all possible

combinations of values in a binding region and their possible

bound state. Providing a global table of each particular Boolean

response to a combination of bound products provides a realistic

degree of stability to the system: two genes with identical

regulatory regions presented with the same set of intermediary

products will always do the same thing. The activity state of gene i

at the following time step is read from this table as

si tz1ð Þ~Y Bi tð Þð Þ: ð6Þ

The activity state si is binary, taking values of either 1 or 0. If

si(t+1) = 1, the product xi will be produced by gene i, so that

Figure 1. Schematic diagram of the network model. Shown are six genes, each with a regulatory region of length 2 and a coding region
(underlined). Arrows represent possible interactions, i.e. directed edges in the network. Below one gene is the Boolean rule set specific to that gene. A
‘‘2‘‘ indicates that the binding site is not bound by the corresponding product, and a ‘‘+’’ indicates that it is bound. The gene is then either expressed
(‘‘on’’) or not (‘‘off’’). In this case, if product 7 but not product 0 is present at time t, the binding state of the regulatory region of this gene
corresponds to the second row of the Boolean table. As a result, the gene is expressed and product 0 is present at time t+1. Because 0 occurs in both
the regulatory region and the coding region of this gene, it is self-regulating and will not be expressed at time t+2.
doi:10.1371/journal.pone.0003245.g001
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xi,R(t+1). If si(t+1) = 0, then xi will not be produced by gene i, but

the identical product x may be produced by another gene. The

activation state of the network at time t is given by S(t) = (s1(t),…,

sN(t)). In constructing the table Y, the value 1 is assigned to each

si with probability p, so that p gives a measure of the overall

probability of gene activity.

This model results in several possible regulatory patterns: for

instance, multiple genes with the same product have identical

regulatory effects, genes may regulate themselves (e.g. genes A and

F in Fig. 2), and products can have either inhibitory or activating

effects (e.g. the effect of product 6 on gene A versus gene B in

Fig. 2). Because there is a finite number of genes and gene activity

is binary, there is a finite number of states of the network.

Therefore, given a set of starting conditions and no stochasticity,

the network reaches a stable attractor. The attractor can be a

single state (i.e. the same set of gene products in each time step) or

a cycle (the same sets of products produced at regular intervals).

Fig. 2 illustrates a period-3 attractor over the entire network, with

some genes (D and F) in a stable state.

Because each gene’s activation si(t) is binary, the dynamics of

any particular model network is much like the NK model, in that

many binary states determine a single downstream gene’s state by

a set of Boolean operations. What differs is how the regulatory

connections are constructed, and thus how they might evolve.

How we initiate the network also differs. Rather than setting it into

a particular state, its initial conditions are defined by the

introduction of an initial set of products R(0). Note that this

means that, although there are 2N possible states of the network,

not all of these states may be strictly reachable. There may be no

combination of products that can produce a particular activation

state S. In the course of simulations, we may activate any state and

see what products it produces. But driving the dynamics of the

network purely by introducing gene products already places a

constraint on possible states that the network can enter. Finally,

mediating connections among genes by using gene products means

that a network can operate in an ‘‘environment’’ of exogenous

gene products that influence its dynamic behavior. This

environment may be stable or temporally variable, as we illustrate

below.

Results

Basic Properties of the Network
The interactions between a set of genes in the model described

above can be represented as a directed graph, where the nodes

represent genes and the edges represent connections among genes

in the publish-subscribe model. The edges are directed because of

the way we define the regulatory and coding regions of our genes.

For instance, the product xi of gene i may affect the activity state of

gene j at the next time step, but not vice versa. Thus each gene

may affect ‘‘downstream’’ genes and simultaneously be affected by

‘‘upstream’’ genes. The number of upstream and downstream

genes connected to a particular gene is the in-degree and out-

degree (respectively) of that gene. Each network can be

Figure 2. Diagram of four time steps in a 6-gene network. In the initial conditions, products 9 and 0 are present. Filled boxes represent
expressed genes, dotted arrows represent binding of products to regulatory regions, and solid arrows represent production of gene products. From
these initial conditions, this network enters a stable period-3 cyclic attractor. Boolean tables are not shown.
doi:10.1371/journal.pone.0003245.g002
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characterized by its in- and out-degree distribution–the frequency

distribution of in- and out-degree across all genes, or nodes in the

network.

Degree distributions are important indicators of the organiza-

tional principles underlying networks and have been the focus of

network theory approaches to gene regulation. The in- and out-

degree distributions of real transcriptional regulatory networks

exhibit different functional forms. In-degree typically displays an

exponential decay and is restricted to a narrow interval, while the

out-degree distribution typically has a broad tail [20–25]. It has

been shown [25] that in- and out-degree distributions together are

sufficient to reproduce most of the global topological properties of

genetic regulatory networks such as degree-degree correlation [26]

and clustering coefficient [27]. Degree distributions are also

considered to be important in determining the resistance of

networks to perturbations (robustness) and the ability of popula-

tions of networks to evolve (evolvability) [5]. With these

motivations, here we derive the directed degree distributions to

provide better insight on the properties of our model networks. We

have calculated these distributions both numerically and analyt-

ically. Numerical results were calculated from frequency distribu-

tions of a large number of networks, each generated by randomly

and independently assigning letters from the alphabet P to each

regulatory and coding site, while keeping the alphabet size,

regulatory region length, and total network size constant. Below

we present results for relatively small values of alphabet size

(r = 10), regulatory region size (l = 3), and total network size (N).

