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Abstract: Fungal toxins, such as those produced by members of the order Hypocreales, 

have widespread effects on cereal crops, resulting in yield losses and the potential for severe 

disease and mortality in humans and livestock. Among the most toxic are the trichothecenes. 

Trichothecenes have various detrimental effects on eukaryotic cells including an interference 

with protein production and the disruption of nucleic acid synthesis. However, these toxins 

can have a wide range of toxicity depending on the system. Major differences in the 

phytotoxicity and cytotoxicity of these mycotoxins are observed for individual members of 

the class, and variations in toxicity are observed among different species for each individual 

compound. Furthermore, while diverse toxicological effects are observed throughout the 

whole cellular system upon trichothecene exposure, the mechanism of toxicity is not well 

understood. In order to comprehend how these toxins interact with the cell, we must first 

have an advanced understanding of their structure and dynamics. The structural analysis  

of trichothecenes was a subject of major interest in the 1980s, and primarily focused on 

crystallographic and solution-state Nuclear Magnetic Resonance (NMR) spectroscopic 

studies. Recent advances in structural determination through solution- and solid-state NMR, 

as well as computation based molecular modeling is leading to a resurgent interest in the 

structure of these and other mycotoxins, with the focus shifting in the direction of 
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structural dynamics. The purpose of this work is to first provide a brief overview of the 

structural data available on trichothecenes and a characterization of the methods commonly 

employed to obtain such information. A summary of the current understanding of the 

relationship between structure and known function of these compounds is also presented. 

Finally, a prospectus on the application of new emerging structural methods on these and 

other related systems is discussed. 

Keywords: trichothecene; NMR; solid-state NMR; crystallography; NMR crystallography; 

natural product; mycotoxin; structure; structure-function; molecular modeling; molecular 

dynamics; antibiotic; ribosome 

 

1. Introduction 

The search for biologically active natural products in bacteria, fungi, and higher plants has been a 

source of major breakthroughs, particularly in medicine. Many small molecules found in nature have 

provided inspiration to the pharmaceutical industry for the development of new and more effective 

drugs based on their structures, while others have led to the discovery of toxic compounds which may 

contribute to life-threatening diseases. The discovery of such toxic molecules becomes important when 

considering disease prevention. Among the compounds which have been isolated in the past thirty 

years are a group of fungal toxins (mycotoxins) known as trichothecenes. Trichothecenes are produced 

by a range of fungi from the order Hypocreales, including those of the genera Fusarium, Myrothecium, 

Verticimonosporium, Stachybotrys, Trichoderma, Trichothecium, Cephalosporium, and 

Cylindrocarpon [1–5]. Although the majority of trichothecenes contribute to crop disease and 

mycotoxicoses, they have also been considered as antibiotics and antileukemics [5–8]. In order to 

better understand the function of trichothecenes, to prevent diseases associated with these toxins  

(i.e., Fusarium Head Blight (FHB) of grains and stachybotryotoxicosis in mammals), and alternatively 

explore the roles they may play as powerful pharmaceutical agents, it is important to gain insight into 

the biochemical processes and structure of this important class of compounds. 

Trichothecene-producing fungi were originally discovered as contributors to mold in grain products 

as early as the 1930s and 1940s [9]. The Fusarium and Stachybotrys genera are frequently associated 

with the infection of crops in temperate climates, such as Europe, Asia and the Americas. Stachybotrys 

is a saprophytic fungus, which is commonly found to infect high-cellulosic crops such as straw and 

hay, and is the leading cause of stachybotryotoxicosis in livestock [10]. Furthermore, Stachybotrys is a 

toxic mold commonly found in association with sick building syndrome; a multitude of illnesses which 

are associated with poor air quality in office buildings [11]. Fusarium species are responsible for a wide 

variety of plant diseases, including fusarium head blight (FHB) and crown rot in cereal crops (i.e., 

barley, wheat, rye, etc.) [12,13] and fusarium wilt of solanaceous crops (i.e., potato, tomato, etc.) [14,15]. 

These diseases can result in severe yield loss in susceptible crops. In the case of FHB, trichothecenes 

accumulate in the developing grain of cereal crops. Ingestion of trichothecene-contaminated grain has 

been linked to emesis, hemorrhaging, abortion and death in animals (reviewed in [16]). In humans, 

ingestion of trichothecenes is the leading cause of alimentary toxic aleukia, a condition characterized 
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by vomiting, diarrhea, anemia, dermatitis, gastrointestinal necrosis and can be lethal, particularly in 

immune-suppressed persons [17].  

The first trichothecene to be isolated was trichothecin from Trichotheceum roseum, in 1948 by 

Freeman and Morrison [18]. Diacetoxyscirpenol (DAS) from Fusarium equiseti was preliminarily 

characterized in 1961 by Brian et al. [19], and was later followed by nivalenol (NIV) [20] and T-2 

toxin [21], both from F. sporotrichioides, although they were mis-identified as F. nivale and  

F. tricincum, respectively, in the original articles [22]. However, it was the discovery of  

4-deoxynivalenol (DON) from wheat in Eastern North America in 1980 [23], which truly sparked the 

research into the Fusarium species and led to the discovery of trichothecenes from other genera. 

Trichothecenes are a large group of sesquiterpenoid fungal metabolites, which share a common core 

comprised of a rigid tetracyclic ring system (Figure 1) consisting of a cyclohexene, A-ring with a 

double C–C bond occurring between C-9 and C-10; a tetrahydropyranyl B-ring; a cyclopentyl C-ring, 

and an epoxide at C-12/13. The rigidity of this system results in a distinct stereochemistry for the  

A- and B-rings. The A-ring adopts a half-chair conformation, and the B-ring is most often found in the 

chair conformation (Figure 2A) [24,25], although there have been a few odd cases where the B-ring 

has been shown to adopt a boat conformation (Figure 2B) [26]. 

Figure 1. Chemical structure of the trichothecene core. Substituents R1 through R5 are 

depicted with their stereochemical configuration off the core. 
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Figure 2. Three-dimensional stereochemistry of the trichothecene core when (A) the A-ring 

is in a half-chair, and the B-ring in a chair conformation; and (B) the A-ring is a half-chair, 

and the B-ring in a boat conformation. 
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Over 200 trichothecene compounds have been isolated, and they fall into two main classes, simple 

and macrocyclic [2,27,28]. The simple trichothecenes are further divided into three types; A, B and C. 

Type A trichothecenes are the simplest group, being non-substituted, hydroxylated or esterified  

(Figure 3). Type B trichothecenes are characterized by a ketone present at C-8 (Figure 3) Type A and 

B trichothecenes, such as T-2 toxin and DON, respectively, are often associated with  

Fusarium-infected grain. Type C trichothecenes, such as crotocin [29], are less common than the 

others, and are distinguished by the presence of a second epoxide ring at C-7/8 (Figure 3). A fourth 

class (Type D), are characterized by the presence of a cyclic diester or triester linkage of C-4 to C-15 

(Figure 3) [30]. These macrocyclic trichothecenes include the satratoxins, verrucarins, roridins, 

myrotoxins and baccharinoids (Table 1). While many of the Type D trichothecenes have been isolated 

from fungi, the baccharinoids were first isolated from the plant Baccharis [31]. Although early reports 

suggested that the metabolites were produced by the plant itself, later studies indicated that the toxins 

were likely the product of a Hypocrealean endophyte (the order to which trichothecene-producing 

fungi such as Fusarium, Myrothecium and Stachybotrys belong) within the plants [32]. It is important 

to note here that there are other secondary metabolites produced by trichothecene-producing fungi 

which may have relevance in the pathogenenicity of some diseases, such as FHB. Some of these 

metabolites are derived from the same trichodiene precursor molecule as trichothecenes, but are 

products of different cyclizations [33–35]. Together with the trichothecenes, these molecules belong to 

the trichodienoid class of compounds. The non-trichothecene trichodienoids do not possess the C-13 

epoxide ring system essential for known mechanisms of toxicity.  

Figure 3. The general core structures for Type A, B, C, and D trichothecenes. 
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Table 1. Chemical substitutions of some common trichothecenes. R groups refer to 

substituents shown in Figure 1. 
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Table 1. Cont. 