These parameter values, particularly alphabet size and total

network size, are likely to be much smaller than those measured in

actual genetic networks [16,21,28], but they provide a starting

point for exploring the behavior of the publish-subscribe model.

Our goal is to compare our results to the more basic NK model, so

that our conclusions can be tied to the addition of explicit gene

products. Because of the modularity found in empirical gene

networks, we can envision smaller networks as modules operating

in the context of a larger organismal network; in this context, the

‘‘environment’’ of exogenous gene products that we consider

below represents other interacting modules of the overall network.

For relatively small values of N, both in-degree and out-degree

distributions shift to the right as N increases (Fig. 3). In other

words, as N increases, the number of genes with products

corresponding to a binding site of gene i increases (in-degree),

and the number of genes with binding sites corresponding to the

product of gene i increases (out-degree). To explore the large-N

limit, Fig. 4 shows in-degree and out-degree distributions for large

networks (N = 1000). In the large-N limit, such that all sequences of

length l are likely to be realized, the out-degree distribution

approaches a single binomial distribution (Fig. 4A). In contrast, the

in-degree distribution approaches a superposition of binomial

distributions, with separate peaks corresponding to the number of

different letters contained in a sequence of length l = 3 randomly

sampled with replacement from the finite alphabet P (Fig. 4B).

For example, the smallest peak in Fig. 4B is the result of genes

whose three binding sites contain the same letter x, and the largest

peak is the result of genes with a different letter at each of the three

binding sites.

To calculate the out-degree distribution analytically, first we

determine the probability of finding a given letter x in a randomly

Figure 3. Degree distributions for small networks. (A) Out-degree and (B) in-degree distributions are shown for networks of size N = 5 to N = 10.
Each distribution is constructed from 106 independent, randomly generated networks with parameter values r = 10 and l = 3.
doi:10.1371/journal.pone.0003245.g003

Figure 4. Numerical and analytic degree distributions for large networks. (A) Out-degree and (B) in-degree distributions for networks of size
N = 1000. Numerical distributions are constructed from 106 independent, randomly generated networks with parameter values r = 10 and l = 3.
doi:10.1371/journal.pone.0003245.g004
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chosen sequence of length l, which is given by

p 1,lð Þ~1{ 1{
1

r

� �l

: ð7Þ

This equals the probability of the product of gene i occuring in the

regulatory sequence of gene j. Thus in the large-N limit, out-degree

kout is binomially distributed:

P koutð Þ~
N

kout

� �
p 1,lð Þ½ �kout 1{p 1,lð Þ½ �N{kout : ð8aÞ

The mean and variance of this distribution are given by

�kkout~Np 1:lð Þ and s2
out~Np 1,lð Þ 1{p 1,lð Þ½ �: ð8bÞ

This analytic solution for out-degree distribution closely matches

the numerical estimate (Fig. 4A).

An analytic solution for the in-degree distribution is more

complex, being in fact a superposition of binomial distributions.

This is because a regulatory sequence of length l, chosen from a

finite alphabet of size r, may contain duplicate letters. Let I be the

number of different letters x occurring in a regulatory sequence, so

that 1#I#min(l,r), and let v(I) be the number of possible

sequences containing exactly I different letters x. The total number

of possible regulatory sequences is v~
P

l

v Ið Þ~rl . The value v(I)

can be directly calculated in terms of the parameters r and l.

Denote the multiplicity of letter xi in a sequence of length l by n(xi).

Given I and l there are two constraints on n(xi):

l~
XI

i~1

n xið Þ and 1ƒn xið Þƒ l{Iz1ð Þ: ð9Þ

For a set of I different letters with multiplicities {n(xi)}, the number

of possible sequences is a multinomial coefficient

v I n xið Þf gjð Þ~ l!

n x1ð Þ!n x2ð Þ! � � � n xlð Þ!
: ð10Þ

Combining equations (9) and (10) we get the number of regulatory

sequences containing exactly I different letters:

v Ið Þ~
r

I

 ! Xl{ I{1ð Þ

n x1ð Þ~1

Xl{n x1ð Þ{ I{1ð Þ

n x2ð Þ~1

� � �

Xl{ n x1ð Þz...zn xI{2ð Þ½ �{1

n xI{1ð Þ~1

v I n xið Þf gjð Þ:

ð11Þ

If we sum over the multiplicities in equation (11), we get

v Ið Þ~
r

I

� �XI{1

n~0

I

n

� �
{1ð Þn I{nð Þl : ð12Þ

Note that v(I) also gives us the number of possible tuples Bi(t) in the

table Y:

magnitude Yð Þ~
Xmin l:rð Þ

I~1

v Ið Þ2I : ð13Þ

For regulatory sequences with I different letters, the in-degree

distribution is

P kinjIð Þ~
N

kin

� �
I

r

� �kin

1{
I

r

� �kin

, ð14aÞ

where I/r is the probability that a randomly selected gene product

x matches one of the I different letters in the regulatory sequence.