Toxin Name Type R1 R2 R3 R4 R5 

Baccharinoid B7 D H 

C15

OO

O

OH

O

O
C4

CH3

OH
H

H

H H 

Verrucarin A D H 

C15

OO

O

O

O
C4

OH

O

H H 

Verrucarin B D H 

C15
O

O
O

O

O
C4

CH3O
O

H

H H 

Myrotoxin A D H 

C15
O

O
O

O O

C4

OH

H H 

Myrotoxin B D H 

C15
O

O
O

O O

C4

OH

H OH 

Trichothecenes have widespread toxicological effects throughout the cell, and have been implicated 

in membrane destabilization, cytoskeletal collapse, inhibition of RNA and DNA synthesis, inhibition 

of mitochondrial function, and induction of apoptosis [36]. However, the best studied effect of the 

trichothecene toxins has been inhibition of protein synthesis through an interaction  

with eukaryotic ribosomes [37–40]. This targeting of the ribosome is similar to the interaction of 

mainstream antibiotics with prokaryotic ribosomes, and it is for this reason that members of this class 

of toxins have been referred to as eukaryote-specific antibiotics [6,41]. Since the epoxide ring is 

necessary for disruption of protein synthesis [42], it is logical to estimate that the epoxide plays a 

significant role in the inhibitory mechanism.  

There has been much interest in the differences in relative toxicity observed among this class  

of compounds. Species-specific differences in toxicity of a given trichothecene have been observed not 

only between plants and animals, but more interestingly among different plant species (e.g., corn vs. 

rice) [43], and among different animal species (e.g., monkeys vs. mice) [44]. A better understanding of 

the structural differences leading to the variable toxicity observed among various species may help 

scientists to develop antifungal and antiparasitic compounds with little to no toxic effects on the host 

organism. It is important to mention that very few bacteria are sensitive to trichothecenes and the few 

systems that do exhibit trichothecene susceptibility appear to be unrelated [45,46]. Interestingly, some 

probiotic strains of Bacillus have been shown to detoxify DON by opening the epoxide ring [47]. 

Regardless, relatively few toxicological effects have been observed for trichothecenes when tested on 
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bacterial systems in comparison to eukaryotic strains, suggesting a certain degree of specificity for 

higher systems. Investigations regarding the cause of this discrimination between prokaryotic and 

eukaryotic systems are sparse, and it remains to be seen whether the toxicological resistance observed 

for prokaryotic systems is due to differences in cellular machinery, rapid metabolism, or inefficient 

membrane translocation.  

Furthermore, some research from the 1980s suggested that macrocylic trichothecenes target  

cancer cells and may be useful as antileukemics [4,7,8,48]. However, the mechanism of action of the 

trichothecene compounds, with regard to any of their toxicological effects is not well understood. 

Therefore, the absolute stereochemistry and structural configuration of these compounds must be 

analyzed in order to understand what the possible interactions of these molecules may be. Structural 

analysis has been used to identify secondary metabolites produced in genetic and feeding experiments, 

and this approach has enabled the characterization of metabolic and biosynthetic pathways associated 

with trichothecenes [49–56]. Detailed studies on the structure and dynamics of these compounds can 

also be used to help elucidate the underlying mechanisms for differences in toxicity among these 

compounds [57]. 

In this paper we discuss the structure and dynamic nature of these compounds in order to gain  

a better understanding of the mechanisms of toxicity of these small molecules. Furthermore, the 

methods for determining trichothecene structure, and an analysis of how trichothecene structure is 

related to function and activity, will be discussed. This is not meant to serve as an exhaustive database 

of trichothecene structural parameters, for that the reader is directed to previous reviews [2,24–26]. 

Rather, this is meant to serve as a prospectus on the methods used to study the three-dimensional 

structure of members from this class of mycotoxins and its significance to biology, biochemistry and 

plant biotechnology. 

2. Structure-Function Relationships 

Trichothecene Toxicity 

The widespread toxicological effects of trichothecenes are still a matter of much interest to 

researchers in the fields of plant biotechnology, cell biology, food chemistry and biochemistry [12].  

It is widely accepted that the major mode of action of trichothecene toxicosis is the inhibition of 

protein synthesis in eukaryotes [39], and while the exact mechanism of this inhibition is unknown, it 

has been demonstrated to involve interactions with the peptidyl transferase center (PTC) of the 60S 

ribosome. Yeast strains carrying a mutation involving a substitution at a key tryptophan residue to a 

cystein (W255C) in the ribosomal protein L3 (RPL3) have been shown to confer resistance to the 

trichothecene trichodermin [37,58,59]. Harris and Gleddie [60] demonstrated that a similar substitution 

(W258C) in a modified rice Rpl3 gene enabled DON-tolerance in transgenic tobacco. However, results 

presented by Mitterbauer et al. [61], who expressed a W258C mutated tomato Rpl3 gene in tobacco, 

suggest that copy number of the substituted Rpl3 gene may determine the level of resistance observed. 

The described tryptophan to cystein substitutions occur in a universally conserved region known as  

the tryptophan-finger (W-finger), which was shown to play a critical role in coordinating the steps 

involved in protein translation [62,63]. All of these studies suggest that trichothecenes exhibit a 

stereospecific interaction with the ribosome.  
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Mitterbauer et al. [61] observed several mutations in tomato RPL3, in addition to W258C, which 

confer trichothecene resistance. He proposed that differences that have been observed in toxin resistance 

among different species may be linked to different isoforms of RPL3 among these organisms. Different 

trichothecenes have been shown to inhibit different stages of protein translation, including inhibition of 

initiation (Type I inhibitors), elongation (Type E) or termination (Type T) [38,40,64,65]. The type of 

inhibition observed is related to the substitution pattern of the side chains. For example trichothecenes 

with an oxygen functionality at C-15, will typically confer Type I inhibition [65], whereas an –H or  

–OH group at C-4 confers Type T inhibition [40]. It is possible that different isoforms of RPL3 are 

more resistant to a specific type of inhibitor, and is likely linked to hydrogen-bonding interactions that 

the side chains of the toxin can form with the other protein and nucleic acid residues in the PTC. 

Trichothecenes have been shown to activate the ribotoxic stress response leading to apoptosis in 

mammalian cells, a process mediated by protein kinase signaling cascades [66–70]. Other cytotoxic 

effects of trichothecenes have also been observed, including inhibition of nucleic acids synthesis [39] 

and cell division [71], destabilization of cellular membranes [72], and inhibition of mitochondrial 

function [73,74]. In all cases the exact mechanism of the described toxicity remains a mystery, due to a 

lack of understanding regarding the properties of these toxins and how they interact with the cell [36]. 

Without this knowledge it is impossible to determine the genes which must be targeted in order to confer 

resistance [43]. Furthermore, is not known whether these are secondary effects of ribosomal toxicity 

and/or apoptosis, or if there is a direct interaction between trichothecenes and other components of the 

cell. The inhibitory effect on the 60S ribosomal subunit produces a stress response in the cell, which 

could result in downstream inhibition of the remaining cellular machinery. In fact, when the tryptophan 

residue of the W-finger is mutated to another functional residue, a reduction or complete abolishment 

of trichothecene toxicity is observed, depending on the residue introduced, the isoform of RPL3, and 

the host species [62,63]. Such mutagenic effects suggest that the widespread cytotoxic effects of 

trichothecenes are due to downstream processes that result from the inhibition of protein synthesis.  

Different trichothecenes have been shown to have different levels of toxicity within a species,  

and there are also differences of individual toxins in different organisms. For example, while T-2  

toxin was shown to be less phytotoxic in wheat than DON [75], it has also been shown to be more 

toxic than DON in Arabidopsis [76] and in mammalian systems [77]. Similarly, while DON is 

generally more phytotoxic than NIV [75,76,78–81], the latter has been shown to be more toxic in some 

mammalian systems [82,83]. Variations in trichothecene phytoxicity may explain, in part, the differences 

in aggressiveness observed among different trichothecene-producing phenotypes (chemotypes) of 

Fusarium species involved in plant disease [84]. For example, NIV-producing Fusarium species are less 

virulent than DON producers in causing FHB [80]. It has been observed that C-3 acetylation can reduce 

phytotoxicity of specific trichothecenes in Arabidopsis, Chlamydomonas, tobacco and rice [76,85–87]; 

whereas, in wheat seedling germination and coleoptile growth inhibition studies, DON and 3-ADON 

were generally shown to be equally phytotoxic [75]. Thus, it is difficult to predict how a particular 

toxin will be tolerated from one species to another. The observed differences in phytotoxicity among 

species may be related to structural differences in the PTC of ribosomes, as discussed above. 

Additionally, the differential ability of some plants to metabolize these toxins [88–90] could also 

explain differences regarding the involvement of trichothecenes in the transmittance of plant disease.  
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The differences in toxicity observed between plant and animal systems ‘may be due to the cellular 

uptake of these toxins. To date, no cellular receptors for trichothecene uptake have been identified, and 

the mode of entry into the cell is unknown. However, it is important to note that trichothecenes are 

amphipathic molecules [91], which may infer an ability for these molecules to enter the cell through 

some mode of direct translocation, and the variable lipophilicity of the toxins would have an effect  

on access to the cell. Anderson et al. have shown that a decrease in toxicity could be observed for 

compounds containing more than two free hydroxyl groups [92]. If trichothecenes are able to translocate 

across the cellular membrane, the architectural and biochemical differences between plant and animal 

systems, such as lipid composition and the presence or absence of a cell wall would have an impact on 

their cellular uptake. The action of T-2 toxin on cell membrane function in animal cells has been 

monitored [72], with the presence of phosphatidylcholine as a membrane constituent influencing the 

action of T-2 toxin [93]. It has been suggested that trichothecene toxins may act together in a synergistic 

fashion in order to convey virulence [94,95]. However, without a comprehensive understanding of the 

mode of action of a single toxin, it is impossible to determine, or even predict how it might act 

synergistically with other similar toxins [94,95]. Studies have been conducted in vitro which suggest that 

there is indeed an interactive relationship between trichothecenes [94,95]. Furthermore, there are 

various non-trichothecene secondary metabolites derived from trichodiene (described in the 

introduction) which, although not toxic in their own right, may act as virulence factors in plant and 

animal pathogenesis [43]. 

The first major structure-activity study of a trichothecene was performed in 1969 by Grove  

and Mortimer following isolation and characterization of 4,15-diacetoxyscirpenol (DAS) [96]. This 

study was the first to clearly demonstrate that both the epoxide moiety and the structural arrangement 

of the sesquiterpenoid ring system were essential features in trichothecene toxicity. Subsequent 

structure-function studies of trichothecenes have focused on how different substitution patterns affect 

toxicity [43,97].  

Differences in trichothecene structure have been studied in order to determine the effects that 

substituent groups of the backbone may have on animal and plant toxicosis. Studies based on natural and 

synthetic trichothecenes have identified structural features which convey higher or lower toxicity in plant 

and animal systems [75,82,83,85,92]. For example, Anderson et al. [92], tested forty-two compounds, 

derived from modifications of T-2 toxin or neosolaniolagainst mouse lymphoma cells for antileukemic 

properties. It was observed that the cytotoxicity was altered by modifications at C-3, C-4, C-9 and  

C-10 [92]. By contrast, changes at C-8 resulted in minimal changes in cytotoxicity, indicating a region 

of steric tolerance [92]. While it is evident that differences in the R-groups can affect cytoxicity, the 

structural and mechanistic reasons for these differences are unknown. 

In order to gain a better understanding of the toxicological properties of trichothecenes and other 

toxins, it is important to understand the structural dynamics of these compounds and how they might 

interact with the cellular environment. To this end, new and more advanced methods must be used for an 

adequate treatment of these compounds. We are of the opinion that extensive solution, solid-state and 

NMR crystallographic studies in conjunction with molecular dynamics calculations of trichothecene 

structure, dynamics and molecular interactions are essential methods to determining the mode of action 

of trichothecenes. 
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3. Methods to Study Structure 

When the trichothecene, trichothecin, was isolated by Freeman and Morrison in 1948 [18], the 

sophisticated techniques used to study small molecules today were not available. The structure of this 

compound was not described until 1959 when the Freeman group used a form of fingerprinting, or 

chemical modification, to determine the toxin core and substituent groups [98]. Although a valid 

technique, chemical modification is time-consuming and does not provide the absolute stereochemistry 

of a compound. Furthermore, any information regarding the flexibility, electronics, or three-dimensional 

configuration of the molecule is lost. Consequently, as new techniques in structure determination and 

fungal fermentation were made available, the number of trichothecenes isolated and identified began to 

grow dramatically [9]. Although, Mass Spectrometry and Fourier-transform Infrared Spectroscopy can 

offer some insight into the chemical structure of organic molecules [99–101], they do not provide a 

complete picture on their own and merely serve as pieces to the puzzle; therefore, they will not be 

considered further in this review. Of particular interest to the complete structural identification of 

trichothecenes is the information made available from X-ray Crystallography and Nuclear Magnetic 

Resonance (NMR), which will be dealt with in detail here. 

3.1. Crystallography 

X-ray Crystallography is unrivalled in the structural detail and accuracy it can provide, and is thus 

highly valued in virtually all branches of chemistry. Unfortunately there are many limitations imposed 

on its application (some of which will be described below), and as such it has not been able to truly 

become a routine characterization method readily accessible to all chemists. Recent advances in 

instrumentation have alleviated some of these restrictions and thus it is seeing much wider application 

to inorganic, organic, biological, and some aspects of materials sciences [102,103]. 

The X-ray Crystallography experiment uses high intensity x-ray beams, which are focused on the 

crystal. The X-ray irradiation is scattered by the crystal in many specific directions. The resultant 

diffraction pattern is defined by the electron density, and corresponds to the regularly spaced arrays of 

atoms within the crystal [104]. For each orientation of the crystal with respect to the incident beam there 

is a corresponding diffraction pattern. A series of two-dimensional diffraction patterns are collected over 

as many orientations as is practicable, and are combined to create a three-dimensional working structural 

model of the density of electrons within the crystal. Diffraction data are collected in reciprocal space and 

must be converted to Cartesian co-ordinates in order to be analysed; the data conversion is achieved 

through the use of the mathematical method of Fourier Transformation. This model is compared with 

chemical information known from experiment, and can then be refined and optimized to obtain the best 

fitting structure. The structural model is composed of the lattice structure, which is determined by the 

arrangement of the smallest building block, known as the unit cell, and the arrangement of the 

molecules therein in their respective configurations [103].  

The quality of the diffraction pattern obtained is thus highly dependent on the quality of the crystal 

used and the degree to which the electron density is able to scatter the radiation [103]. The latter is 

simply a matter of the number of electrons present around the atomic species in the lattice; hence, the 

higher the atomic weight, the better the data. The former has historically been the major obstacle. The 

crystals have to be as large as possible to give the best quality diffraction data; however, it also must 
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be free from defects. The crystal must have long range order, with no deviation from the regular 

pattern due to the molecular structure and unit cell.  

Thus, the best quality diffraction data are those which can be obtained from Single Crystal X-ray 

Diffraction (SCXRD) analysis. However, there are many sources of disorder inherent to the crystallization 

process, including: the coexistence of various crystalline forms, or polymorphism [103]; the inclusion of 

additional species within the crystal, such as solvent [103]; and motion, such as the libration of some 

portion of the molecule or in some cases the reorientation of the entire molecule [104]. Often single 

crystals of sufficient size cannot be achieved, in which case diffraction measurements can be pursued on 

powders. Unit cell dimensions can be obtained from powders, but does not provide as much structural 

information as can be obtained from crystals since, for powder diffraction, the three-dimensional data 

must be projected onto a one-dimensional plane in order to map the diffraction pattern [104]. Structural 

parameters regarding the dimensions of the unit cell are invaluable when phase information is of 

interest, such as for semi-crystalline, polymeric, and ceramic materials.  

Historically speaking, SCXRD has seen extensive use by inorganic chemists, but as the instruments 

and crystallization methods improved, organic and biological systems were increasingly investigated. 

The latter two of course suffer from being composed almost entirely of relatively low atomic weight 

species, and pose more challenges in obtaining crystals of sufficient quality and size. Furthermore, in 

organic and biological systems the position of hydrogen atoms is often extremely important to relating 

structure and function, as is the case with hydrogen bonding, and thus can limit the interest in the 

technique. With the emergence of high intensity X-ray sources, and very sensitive array detection, 

SCXRD of biological macromolecules has become largely a matter of making crystals [103]. However, 

the question still remains as to how the crystal structure relates to the actual biologically active 

configuration. These are relatively recent advances, and as a result, SCXRD did not make a large 

contribution to the early literature in structural studies of natural products such as trichothecenes. Today’s 

experimental capabilities do offer a tremendous opportunity to expand the structural understanding of 

these systems, especially regarding the interaction of trichothecenes with biological systems, such as 

proteins, DNA and RNA [103].  