The mean and variance of this distribution are

kin Ið Þ~N
I

r
and s2

in Ið Þ~N
I

r
1{

I

r

� �
: ð14bÞ

The total in-degree distribution is thus:

P kinð Þ~
Xmin l,rð Þ

I~1

v Ið Þ
v

P kinjIð Þ, ð15Þ

where v(I)/v is the probability that a randomly selected regulatory

sequence contains I different letters. This analytical solution closely

matches the numerical estimate (Fig. 4B).

State Space
Although a graph representing the regulatory interactions

between genes tells us something about the structure of possible

interactions in the network, the full dynamics of a particular

network–what that network does–can be represented by exploring

its state space. A network activation state space contains all

possible activation states that the network can take, and the

transitions between each of them.

For a given number of genes N, there is a total of V= 2N possible

activation states of the network. For a finite network size N, the

state space is also finite. Starting from an initial state, the system

will eventually return to a previously visited state. Thereafter it will

follow stable or cyclic behavior, if no stochasticity or exogenous

gene products are introduced. The set of states that constitutes a

cycle is called an attractor, and the number of states it contains is the

attractor length. All the states converging to an attractor constitute its

basin of attraction, and the number of states in a basin of attraction is

the basin size. The state space of a network can be represented as a

graph (Fig. 5), just as the possible regulatory links among genes can

be. But these two graphs are very different things. For example,

the in-degree of a gene is the number of other genes that may

regulate it; the in-degree of a particular state of the network is the

number of states at time t that will end up at that state at time t+1.

We call the in-degree of a network state the precursor number of that

state. Below we consider these characteristics of the state space of

networks of size N = 10.

In a randomly constructed network, the vast majority of

network states have no precursor (Fig. 5). Such states are

unreachable by the network, unless they are used to initiate the

network in a simulation. An immediate consequence of this fact is

that the average transient time that it takes to reach an attractor

starting from an arbitrary state is very short compared to the state

space size V. To make these statements clear we have calculated

the probabilities Pp(np) and Pt(t) that an arbitrary state has np

precursors and transient time t, respectively. These quantities are

displayed in Fig. 6 for a network of size N = 10. It should be noted

that Pp(0) increases as N increases (not shown) and Pp(np) may have

any value between 0 and V. Note also that the mode of the

transient time distribution shifts to the right as N increases (not

shown).
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We consider also the basin size distribution, Ps(ns), which is the

probability of having a basin of attraction of size ns (Fig. 6C). Ps(ns)

is concentrated on values ns =V/2m, m = 0,1,…,‘, and decreases

dramatically as mR‘. This means that in an arbitrary realization

we may observe only the peaks at ns =V or ns =V/2. The case of

ns =V corresponds to a network with a single attractor whose basin

of attraction encompasses the entire network. This pattern is

similar to that found in NK networks when K is relatively small

(e.g., K = 1) [29].

Fig. 7 shows the distribution of number of attractors, Pa(na), and

the probability that a given attractor has length la, Pl(la), in

randomly constructed networks of size N = 10. Note that Pa(1) and

Pl(1) decrease as N increases (not shown). Below we evolve

populations of networks using selection on attractor number and

attractor length. The distributions shown in Fig. 7 for randomly

constructed networks illustrate the range of variation in these

properties available to evolution in a randomly generated

population, and they provide a benchmark against which to

measure the efficacy of evolution to find relatively small regions of

network space where fitness is maximized. Fig. 8 shows the mean

values for attractor number (na), attractor length (la), transient time

(t), and attractor basin size (ns), over a range of small values of N.

Note that the first three of these measures increase roughly linearly

with N, while basin size increases exponentially. Thus basin size

increases roughly proportional to state space size V, which itself is

an exponential function of N. It had been believed that the average

number of attractors of NK networks increased as the square root

of system size [29], but recent numerical studies [30] have shown

that this quantity increases linearly with N, as it does in our model.

Evolution of the Networks
In this section we use simulations to explore what sort of networks

can be produced by selecting for a particular property in a

population of networks. In the following simulations we restricted

the changes to point mutations (changes in single letters in either the

regulatory or coding regions of genes), and modeled the evolution of

an asexual population. The model could also be extended to include

recombination among genomes, and other types of mutations such

as gene duplications and deletions (e.g. [13]), but we leave this for a

later time. To begin, we selected on two network properties:

attractor length and number of attractors. Given that attractors

form the basis of any subsequent control of gene expression, it is

important to show the lability these properties have under a simple

selective regime. Such network traits may also relate to fitness in

biological systems by corresponding to the identity and behavior of

different cell types in multicellular organisms [2], or alternative

states of a genetic network module [31]. Here they provide a simple

first test of how the networks might evolve, and the resulting evolved

networks provide an interesting comparison with the randomly

sampled networks studied above.

In both cases we generated an initial population of 100

networks, analyzed the state space of each network and assigned it

a fitness equal to either the number of states in the largest attractor

or the total number of attractors in the state space. We then

Figure 5. State space of a randomly generated network. The state space of a network can be represented as a directed graph. Each point
(node) represents an expression state of the network, and lines (edges) connecting them represent transitions from one time step to the next. This
network has N = 10 genes, and therefore 1024 states. The network has three attractors (open circles), of which one is a single steady state where an
identical set of gene products is present at each time step, and the other two are cyclic attractors of period 2 and 4, respectively.
doi:10.1371/journal.pone.0003245.g005
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generated a new, non-overlapping generation of 100 networks.

Each network in the new generation was produced, without

recombination, from a single parent drawn randomly from the

previous generation. The probability that a network was selected

as a parent was directly proportional to its fitness. Each

reproductive event included a single random point mutation in

the network’s genome, with each site in either regulatory or coding

regions having an equal probability of mutation. We repeated this

procedure for 100 generations. The state space of the fittest

networks resulting from selection for attractor size and attractor

number are shown in Fig. 9.

Selecting on these particular properties resulted in some very

atypical networks. The results of these simulations were strikingly

different from randomly generated networks, such as those depicted

in [2] or in Fig. 5. For instance, the maximum attractor length in a

sample of 40,000 randomly generated networks was 31 (Fig. 7A). In

contrast, simulated evolution was able to produce an attractor length

of 254 in less than 100 generations. Similarly, selection for attractor

number produced a network with 112 attractors, far greater than the

maximum of 17 in the sample of 40,000 networks shown in Fig. 7B.

The large number of possible graphs in this network model means

that random sampling to estimate distributions of network properties

Figure 6. Precursor number, transient time, and basin size for networks of size N = 10. (A) Frequency distribution of precursor number
across network states, estimated from 40,000 randomly generated networks, on a log scale. Note that P(0)<0.96 has been suppressed, meaning that
the large majority of states have no precursor. (B) Frequency distribution of transient time, estimated from 40,000 randomly generated networks. The
maximum value of t is 31 in this number of realizations. (C) Frequency distribution of attractor basin size, defined as the number of states that lead to
a given attractor, estimated from 40,000 randomly generated networks of size N = 10. Note the peaks at V/2n, n = 0,1,2,…, where V= 1024 is the total
number of states in each network.
doi:10.1371/journal.pone.0003245.g006

Figure 7. Length and number of attractors in networks of size N = 10. (A) Frequency distribution of length of attractors, estimated from
40,000 randomly generated networks. The maximum attractor length in this sample was 31. (B) Frequency distribution of the number of attractors in
each network, estimated from 80,000 randomly generated networks. The maximum number of attractors was 17 in this sample.
doi:10.1371/journal.pone.0003245.g007
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may fail to capture evolutionarily important parts of the space of all

possible networks. Furthermore, it appears that such atypical

networks can reliably be reached in relatively few generations, even

when the range of variation available to selection is constrained to

single point mutations as it was in these simulations.

Surprisingly, despite their rapid evolution in the character

subject to selection (attractor length and number, respectively),

these evolved networks did not seem atypical in other respects.

Their in-degree and out-degree distributions, shown in Fig. 10,

were very close to the expectation for randomly generated

networks of their size (N = 10; Fig. 3). The dramatic changes in

attractor length and number were not the result of concomitant

changes in degree distribution. This independence of network

properties is further illustrated in Fig. 11. Fitness did not increase

Figure 8. Attractor properties as a function of network size in small networks. The average attractor number (A), attractor length (B), and
transient time (C) increase linearly as a function of network size N, while average basin size (D) increases exponentially.
doi:10.1371/journal.pone.0003245.g008

Figure 9. State spaces of evolved networks. (A) State space of a network evolved in a population of 100 networks after 100 generations of
selection for large attractor size. The attractor shown has length 254. Here N = 10, l = 3, and p = 0.5. (B) State space of a network evolved under
selection for many attractors. This network has 112 attractors. All other parameter values as in (A).
doi:10.1371/journal.pone.0003245.g009
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smoothly, but rather made occasional large jumps. In contrast,

genotypic change occurred more steadily over the course of the

simulation. Many genetic changes were neutral with respect to

attractor length. In addition, length or number of the other

attractors in the network’s state space changed without affecting

length of the longest attractor; these are phenotypic changes that

were also neutral with respect to fitness. Neither genotypic change

nor change in other phenotypic traits was a reliable predictor of

change in fitness in these simulations, despite the relative simplicity

of the trait being selected.