The main contribution of SCXRD to trichothecene literature has been the determination of the 

absolute stereochemistry of the side chains in the macrocyclic systems. One of the earliest studies was 

performed on verrucarin A from Myrothecium verrucaria, in 1966 by McPhail et al. [105]. In this 

study, phasing of the diffraction pattern was problematic, and verrucarin A had to be co-crystallized 

with p-iodobenzensulfonate; thereby, incorporating strongly scattering Iodine and Sulfur atoms to help 

with the phase determination. It was determined that the absolute configuration of the rings of the 

trichothecene backbone for verrucarin A were in a half-chair for the A-ring, while the B-ring was in a 

chair conformation, and the C-ring was in an envelope configuration (Figure 2A). The side chain  

was confirmed to link C-4 and C-15 and the absolute stereochemical configurations of two of the  

side-chain carbons, C-2′ (S) and C-3′ (R), were determined. A later study by Soriano-Garcia et al. in 

1999 [106], provided a high resolution structure of the pure compound, confirming the observations by 

McPhail et al. [105], and providing details on an intermolecular hydrogen-bonding occurring between 

the hydroxyl group on C-2′ and the carbonyl oxygen on C-1′. Related work by Anderson in  

1988 [107], also confirmed the McPhail structure for verrucarin A, and compared it with a series of 

analogous artificial macrocyclic systems. The macrocycle was likened with chiral crown ethers, and 
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their results revealed that the natural systems had a strong binding preference for RNH4
+ 

functionalities with R = H, CH3, and t-butyl. It was proposed that selective binding of this type could 

occur between –NH3
+ sites on proteins associated with the 60S ribosome. The structure for verrucarin 

B was determined by Breitenstein in 1979 [108], which has an epoxide functionality at the C-2′ and  

C-3′ position. The absolute configuration at C-2′ and C3′ was shown to be S and R, respectively, as was 

observed by McPhail for verrucarin A. SCXRD also played in important role in the structures of the 

roridins particularly in distinguishing between roridin A and isororidin A. These macrocycles are related 

to the verrucarins, where the ester linkage at C-6′ is transformed to an ether, with a hydroxyl ethyl 

functionality attached at C-13′. The two forms are distinguished by the stereochemistry about the C-13′. 

Due to the lack of chemical shift dispersion for 1H and 13C, the NMR spectra of the two compounds 

were nearly identical [109]. In 1982, Jarvis et al. employed SCXRD to verify the configurations about 

C-13′ [109], which was found to be R for roridin A and S for isororidin A. Later, in 1987, Jarvis made 

use of SCXRD in a similar way for the baccharinoids B1, B2, B3, B7 [30]. First, it was determined 

that the baccharinoids B3 and B7 were epimeric at C-13′, similar to what was observed for roridin A 

and isororidin; furthermore, B7 was seen to be epimeric with Roridin A at C-2′. Again 1H and 13C 

NMR were not able to convincingly distinguish between the two configurations. Jarvis et al. also 

crystallized the triacetate of B2, and found that B1 and B2 were also epimeric at C-13′. In 1999, the 

same group was able to employ insights from these X-ray studies in an investigation into the 

diastereomers of roridin E [110], following the work by Flippen-Anderson in 1986 [111], in order to 

infer the absolute configuration of various carbons in the sidechain, on the basis of 13C NMR chemical 

shift differences near the stereogenic centers. The latest SCXRD work on the roridins was published 

by Gai in 2007 [112]. Here, the analysis of roridin H again focused on the stereochemistry of the 

sidechain, this time at positions C-4′, C-5′ and C-6′, which are part of a five-membered ring.  

Jarvis et al. also investigated another class of macrocycles known as the myrotoxins isolated from 

Myrothecium roridum [113]. These systems include a tetrahydropyranyl ring, fused to an epoxide, in the 

side chain from C-2′ to C-6′. In this case, the absolute configuration about C-2′, C-3′, and C-6′, were 

essential in order to properly describe the stereochemistry of the rings in the sidechain. The orientation of 

the hydroxyl at C-12′ was used to distinguish between the A and C isoforms, of which the latter is 

significantly less stable. A recent work by Shen et al. in 2006 [5], looked into the structures of a series of 

related macrocycles produced by M. roridum, myrothecenes, that also contain a tetrahydropyranyl 

function. High resolution SCXRD structures of myrothecene A and C were obtained to gain insight into 

the stereochemistry of the tetrahydropyranyl, which was in the chair form in both cases, where the 

absolute configuration about C-6′ and C-12′ were shown to be essential to the assignment. It was also 

found that there was insufficient space in the ring of form A to encapsulate water, while in form C, a 

water molecule was incorporated, and found to be involved in a hydrogen bonding interaction with  

O-5, O-3, and O-2 [5].  

Type A and B trichothecenes have had comparatively little X-ray Crystallography analysis, 

presumably since less stereochemical variation would be expected in the trichothecene backbone as 

compared with the sidechain of the macrocyclic systems. The structure of DON was attempted on several 

occasions [114,115]; however, crystals of sufficient quality could not be obtained. In contrast, suitable 

crystals for 3-O-acetyldeoxynivalenol (3-ADON) were acquired in 1984 by Greenhalgh et al. [114], and a 

high resolution structure was obtained. It was determined that the absolute configurations of the 
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backbone carbons were essentially identical to those found in verrucarin A by McPhail et al. [105]. 

The unit cell for 3-ADON is composed of layers of four molecules arranged in tetrameric rings along a 

4-fold rotation axis. The centers of the tetramers form channels large enough to include solvent, which 

accounted for the different crystal forms observed when 3-ADON is recrystallized from different 

solvents. A significant amount of disordered water molecules were shown to be included in the crystals 

in the aforementioned channels. In a second failed attempt in obtaining DON crystals suitable for 

SCXRD, Greenhalgh and coworkers were able to discern that at least two forms of DON exist, which 

differ in the amount of water included [115]. 

In 1990, Gilardi et al. performed an SCXRD study on T-2 Toxin [116], and the stereochemistry of 

the rings were found to be identical to that of verrucarin A [105]. The unit cell for T-2 toxin, contains 

two distinct molecules differing in the configuration of the isovalerate sidechain. The relatively large 

thermal-ellipsoid employed for the atoms in the sidechains as opposed to those in the core, testify to a 

significant degree of disorder [116]. Also, hydrogen bonding was observed involving O-1 and O-2, 

which were shown to donate into the hydroxyl hydrogen at C-7 [116].  

The X-ray Crystallographic information available in the trichothecene literature is quite sparse; 

however, many studies on the structure of related trichodienoid compounds exist. For example, the 

structure of trichodienoids sambucinol and sambucoin, isolated from Fusarium sambucinum, were 

investigated by Mohr et al. in 1984 [117]. The trans-ring fusion between the A and B rings was shown 

to form an oxygen bridge from C-11 to C-12 in sambucinol (Figure 4A). For both derivatives, the 

absolute configuration of the ring and the loss of the epoxide function was confirmed by the X-ray data 

(Figure 4A,B), and of particular note was the retention of the S configuration about C-12 [117]. In a 

later study of secondary metabolites of Fusarium sporotrichioides, Greenhalgh et al. observed a 

molecule, 13-hydroxy-3α,11-epoxyapotrichothecene (Figure 4C), where the epoxy ring is opened and 

the 3-OH is lost to form an oxygen bridge from C-3 and C-11 [34]. Although, many of their 

observations were made by NMR, the absolute configuration was confirmed by the SCXRD. 

Figure 4. Structures of some non-trichothecene trichodienoid compounds: (A) sambucinol; 

(B) sambucoin; (C) 13-hydroxy-3α,11-epoxyapotrichothecene. 
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X-ray Crystallographic analysis can also be applied to trichothecenes in complex with interacting 

proteins. Garvey et al. studied the structure and function of the trichothecene 3-O-acetyltransferase 

(TRI101) from F. graminearum, and trichothecene 15-O-acetyltransferase protein (TRI3) from  

F. sporotrichioides, in 2008 and 2009, respectively [55,56]. TRI101 was complexed with CoA and 

DON together, as well as with T-2 toxin and CoA [55], and TRI3 in complex with decalonectrin and 

DON [56], were performed. Although these studies focused primarily on the X-ray crystal structure of 

the protein, important information regarding the trichothecene binding site for both TRI101 and TRI3 
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were unambiguously identified. The determination of the structural dynamics of the trichothecene 

class of toxins becomes important when considering how such binding interactions occur. 

3.2. Nuclear Magnetic Resonance (NMR) 

Structure determination of the majority of organic, biological and inorganic molecules often begins 

with Nuclear Magnetic Resonance (NMR) spectroscopy. Aside from crystallography, which possesses 

the ability to discern the complete molecular structure of pure crystalline materials, NMR is the most 

direct tool for identifying the structure of not only pure compounds, but can also be helpful in the 

determination of mixtures of compounds in both the liquid and solid-state. Historically, NMR lacked the 

ability to give precise geometrical information, such as bond lengths and angles. However, it is able to 

identify chemical environments and their interconnectivities from which the structure can be inferred. As 

such, absolute configurations cannot be determined by NMR. Information regarding configuration can 

only be proposed relative to some initial position of reference.  

NMR is a spectroscopic technique which exploits the intrinsic magnetic properties of atomic nuclei. 

When a strong external magnetic field is applied, nuclei undergo precessional motion (similar to that 

observed when a child spins a top) at a frequency, ωo, known as the Larmor frequency. The Larmor 

frequency is defined by the strength of the external magnetic field and the gyromagnetic ratio of the 

nucleus [118]. The gyromagnetic ratio, γ, is a constant which is unique for each type of nucleus; 

therefore, each type of nucleus has its own characteristic Larmor frequency. Subtle differences in the 

electronic environment surrounding each individual atom in a molecule lead to a distortion of the 

magnetic field experienced by the nucleus. This effect is known as shielding, and results in a distinct 

frequency shift, νo, or chemical shift, for each chemical environment of the nucleus [119]. Distortions 

in the field also arise due to the magnetic moments of nearby nuclei, and result in a splitting of the 

signal known as coupling. Coupling may occur either through-space (direct spin-spin coupling) or 

through-bond (indirect spin-spin coupling) [120]. In solution-state NMR experiments, through-bond 

coupling is observed, while the through-space interactions are removed due to random reorientations of 

the molecule [121]. The strength of the coupling interaction, known as the coupling constant, J, is a 

function of the electron density between the nuclei in question; therefore, the coupling is highly 

indicative of the intervening structure [120]. Scalar coupling is typically observed for nuclei which are  

2 (geminal) or 3 (vicinal) bonds apart from each other; however, longer range coupling may be observed 

for rigid or π-bonded systems [122]. Vicinal coupling constants can provide useful conformational 

information through calculations involving the Karplus equation. The through-bond coupling interaction 

allows for the molecule to be stitched together bond by bond, providing an overall picture of the 

connectivity of the molecule.  

NMR spectroscopy was originally developed in two different labs [119], those of Bloch and 

Purcell, in 1946. However, the technology did not become commercially available until the late 1950s. 

At this time, the technique was still in its infancy, and spectra were available only for very sensitive 

nuclei at magnetic fields with 1H frequencies around 60 to 100 MHz. In the 1970s, superconducting 

magnets for NMR were made available, offering higher field strength for the separation of signals and 

providing an opportunity for the study of lower sensitivity nuclei, such as 13C. Today, NMR 

spectrometers with magnets of 23.5 T are available, which corresponds to a 1H resonance of 1 GHz. 
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The major breakthrough in NMR spectroscopy remains the advent of Fourier Transform NMR  

(FT-NMR) [123]. Fourier transformation is the mathematical conversion of the NMR signal from  

a function of time(s) to a function of frequency (s−1 or Hz). The development of Fourier theory 

ultimately led to the development of multi-dimensional NMR techniques, which allowed for the study 

of more complex molecular systems, including proteins and nucleic acids. 

Multi-dimensional NMR analysis of organic compounds and natural products comes in a variety  

of different forms, based on the type of nuclei being correlated and the interaction on which the 

correlation is established [118]. Homonuclear correlation experiments correlate two nuclei of the same 

type. Correlation Spectroscopy (COSY) is based on the direct coupling interaction typically over two 

to three bonds; whereas, Total Correlation Spectroscopy (TOCSY) correlates all nuclei which are part 

of a coupled network, either directly coupled, or where the coupling is relayed through some mutually 

coupled partner. Nuclear Overhauser Effect Spectroscopy (NOESY) correlates nuclei through space 

via the direct dipolar coupling interaction, identifying other proximal nuclei [124]. Multi-dimensional 

NMR spectroscopies have evolved to a high level of sophistication making correlations over 3 to  

4 bonds, and are routinely used to study large macromolecules including proteins, DNA and RNA, not 

only in vitro but also in vivo, through specialized in-cell NMR techniques [125,126].  

NMR is not a sensitive technique as the signal arises only from isotopes that are NMR active and is 

related to its Larmor frequency. Thus, rare nuclei with low frequencies such as carbon are insensitive, 

in comparison to hydrogen, and may require polarization transfer methods to enhance their signal, or 

by employing isotopic enrichment of a sample. Polarization transfer exploits the coupling between 

hydrogen and carbon atoms, to transfer the much larger proton polarization to the carbon nucleus, 

through the irradiation of the 1H resonance, or by employing a specialized pulse sequence. The signal is 

thereby enhanced by a factor related to the ratio of the 1H and 13C gyromagnetic ratios. The recent 

development of the Dynamic Nuclear Polarization (DNP) technique is certain to revolutionize structural 

identification through NMR [127]. DNP expands on the idea of polarization transfer to unpaired 

electrons, where the electron polarization of a radical is transferred to nearby nuclei by irradiating the 

electron resonance using a microwave source. As the gyromagnetic ratio of an unpaired electron  

is several orders of magnitude greater than that for 1H, the signal enhancement achieved through 

polarization transfer from an electron is quite dramatic. For example, a 400 MHz NMR magnet  

with DNP-enhancement is capable of delivering microwaves up to 263 GHz [127], and can receive a 

signal-to-noise enhancement up to 80 times that typical for the nuclei observed. 

3.3. Solution NMR and the Structure Determination of Trichothecenes 

NMR is the principal technique used in the determination of the structure and stereochemistry of 

trichothecenes, with over 90% of trichothecenes being characterized in this manner. Extensive reviews 

regarding the characterization of trichothecenes and trichothecene-related compounds have been 

published [24,25,27,30,35], and the reader is directed to these works for more information regarding 

the structural parameters of these compounds. 

Early NMR characterization was limited to relatively low field 1H NMR. The early compilation  

of trichothecene chemical data in Cole and Cox in 1981 [1] featured 100 MHz or less NMR spectra 

which provided no coupling information. 13C assignments were obtained at 25 MHz and employed  

off-resonance decoupling [128], leading to disagreements in the literature regarding assignments in the 
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1970’s. With better knowledge of the production and purification of trichothecenes in the 1980s, pure 

standards could be produced in sufficient quantity for complete characterization. With availability of 

2D experiments, specifically homonuclear (1H–1H) and heteronuclear (1H–13C) direct correlation 

spectroscopies, even poorly resolved resonances could be accurately assigned, leading to the correct 

assignment of the 1H and 13C skeleton of several key trichothecenes [129]. As field strengths increased 

and longer range 2D experiments were made available, definitive assignments of the quaternary carbons 

were made. These accurate assignments were used for biosynthetic studies and to design labeled material 

for toxicological studies in animals. As more trichothecenes were isolated and characterized, trends were 

observed in the NMR data permitting the assignments of unknown structures on the 1H NMR alone [24], 

these trends are described below. The NMR information provided in Savard and Blackwell [25], for 

more than 50 trichothecenes and related compounds from Fusarium species permit the identification of 

new metabolites as they arise.  

Trichothecene mycotoxins display some rather prominent structural features [24]. The most 

recognizable of which is the methylene 1H couplings of the epoxide ring found in the window of 2.7 to 

3.4 ppm, with a J-coupling of approximately 4 Hz. However, for some of the derivatized trichothecenes, 

the coupling of this AB system collapses to a singlet. The methyl hydrogens at C-14 appear as a sharp 

singlet, whereas those at C-16 appear broad due to long range coupling with H-10. Long range coupling 

from H-7β to H-11 can be observed due to the “W” relationship between them, indicating a very rigid 

ring system, and necessitating the half-chair and chair conformations for the A-ring and B-ring, 

respectively [24] (see Figure 2).  