Evolution in an Environment
We have been treating networks as though they operated in

isolation, subject only to the gene products produced by the

network itself. Because intermediary products control the

activation of genes in our model, the introduction of any

exogenous products can influence the downstream activation

and resultant attractor of the network. This gives our model an

important additional property over the NK model: the state space,

including the number and type of attractors, is a property of a

particular network combined with a particular environment.

A network with no exogenous input has a single state space.

However, if we assume that our environment provides a constant set

of products, not produced by the focal network itself, but still able to

bind and regulate the functioning of the network, the state space for

any single network now depends on the particular environment of

exogenous products in which the network operates (Fig. 12). Under

constant environmental conditions the network will settle into one

attractor, depending on the starting point. When environmental

conditions change, the state that was previously in an attractor may

shift to the edge of a basin, and the network may move to a new

state. The introduction or removal of different products can have

many effects on the state space, such as changing the number of

attractors, the size of their basins, or the set of expression states

contained in their basins. The maximum number of possible

environments is 2r, where r is the number of possible letters in the

alphabet P. Thus the number of state space graphs corresponding

to a single network may be as large as 2r.

Figure 10. In- and out-degree distributions of evolved networks. Shown are (A) in-degree and (B) out-degree distributions for the evolved
network in Fig. 9A, the result of selection on attractor size, and (C) in-degree and (D) out-degree distributions for the network in Fig. 9B, the result of
selection on attractor number. These distributions may be compared to the random expectations for N = 10 in Fig. 3.
doi:10.1371/journal.pone.0003245.g010

Figure 11. Genotype, phenotype, and fitness in a single evolving lineage. Shown are three network properties over 100 generations in the
lineage leading to the network shown in Fig. 9A. Genotypic divergence (dotted line) is the number of letters x in the network sequence, either in
regulatory or coding regions, different from the ancestor. Changes in phenotype (open circles) are points at which the attractors of the network
change, whether or not this results in a change in length of the longest attractor. Fitness (solid line) is the length of the longest attractor in the
network state space. Note that changes in either genotype or phenotype may be effectively neutral, without corresponding changes in fitness, and
that large changes in fitness can occur with relatively small changes in genotype.
doi:10.1371/journal.pone.0003245.g011
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One property of a network is the degree to which these state

spaces are similar, or fall into broad groups. This similarity may be

considered a measure of the environmental robustness of the

network. If the network continues to act relatively unchanged (the

attractors remain constant) in various environments (differing

exogenous inputs), then the network operation is robust to these

changes. Although robustness in Boolean networks can be thought

of in this way, our model permits us to explore a much more

dynamic sense of robustness (in contrast with [9], for example).

The environments in which genetic networks operate are both

sources of noise and sources of important signals, either from the

external environment, from other parts of a multicellular

organism, or from other modules in the organism’s overall genetic

network [31]. Fitness depends on responding appropriately to the

signals and ignoring the noise. Viewed in this way, what must be

robust is the reaction norm of the network–its ability to react in a

plastic and appropriate manner under various environments by

distinguishing signal from noise.

We simulated evolution in a series of simple environments, in

which fitness was determined by their ability to respond

‘‘appropriately.’’ If some indicator product was present in the

environment, a network had high fitness if it produced some other

functional product. If another indicator product was present, the

network was fit if it produced a second, different, functional

product. A network had high fitness by doing the right thing at the

right time: in environment A, produce product a, and in

environment B, produce product b. Doing the right thing implies

not doing the wrong thing also–producing product b in

environment A reduced fitness, and a network that simply

produced a and b constitutively did not have high fitness. We

selected on networks’ ability to respond correctly to two different

environments that alternated over time.

We evolved a population of 100 networks of size N = 10. Each

network was exposed to the first environment for 10 time steps,

and then switched to the second environment for another 10 time

steps. The networks were then returned to the original

environment. This environment switching continued until the

network had been exposed to each environment 5 times. Fitness

was calculated as the number of correct functional products

produced, minus the number of incorrect functional products,

Figure 12. State space of a single network subject to different environmental conditions. Shown are the state spaces of a single network
of size N = 10 under four different environments. Each environment represents a different set of gene products that are constantly present (e.g.
exogenously produced) and available to bind to regulatory regions in the network. Note that a single network can vary in both the number and size
of attractors depending on the environment.
doi:10.1371/journal.pone.0003245.g012
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summed across all time steps. Gene products that were not the

functional product in either environment did not affect fitness.

In addition to this alternation of environmental signals, we

tested the ability of networks to evolve robustness to environmental

noise. In the stable environment, the only exogenous products

were the indicator products. In this simulation the evolved

networks quickly behaved exactly as required, changing their

required output in the presence of different indicator products. In

the noisy environment, the indicator product was present with 2

other products, randomly chosen at each time step. Achieving a

high fitness under noisy conditions was more difficult to evolve,

and the networks remained at lower fitnesses throughout the

simulation under noisy conditions. However, we found that a

network that had evolved in a noisy environment would often

perform perfectly in a stable environment.

What sort of difference is there between a network evolved in a

stable environment and one evolved in a noisy environment? We

tested this by subjecting the fittest network from each simulation to

a number of trials (10,000) in a noisy environment. The sample

distributions generated are shown in Fig. 13. We assessed both the

original network (steps = 0) and a sample of 1-, 2-, and 3-step

mutants from this network. This gives us some idea of the fitness of

the networks in the local mutational neighborhood, and thus an

indication of the ruggedness of the fitness landscape close to the

peak on which the evolved network sits. Evolving the networks in a

noisy environment did indeed produce a more consistently

environmentally robust network, shown by both the relative

positions and the widths of the peaks in the frequency distributions

in Fig. 13. The decline in fitness with increasing numbers of

mutations away from the original network is similar for the

networks evolved in both stable and noisy environments. Thus

these networks have roughly equivalent mutational robustness. In

terms of the fitness landscape, the fitness peaks to which the

networks have evolved in both stable and noisy environments are

somewhat intermediate between broad plateaus and precipitous

spires, which would allow for some near-neutral variation to

persist in mutation/selection balance.

Discussion

Simple models of genetic networks have led to general conclusions

about the properties of network architecture and how they affect

network evolution [1,2,4,5,32]. At the same time, a growing number

of technological and analytical tools allow the direct measurement of

regulatory networks in natural systems [33–39], so that a number of

empirical networks have been described in detail [21,28,40,41]. In

seeking to connect these growing fields, modeling efforts can proceed

by adding layers of complexity and assessing the degree to which

features of the model better approximate empirical results. Here we

have added a degree of complexity to simple NK networks, using a

publish-subscribe view of gene regulation. Although our model shares

some basic similarities with the NK model, we have found some

tantalizing differences in both the properties of single networks and in

the evolution of populations of networks.

First, the pattern of degree distributions from randomly

constructed networks in our model is substantially different from

that of previous models. In Kauffman’s [1] original NK model,

each gene has exactly K inputs and in-degree distribution is

therefore a Dirac delta function. In randomly constructed

networks under the ‘‘standard’’ NK model [4], regulatory inputs

to each gene are assigned independently with a given probability,

resulting in unimodal binomial (or equivalently for large N,

Poisson) distributions for in- and out-degree. In scale-free

networks, in-degree distribution follows a power law P(k),k2c

while out-degree follows a Poisson distribution, or vice versa [4].

In contrast, our publish-subscribe model produces an in-degree

distribution that is multimodal due to the superposition of

binomial distributions with different mean values. The fact that

in-degree and out-degree distributions differ in form from each

other in our model also contrasts with the standard NK model.

This qualitatively different pattern is a consequence of the

matching rule between the different nodes, i.e. between the

coding and regulatory sequences. Thus, although the networks in

our model exhibit similar dynamics to those of Boolean NK

networks, the distributions of basic network properties differ as a

result of the publish-subscribe regulatory framework. A network

model based on a similar matching rule was able to reproduce

global topological properties of the yeast gene regulatory network

[25]. These properties include not only degree distributions, but

also other network descriptors such as clustering coefficient, rich-

club coefficient, degree-degree correlation, and k-core decompo-

sition.

This divergence from previous models is echoed as well by the

networks evolved in our simulations. Generally, degree distribu-

tion is believed to be a central feature of a network and a key

predictor of its dynamic behavior in other respects [5]. For

example, the importance of scale-free degree distributions for

other properties like robustness and evolvability has been

established in several studies of NK networks [4,42]. However, in

our publish-subscribe model, it appears that dynamic behavior

Figure 13. Fitness of evolved networks in noisy environments. Frequency distributions of fitness for single evolved networks subjected to
10,000 trials in a noisy environment. Solid lines indicate the fitness of the evolved network, while dashed lines indicate the fitness of networks that are
1, 2, or 3 mutational steps away from the evolved network. (A) Fitness of the network produced by evolution in a stable environment. (B) Fitness of
the network produced by evolution in a noisy environment.
doi:10.1371/journal.pone.0003245.g013
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may be to some extent uncoupled from degree distribution. In the

simulations above, attractor length and number evolved far

outside the distribution expected from randomly generated

networks, but degree distribution remained remarkably similar

to random. The degree distributions of the evolved networks give

us no clue to the general principles by which length and number of

attractors may evolve. Conversely, degree distribution may be a

poor predictor of other network properties in this model. Other

topological properties (e.g. [25]) may be more relevant to the

evolutionary dynamics of our publish-subscribe model, and this

issue should be explored further. However, additional metrics that

are directed toward specific tasks, such as robustness to various

types of change, may be necessary to fully compare across

networks and predict evolutionary dynamics.