NMR spectroscopy of trichothecenes is limited primarily to 1H and 13C methods. Basic one-dimensional 
1H NMR experiments of natural products the size of trichothecenes at today’s magnetic field strengths 

(300 to 900 MHz) are often sufficient to determine the number and type of 1H environments, and their 

connectivity from the chemical shifts and coupling patterns of the signals. The fact that such high 

quality structures were obtained of these systems in 1960’s and 1970’s, before two-dimensional NMR 

methods became available, was no minor feat.  

The 1H spectra for T-2 toxin and DON, shown in Figure 5, were taken at 300 MHz [128]. All the 

resonances of the backbone structure can be identified; only the resonances of the isovalerate side 

chain at C-8 and acetyl functions at C-4 and C-15 of T-2 toxin were difficult to assign. The methyl 

resonances, H-14 and H-16, were identified by their low chemical shift and lack of splitting, plus long 

range coupling of H-16 to H-10. The methyl resonance of the acetate function at C-4 occurs at higher 

chemical shift than that of C-15, and those on the isovalerate function (H-4', H-5') are doublets due to a 

vicinal coupling with their neighboring methine proton, 3'. 
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Figure 5. The 1H NMR spectra of (A) T-2 toxin and (B) Deoxynivalenol (DON) at  

300 MHz in CDCl3. All 1H resonances have been assigned and are labeled. 

 

Trichothecenes have a double bond in the A-ring, which increases the chemical shift of nearby 

protons, H-16 and H-10. The methine proton H-10 undergoes a vicinal coupling with H-11, and has a 

longer range coupling to H-8. H-8 has vicinal couplings to both protons on C-7. Crosspeaks in the 

COSY spectrum support the proton assignments of ring A (see Figure 6A). The protons of the epoxide 

ring, H-13A and H-13B are readily identified by their chemical shift and AB pattern with a 

characteristically small geminal coupling indicative of high ring strain, which also has a corresponding 

cross peak in the COSY spectrum. The remaining protons on the C-ring can be assigned by first 

identifying H-3OH by its ability to be replaced by a deuterium upon addition of D2O. H-3OH has a 

vicinal coupling to H-3, which in turn has vicinal couplings to H-2 and H-4. The NOESY spectrum, 

shown in Figure 6B can be used to distinguish between the hydrogens in different stereochemical 

positions on C-7, C-13 and C-15.  
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Figure 6. Two-dimensional NMR spectra of T-2 toxin. (A) Correlation Spectroscopy 

(COSY) spectrum showing 1H–1H homonuclear through-bond (J-coupling) correlations;  

(B) Nuclear Overhauser Effect Spectroscopy (NOESY) spectrum depicting 1H–1H 

homonuclear through-space (dipolar coupling) correlations; (C) Heteronuclear Single 

Quantum Correlation (HSQC) spectroscopy spectrum depicting 1H–13C correlations for 

carbon nuclei which are directly bound to one or more 1H nuclei; (D) Heteronuclear 

Multiple Bond Correlation (HMBC) spectroscopy spectrum depicting 1H–13C correlations 

for carbon nuclei which are up to 4 bonds away from one or more 1H nuclei. 

 

The carbon resonances can be assigned on the basis of their chemical shifts and employing 

multiplicity selection sequences such as Distortionless Enhancement by Polarization Transfer (DEPT), 

where the signal phase indicates the number of attached protons [130]. Their assignment can be 

confirmed using Heteronuclear Single Quantum Correlation (HSQC) and Heteronuclear Multiple Bond 

Coherence (HMBC) correlations, see Figure 6C,D, respectively [119]. In order to determine the 

relative structural conformation of the trichothecene core, Savard et al. conducted an extensive  
1H NMR study on 36 natural and synthetic trichothecene compounds, based on the Type A and B 

trichothecenes [25]. The major conclusion from this study was the finding that the most stable 
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conformation of the trichothecene core occurs when the A-ring assumes a half-chair conformation, and 

the B-ring a chair conformation.  

The NMR spectroscopy performed on trichothecenes has been done primarily in solution.  

Solution-state NMR offers the ability to study compounds in a variety of solvents, under various 

conditions (i.e., pH, polarity, dielectric constants), which may influence the chemical nature of the 

compound. Furthermore, studies can be performed under physiological conditions, at various 

concentrations. However, the majority of NMR studies performed on trichothecenes have been done in 

deuterated chloroform (CDCl3), a mildly polar solvent, with a polarity index of 4.1 as compared to 

water which has a polarity of 9.0; furthermore, CDCl3 lacks the ability to undergo hydrogen bonding. 

Although CDCl3 is a principal solvent for NMR studies for the purpose of structural determination, it 

is possible for compounds to adopt alternative conformations when observed under different solvent 

systems. In a study by Jarvis et al. in 1990 [26], different solvent systems were used to determine the 

conformational effects of solvents on the trichothecenes NIV and DON [26]. DON was observed in 

DMSO-d6, (CD3)2CO and CD3OD, whereas NIV was only studied in DMSO-d6 due to insolubility in 

the other solvents. NIV and DON are Type B trichothecenes, characterized by the presence of a ketone 

functionality at C-8; however, it was determined that under different solvent systems, it is possible for 

this position to adopt a hemiketal functionality, where an ether linkage is formed between C-8 and  

C-15 [26]. Jarvis determined that in DMSO-d6, DON is present in the hemiketal form in approximately 

10% of the relative population, and 6% in (CD3)2CO. No evidence of the hemiketal configuration was 

observed in CD3OD or CDCl3. NIV differs from DON only in the substituent group at C-4; NIV has a 

hydroxyl group at this position, whereas DON is non-substituted. Thus, NIV also has the ability to form 

a cyclic ether from C-4 to C-15 [26], similar in many respects to the linkage observed for Type D 

macrocyclic trichothecenes, see Figure 7. Under these conditions, the tetrahydropyranyl B-ring, which 

typically has a strong preference for a chair configuration, is observed to adopt a boat configuration [26]. 

Figure 7. Structural changes observed for NIV and DON under different solvent conditions: 

(A) chemical structure of NIV; (B) chemical structure of DON; (C) hemiketal formation 

from C-8 to C-15 observed for NIV and DON, where R is –OH and –H for NIV and DON, 

respectively; (D) cyclic ether formation from C-4 to C-15 observed for NIV only. 
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A similar observation has been made for the antibiotic, virginiamycin 1 (VM1) by Dang et al. in 

2004 [131]. In an NMR analysis of the antibiotic, it was shown that VM1 adopts a different 
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conformation when studied in CDCl3, from what is observed when it is bound to the 50S bacterial 

ribosome [132]. High resolution two-dimensional NMR spectra were obtained for VM1 in DMSO-d6 

and CD3OD which not only differ from the three-dimensional structure of VM1 in CDCl3, but also 

from the bound structure. 

These observations regarding alternative conformations of trichothecene toxins, and other related 

compounds, in different solvent systems are important when considering the conformation which these 

toxins may adopt under physiological conditions. However, to the best of our knowledge, only one 

study, that performed by Duffy and Reid on the stability of T-2 toxin in aqueous solution, has been 

performed on trichothecenes under quasi-physiological conditions at this point [133]. This is likely due 

to solubility issues at the concentrations required to obtain atomic resolution structural information  

by solution-state NMR. The study on T-2 toxin, however, was not strictly a structural investigation, 

but rather focused primarily on the stability of T-2 toxin in phosphate-buffered solutions in the pH 

range of 5–12 over the course of one year. It was determined that T-2 toxin is extremely stable under 

pseudophysiological conditions, with the epoxide functionality remaining remarkably intact after 4 years 

in solution, indicating that the detoxification of T-2 toxin is most likely an enzymatic process [133]. The 

stability of the epoxide ring in solution is rather astounding considering the substantial amount of ring 

strain inherent in the three-membered cycle [133–135]. 