In the broader context of dynamic behavior and evolution of

genetic regulatory network models, two issues have received

particular attention: evolvability and robustness. A critical

component of evolvability is the presence of neutral variation in

a population [43–46]. Evolution in our network model produces

neutral variation in genotype, as seen in Fig. 11, that has no

immediate effect on either phenotype or fitness. From an adaptive

landscape perspective, this neutral change can be seen as

meanderings along neutral ridges in the landscape [47,48]. The

importance of this neutral variation is its effect on the fitness of

subsequent mutations. In our model, as in natural systems [49],

genes often interact epistatically, so that the fitness effect of a single

mutation depends on the allelic states of other loci. Thus the

genetic background against which a mutation arises may

determine whether it is favored by selection, and therefore

whether it sweeps to fixation and increases the average fitness of

the population as a whole. Neutral mutations change the genetic

background that determines both the sign and the magnitude of

the fitness effects of subsequent mutations.

Our network model illustrates the mechanism of neutral

variation in the publish-subscribe view of gene regulation. For

example, regulatory binding sites may mutate to a state for which

there is not currently a matching gene product being produced. At

the time, this mutation may be neutral, with no effect on the

phenotype of the network. However, this mutation has created a

new subscriber, ready to receive a signal from a publisher, or

coding region. Such a mutation in a publisher may occur in the

future, and thus a new connection is made between two genes. In

addition, the number of transcriptional regulators (gene products)

is limited in our model [15,50]. As a result, multiple neutral

mutations in the form of publishers (or subscribers) tuned to the

same signal can accumulate as neutral changes with no effect on

fitness. When a single mutation in a subscriber (or publisher) shifts

to the matching signal, multiple new connections are formed. The

effect on phenotype, and perhaps fitness, as a result of this single

mutation is magnified by the presence of existing variation. In fact

the ability of mutations to have broader effects on phenotype in

this way may be an important component of evolvability [51].

In our simulations we explored the evolution of environmental

robustness, which is the ability of a network to perform (i.e.,

maintain high fitness) in the face of a noisy environment.

Incorporating the ability for networks to react to the local

environment enables us to explore a number of possibilities. Here,

we have emphasized that robustness can be a dynamic, rather than

a static, property of networks. The publish-subscribe model allows

us to evolve networks whose reaction norm is robust under noisy

environments. The shift from a static to a dynamic conception of

robustness may have important implications. Consider an idea

introduced by Kauffman [2], in which the attractors in genetic

networks are viewed as analogous to cell types in a multicellular

organism [52]. For the NK model, the attractor into which a

network falls is fixed for a particular genetic network and the

starting conditions. In multicellular development, however, the

environment is, in part, other cells, and the process of

differentiation may be driven by dynamic interactions between

cells rather than the isolated properties of a single cell [53]. The

evolution of this plastic response to the local cellular environment,

and the evolution of its subsequent robustness, may be a key

element in understanding the emergence of multicellularity [54].

Alternatively, the focal network may be a module of a larger

genetic network, and organismal fitness may depend on the

network’s ability to respond appropriately to signals from other

modules.

A large number of issues could be explored further with the

publish-subscribe model. First, in our estimates of degree

distribution, we considered two genes to be connected if the

coding region of one gene matched a site in the regulatory region

of the other. However, this ignores the particular Boolean rules of

expression for the second gene, whose expression state may not

actually depend on the first gene’s product; in fact, whether this

dependence is present may itself depend epistatically on the

expression states of yet other genes [2]. Calculation of degree

distribution in this expanded sense soon gets quite complicated,

although it may be necessary for more direct comparisons to

empirical data, such as gene co-expression networks or expression

time series [34].

Second, we assumed here that a single coding region produces a

sufficient concentration of gene product to bind any number of

matching regulatory sites. The consequences of this assumption, or

alternatively of competition among binding sites for limited gene

product copies, could be explored further. Relaxing this

assumption would not change the observed patterns of degree

distribution of networks, according to the rules by which we

calculated it. However, it would introduce an element of

stochasticity into the activation of genes at each time step if single

gene products were to bind to either one or another regulatory site

with some probability between 0 and 1. As a result, our conception

of the state space of a network would also change. Under the

current assumption, the out-degree of any node in the state space

network is one, but relaxing this assumption would produce some

states with probabilistic edges connecting to multiple other states.

This would result in an additional concept of robustness that could

be explored: the robustness of attractors to stochastic shifts outside

of their attractor basin as a result of the stochastic binding of gene

products.