Deuterium exchange and variable temperature experiments are useful tools in the assignment of 

exchangeable 1H resonances, such as hydroxyl, amine, amide and sulfhydryl bonds [136]. Although, 

exchanging 1H resonances often appear as broad lines in the 1H spectrum, hydrogen-bonding interactions 

can have a significant effect on the rate of exchange of a 1H, resulting in a line-width of the same order 

as the other peaks in the spectrum. If the rate of exchange, kex, is longer than the time it takes for the 

system to relax, T1, no line broadening due to exchange will be observed [136]. By adding deuterated 

water, D2O, to the sample, signals resulting from exchangeable 1Hs will effectively disappear from the 

spectrum, as the 1Hs are replaced by 2H nuclei, which appear at a different spectral frequency than 1H. 

Furthermore, if scalar coupling to an exchangeable 1H is observed, that coupling will also disappear in 

the resonances to which it is coupled, due to the incorporation of 2H. Intermolecular interactions of a 

compound with water can also be confirmed through the analysis of a deuterium exchange experiment. 

In an experiment performed by our lab on T-2 toxin [57], couplings to water were observed in the  

two-dimensional NOESY spectrum, to resonances in the same vicinity as the exchangeable hydroxyl 

bound to C-3 at position R1, surrounding the tetrahydropyranyl pocket which forms as a result of the 

three-dimensional configuration of the trichothecene. In order to confirm that water was indeed bound 

within this pocket, D2O was added dropwise to the NMR sample tube. H2O was found to be in slow 

exchange with D2O, suggesting that at least one water molecule is tightly bound to this region of the 

molecule (see Figure 8) [57]. Furthermore, the temperature dependence of hydroxyl proton peaks can 

often be used to assign them, where variable temperature NMR is a possibility. 
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Figure 8. Deuterium exchange experiment performed on T-2 toxin. Regions exhibiting 

significant changes throughout the incremental addition of D2O have been expanded to 

show peak structure. Of particular interest are the H3OH and H2O/HDO regions, which not 

only demonstrate significant changes in chemical shift, but also exhibit the retention of 

their sharp peak structure, indicating a slow chemical exchange process. H3 is less affected 

in that the only observable changes are the loss of coupling to H3OH as the latter peak is 

converted to H3OD. 

 

Structural parameters obtained through NMR can be employed directly in molecular modeling 

studies to help in describing their lowest energy conformations and how they change over time and 

interact with their surroundings [104]. This type of molecular modeling is useful for gaining insight 

into mechanistic behavior, and predicting the structure of likely intermediates. At this point, very few 

molecular modeling and dynamics studies have been performed on the trichothecene class of 

mycotoxins; however, those that have been attempted have used solution-state NMR spectral 

parameters to model the system. Of note are the studies performed on DON by Nagy et al. [137], 

verrucarin A by Fragaki et al., and both verrucarin A and roridin A by Steinmetz et al. [138,139]. In all 

cases, molecular dynamics were employed to determine the relative conformations of the toxins in 

question, in order to better understand whether a single conformation is predominant, or whether 

multiple conformations exist simultaneously under physiological conditions. MD simulations of these 

compounds were able to determine that in all likelihood DON exists in a single conformation which  

is entropically favored due to intramolecular hydrogen bonding interactions [137]. Verrucarin A 

predominantly exists in a single conformation which accounts for approximately 75% of the total relative 

population, while several other low-energy conformers account for the remaining population [138]; 

whereas, roridin A exists as a mixture of two nearly equi-energetic conformers [139]. 

3.4. Spectroscopic Determination of Trichothecenes Through Solid-State NMR 

It is also important to note that NMR structural studies are not limited to the solution-state. Until 

recently, solid-state NMR has been plagued with difficulties in spectral resolution due to the extreme 

line broadening caused by the orientational dependence of shielding and coupling interactions. However, 

advancements in high-field spectrometers, ultrafast sample spinning, and new pulse sequence techniques, 

have made the study of organic compounds via solid-state NMR a reality. In solution, molecules rotate 

rapidly in random orientations averaging the signal isotropically [119]. In contrast, molecules in the 
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solid-state are essentially static; thus, in a powder, the entire range of orientation is manifested as a 

broadened signal, covering a very large range in frequency, with an intensity pattern reflecting the 

relative probability of each orientation. This is referred to as a powder pattern (see Figure 9). 

Figure 9. Appearance of NMR signals under (A) isotropic, and (B) anistropic experimental 

conditions. Samples rotationally averaged by the Brownian motion of a solvent in the 

solution-state; or solid-state samples which are rotationally averaged due to Magic-Angle 

Spinning (MAS), will have NMR lineshapes similar to that depicted in (A). Solid-state 

samples experiencing multiple orientations simultaneously will display powder patterns 

similar to that depicted in (B). 

 

The anisotropy of the shielding and coupling interactions can be removed, to a large extent, by 

spinning the sample at an angle that corresponds to the body diagonal of a cube, obeying the rule 

(3cos2Θ − 1) = 0. The angle Θ, equal to 54.74°, is referred to as the magic angle. Magic Angle Spinning 

(MAS) of a solid powder mimics the isotropic motion seen in solution, and leads to averaging of the 

NMR signal to a single frequency if the sample is spun at sufficient speed; otherwise a side band 

pattern is observed [140].  

Spinning of the sample also has the potential to remove other interactions that are present in the 

solid-state that are not seen in solution, as motional averaging effectively removes them. Dipolar 

coupling is observed in the solid-state and arises due to the direct interaction between the magnetic 

moment of one spin sensing the magnetic field resulting from the magnetic moment of another spin. 

The magnitude of this coupling effect is proportional to (γiγj/r
3); where γi is the gyromagnetic ratio of 

the first spin, γj is the gyromagnetic ratio of the second spin, and r is the internuclear distance [141]; 

thus, it is possible to determine the distance between two dipolar coupled nuclei, using this 

relationship. Coupling between two like nuclei, homonuclear coupling, gives rise to line-broadening. If 

the rate of sample spinning is greater than the magnitude of this interaction, the coupling is effectively 

removed and with it any consequent line-broadening. Conversely, if the dipolar coupling exceeds the 

spinning speed, the contribution to the line width can be significant. The latter situation occurs 

between 1H resonances, producing broad and featureless spectra which are of little utility on their own. 

Recent advances in the field of solid-state NMR has led to the introduction of new techniques and 

pulse sequences which have the ability to navigate around the issues of large chemical shift anisotropies 

and strong dipolar coupling. Ultrafast MAS probes have been designed that can spin up to 80 kHz, in an 

attempt to effectively suppress dipolar coupling interactions between strongly coupled nuclei, such as 
1H homonuclear coupling. Furthermore, pulse sequences, such as Phase-Modulated Lee Goldberg 

(PMLG) decoupling, can be used to average out the zero- and first-order dipolar coupling terms in the 

A B 
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Hamiltonian and effectively mimic the effects of ultrafast sample spinning at more moderate spinning 

speeds [142].  

The importance of studying biologically active compounds in the solid-state has been illustrated in a 

review by Geppi et al., regarding the solid-state NMR analysis of pharmaceuticals [143]. Of particular 

importance is the high relative occurrence of polymorphism among biological and organic compounds. It 

has been demonstrated that in many cases, the biological activity between polymorphs varies, even 

though they all share the same chemical structure and stereochemistry. It is often extremely difficult to 

obtain individual single crystals of polymorphic compounds, since there is a high degree of disorder, 

due to the different conformations observed. Given the evidence for the inefficiency of crystallization 

of trichothecenes [115], and the different conformations observed due to solvent properties [26], it is 

likely that different polymorphs of these compounds may be present. Therefore, it is the impression of 

the authors that studying the compounds in the solid-state may prove to be beneficial to understanding 

the overall structure-function relationship and general toxicology of these compounds. 

To the best of our knowledge, the only solid-state NMR study performed on trichothecene toxins to 

date has been contributed by our lab [57]. In this study, it was determined that T-2 toxin adopts three 

distinct conformations: one in solution, and two different conformations in the solid-state, shown  

in Figure 10. In previous studies, water had been classified as a contaminant, and even after vacuum 

pumping on a sample for several hours, the water peak remained [144]. However, it is our impression 

that water is not necessarily a contaminant, but rather is a key feature of the trichothecene structure. 

Water bridging is an important feature of many biological compounds, often resulting in a rigidification 

of the structure in order to confer activity [145]. In solution, a water molecule was observed to sit in the 

“pocket” created by the tetrahydropyranyl B-ring and cyclopentyl C-ring, rigidifying the structure, as 

evidenced by our deuterium exchange and NOESY experiments [57]. In the solid-state, a second 

weaker water binding is believed to exist on the opposite side of the molecule near the epoxide [57], 

which is evidenced by the large chemical shift differences observed in the solid-state for these 

particular signals, the proposed interactions with water are depicted in Figure 11. 

Solid-state NMR, although a highly effective technique on its own, has recently been shown to be far 

more effective when combined with X-ray diffraction studies and molecular dynamics, to provide atomic 

resolution structures of complex systems in a technique referred to as NMR Crystallography [104]. 

It is our belief that these differences in conformation may play a role in the toxicology of the 

compound, particularly regarding the interaction with the ribosome. The cellular environment is not 

strictly aqueous. Molecular crowding and protein active sites often result in a reduction of water 

availability. The peptidyl transferase center (PTC) of the ribosome is no exception [146]. During 

peptide bond formation, water is sequestered from the ribosome active site where trichothecenes are 

believed to interact. It is a possibility that the sequestration of water during peptide bond formation 

may serve to trigger a conformational change in the toxin, allowing for a tight binding to the PTC, thus 

stalling protein synthesis; while differences in the substituent groups of the trichothecene core and 

alternative RPL3 isoforms may contribute to the differences observed for Types I (initiation),  

E (elongation) and T (termination) ribosomal inhibition. 
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Figure 10. Solution- and solid-state NMR structures observed for T-2 toxin: (A) solution-state 

conformation of T-2 toxin observed in CDCl3; (B and C) two different solid-state 

conformations for T-2 toxin, differing mainly in the orientation of the side chains. 

 

Figure 11. Proposed water binding interaction for T-2 toxin in the (A) solution- and (B) 

solid-state. At least one molecule of water has been observed to bind in the pocket formed 

between the tetrahydropyranyl B-ring and cyclopentyl C-ring. The major chemical shift 

differences observed for T-2 toxin in the solid-state NMR spectrum suggest that a second 

water binding site may be present near C-12 of the epoxide ring. 

(A) (B) 

3.5. NMR Crystallography 

NMR has been applied to crystallographic analysis for the refinement of three-dimensional 

structure [104] since its inception in 1948. Although NMR continues to be used as a tool in the 

refinement of diffraction results, NMR has further proven its ability to supply information which may 

be difficult or even inaccessible by diffraction methods. Solid-state NMR methods have now made 
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sufficient advancements to the point where it is possible, in favorable cases, to solve crystal structures 

of molecules without the aid of single crystal diffraction data. 

The basic principle behind NMR and X-ray Crystallography is the same in that the experimental 

data is fit to a structural model by optimizing the structural parameters. For single crystal X-ray 

methods the diffraction pattern is used; whereas, in NMR methods there are various options based on 

the chemical shielding, dipolar coupling and quadrupolar coupling parameters. In general, for natural 

products only the dipolar and chemical shielding parameters are relevant. 

Historically speaking, chemical shielding predictions from first principles in solution NMR has had 

limited utility due to the large systemic errors encountered by not being able to properly account for 

the molecular environment in solution. In the solid-state, the immediate environment is relatively static 

and readily described by the unit cell and the conformations of the molecules therein. The extension  

of solid-state electronic structure calculations to solid-state NMR parameters has been a major 

breakthrough [147]. The chemical shielding parameters are predicted with unprecedented accuracy to 

such an extent that it is possible to use experimental values as constraints in structure optimization, as 

long as a suitable model can be devised. The main issue here is determining the unit cell parameters, 

which in any practical sense, still require powder X-ray measurements.  

There are several advantages that NMR crystallography has to offer over SCXRD. NMR 

Crystallography has the ability to determine hydrogen positions, and offers the ability to obtain crystal 

structures from microcrystalline powders. In other words there is no need to grow crystals suitable for 

diffraction studies. Mixtures of several polymorphs can be dealt with, and often done simultaneously, as 

disorder due to solvent inclusion does not pose significant complications [104]; furthermore, dynamic 

disorder can also be accommodated. In principle the absolute stereochemistry can be determined.  

3.5.1. Hydrogen Positions 

In practice, X-ray diffraction on its own cannot unambiguously define the location of hydrogen 

atoms. Thus, crystallographers must rely on known bonding behavior to estimate the approximate 

location of the protons. This can prove problematic when determining the location and angles of 

hydrogen bonds. Interactions of this nature are crucial to the understanding of structure-function 

relationships; hence the ability to determine proton positions is highly desirable. 

3.5.2. Powder Samples and Polycrystallinity 

Solid-state NMR does not require single crystal work, although it is possible with relatively large 

crystals and specialized goniometer probes [148]; thus, the majority of solid-state NMR studies are 

performed on microcrystalline and polycrystalline powder samples, which overcomes the laborious 

task of producing crystals suitable for crystallographic analysis. Furthermore, atomic-level structures 

of gels, amorphous and glassy samples can also be obtained [104]. Polymorphic compounds can be a 

challenge to work within the solid-state, for both X-ray Crystallography and NMR. Although in many 

cases, solid-state NMR can distinguish between different crystal polymorphs, using two-dimensional 

correlation techniques and isotopic enrichment, for samples where isotopic enrichment is not feasible, 

computer-based molecular modeling must be employed.  
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Natural product, organic and pharmaceutical chemistry are laden with polymorphic compounds 

which may be extremely difficult to not only characterize but to quantify [149]. Solid-state NMR, and 

in particular NMR crystallography, is uniquely able to characterize and quantify distinct polymorphs 

of compounds in an efficient manner, where significant line broadening is not an interfering factor. A 

particularly interesting example is that of cortisone acetate [150]. The tetracyclic cortisone acetate has 

been previously characterized by XRD, yielding four chemical structures; however, when the compound 

was studied by NMR, three additional structures were determined. Each form of the compound shows  

a distinct peak pattern in the NMR spectra; however, in this case, it was possible to isolate the  

different forms from one another. In the case of T-2 toxin, studied via X-ray Crystallography by  

Gilardi et al. [116], and in the solid-state by Chaudhary et al. [57], the presence of two molecules with 

different configurations about the isovalerate function compose the unit cell (Figure 12). The two 

forms are present in a 1:1 ratio, giving two sets of carbon signals of equal intensity. 

Figure 12. Superposition of the solid-state (black) and solution-state (blue) spectra 

displaying the twinning observed solid-state signals, indicating that two distinct 

conformations for T-2 toxin are present in the unit cell. (A) methyl carbons;  

(B,C) methylene carbons; (D–G) methine, π-bonded, and quaternary carbons; (H) carbonyl 

carbons, respectively. 

 

3.5.3.  Inclusion and Dynamic Disorder 

Inclusion of solvent typically does not adversely affect the data, unless intermolecular dipolar 

coupling to the solvent results in line broadening in the spectrum. Often inclusions are dynamic, thus 

dipolar couplings are attenuated motion. It is possible to account for motion in the structural model and 

use it in the refinement of the structure [104]. In fact by making measurements over a range of 

temperatures it is possible to measure rates of dynamic processes and determine their thermodynamic 

parameters [151].  
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3.5.4.  Absolute Configurations 

The spectra parameters are predicted on a structural model just as in SCXRD. Hence the absolute 

configuration about any stereogenic centre can be included in such a model and optimized to experimental 

data. Therefore, there is no inherent constraint on NMR crystallography in determining absolute 

configuration as there is in the solution phase. This has been a major weakness of solution NMR and 

one of the main reasons SCXRD measurements are required. 

4. Conclusions 

The structural analysis of biologically active compounds is imperative to understanding the  

function of the molecule. Without a well-defined three-dimensional structure, determination of 

potential receptors and interacting units becomes comparable to the search for a needle in a haystack. 

Although many three-dimensional models for various members of the trichothecene family have been 

proposed, physiological relevance must be considered, as multiple conformations may exist in 

different environments. 

The search for functional interacting units remains ongoing, and the exact mechanism of interaction 

and toxicity of the trichothecenes remains unclear. It is the opinion of the authors, that through  

the combined efforts of structural analysis by solution- and solid-state NMR, NMR crystallography, 

and molecular dynamics simulations, as well as a biochemical investigation into the kinetic and 

functional activity of the compounds, that the mechanism for the toxicity of these compounds can be 

brought to light. 
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