Third, one could explore the consequences of variation in

several of the parameters. Our goal here was to explore the

properties of the simplest publish-subscribe model, so in our

evolutionary simulations we held alphabet size, regulatory region

length, and total network size constant. Varying these parameters

across networks may have implications for measures of network

topology and for the evolutionary dynamics of populations of

networks. Regulatory region length could also vary across nodes

within a network; in a network model similar to ours such

variation produced similar qualitative behavior but improved the

fit to empirical data on topological descriptors from yeast networks

[25]. Change in this parameter has also been implicated in the

evolution of organismal complexity [55]. Among other effects,

longer regulatory regions would provide a larger mutational target

for regulatory versus coding regions. It remains an outstanding

question to what extent changes in regulatory versus coding

regions play different roles in phenotypic evolution [56,57], and

the publish-subscribe model explicitly separates the two. We plan

to address this issue in future work. In our simulations, we used
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networks of relatively small size (N = 10), which can be thought of

as modules within a larger network. However, simulations of

larger networks, particularly in the noisy or fluctuating environ-

ments that we described, could be used to address the evolution of

modularity itself; that is, do networks evolve some degree of

internal separation of components that partition the response to

environmental signals? Alternatively, can the behavior of larger

networks be adequately represented by studies of smaller

networks?

Finally, we addressed network evolution solely in the context of

single-step mutations. The publish-subscribe model could easily be

extended to address other types of mutations, such as gain or loss

of binding sites in regulatory regions, gene duplication and

divergence [13], or whole genome duplication. Nonetheless, our

results suggest that the publish-subscribe model holds remarkable

evolutionary potential even when mutation is restricted to single

steps.

Our publish-subscribe model of genetic regulatory networks

adds a layer of complexity to the common NK networks by making

the gene regulation process more explicit, and by using a rule

system for matching gene products to regulatory sites that affect

the expression state of other genes. In this way it is similar to yet

more complex models. Examples include the Artificial Genome

class of models [58–61], which create an information sequence

analogous to DNA, and content-based networks [19,25,62], where

the focus is on the topological properties of the networks rather

than their dynamics. The production of new, more complex,

variants on well-studied models in biology can often aid in two

ways. First, the introduction of new parameters might suggest that

there is behavior outside the scope of the simpler model. Second,

the introduction might allow us to ask different questions. The

publish-subscribe model appears to do both.

Acknowledgments

We thank G. Broderick, A. Erzan, faculty at the Santa Fe Institute and

Istanbul Technical University, and one anonymous reviewer for useful

discussion and comments.

Author Contributions

Conceived and designed the experiments: BC DB PAH. Performed the

experiments: BC DB PAH. Analyzed the data: BC DB PAH. Contributed

reagents/materials/analysis tools: BC DB PAH. Wrote the paper: BC DB

PAH.

References

1. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed

nets. J Theor Biol 22: 437–467.

2. Kauffman SA (1993) The Origins of Order: Self-Organisation and Selection in

Evolution. New York: Oxford University Press.

3. von Dassow G, Munro E (1999) Modularity in animal development and
evolution: Elements of a conceptual framework for EvoDevo. J Exp Zool 285:

307–325.

4. Aldana M (2003) Boolean dynamics of networks with scale-free topology.
Physica D 185: 45–66.

5. Aldana M, Balleza E, Kauffman S, Resendiz O (2007) Robustness and

evolvability in genetic regulatory networks. J Theor Biol 245: 433–448.

6. von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity
network is a robust developmental module. Nature 406: 188–192.

7. Harris SE, Sawhill BK, Wuensche A, Kauffman S (2002) A model of

transcriptional regulatory networks based on biases in the observed regulation
rules. Complexity 7: 23–40.

8. Goutsias J, Kim S (2004) A nonlinear discrete dynamical model for

transcriptional regulation: construction and properties. Biophys J 86:
1922–1945.

9. Ciliberti S, Martin OC, Wagner A (2007) Robustness can evolve gradually in
complex regulatory gene networks with varying topology. PLoS Comp Biol 3:

0164–0173.

10. Elowitz M, Levine A, Siggia E, Swain P (2002) Stochastic gene expression in a
single cell. Science 297: 1183–1186.

11. Ribeiro AS, Kauffman S (2007) Noisy attractors and ergodic sets in models of

gene regulatory networks. J Theor Biol 247: 743–755.

12. von Dassow G, Odell GM (2002) Design and constraints of the Drosophila
segment polarity module: Robust spatial patterning emerges from intertwined

cell state switches. J Exp Zool 294: 179–215.

13. Enemark J, Sneppen K (2007) Gene duplication models for directed networks
with limits on growth. Journal of Statistical Mechanics: Theory and Experiment.

P11007.

14. Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection
in evolution. Proceedings of the 6th International Congress of Genetics 1:

356–366.

15. Serganov A, Patel DJ (2007) Ribozymes, riboswitches and beyond: regulation of
gene expression without proteins. Nat Rev Genet 8: 776–790.

16. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev

Genet 8: 450–461.

17. Eugster PT, Felber PA, Geurraoui R, Kermarrec A-M (2003) The many faces of

publish/subscribe. ACM Comp Surv 35: 114–131.

18. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of
reusable object-oriented software. Boston, MA: Longman Publishing Co.
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