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ARTICLE INFO ABSTRACT

Keywords: An integrated analysis of the transcriptome and metabolome was conducted to investigate the underlying
Transcriptome mechanisms of apple fruit response to impact damage stress. During the post-damage storage, a total of 124
Metabolome

differentially expressed genes (DEGs) were identified, which were mainly annotated in 13 pathways, including
phenylpropanoid biosynthesis. Besides, 175 differentially expressed metabolites (DEMs), including 142 up-
regulated and 33 down-regulated metabolites, exhibited significant alteration after impact damage. The DEGs
and DEMs were simultaneously annotated in 7 metabolic pathways, including flavonoid biosynthesis. Key genes
in the volatile esters and flavonoid biosynthesis pathways were revealed, which may play a crucial role in the
coping mechanisms of apple fruit under impact damage stress. Moreover, 13 ABC transporters were significantly
upregulated, indicating that ABC transporters may contribute to the transportation of secondary metabolites
associated with response to impact damage stress. The results may elucidate the comprehension of metabolic

Apple fruit
Impact damage
Resistance mechanisms

networks and molecular mechanisms in apple fruits that have undergone impact damage.

1. Introduction

The hybrid analysis of multiple omics, such as genomics, tran-
scriptomics, proteomics, and metabolomics, constitutes a crucial strat-
egy for investigating the interactions among distinct substances in
biological systems (Afridi et al., 2022; Pinu et al., 2019; Zheng et al.,
2022). As multi-omics analysis methods continue to advance, an esca-
lating number of inquiries employ transcriptomics and metabolomics to
elucidate the underlying mechanisms governing fruit responses to non-
biological stress (J. Liu et al., 2022). For instance, Yun et al. (2016)
utilized transcriptomics and metabolomics to scrutinize the regulatory
mechanism of hastened senescence in Litchi fruit following cold storage.
Their findings indicated that rapid aging of Litchi fruit after cold storage
might be due to oxidative processes induced by abscisic acid, which
included the oxidation of lipids, polyphenols, and anthocyanins. Simi-
larly, Lin et al. (2021) conducted a transcriptomic and metabolomic
analysis of Lycium barbarum fruit under salt stress, thereby identifying

1396 genes with differential expression and 71 metabolites with dif-
ferential expression. The pathway analysis conducted revealed that the
flavonoid metabolism pathway could heighten the salt tolerance of
Lycium barbarum fruit. However, scant reports are available on the use of
transcriptomics and metabolomics to probe the response mechanisms of
fruits to postharvest mechanical damage stress.

Transcriptomics is a valuable technique for investigating gene
expression and transcriptional regulation at the mRNA level, which al-
lows researchers to probe cellular phenotypes and functions (X. Liu
etal., 2023; M. Zhang et al., 2022). This method has found extensive use
in various postharvest fruit research fields, including investigations into
molecular mechanisms under non-biological stress. For example, Gong
et al. (2015) observed that differentially expressed genes linked to
brassinosteroid biosynthesis and the phosphatidylinositol signaling
system were upregulated in loquat fruits subjected to cold stress, high-
lighting their critical role in the fruit’s resistance mechanism against
cold stress. Similarly, Zhang et al. (2020) found that cold-stressed
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blueberry fruits primarily induced genes involved in the biosynthesis of
membrane lipids, proline, glutathione, flavonoids, brassinosteroids,
carotenoids, and zeatin. Meanwhile, Belay et al. (2020) found that
differentially expressed genes related to cell membrane proteins,
glycine-rich proteins, glycosyltransferase proteins, and tannin biosyn-
thesis were mainly associated with the “scald” injury in pomegranate
peel during low-temperature storage.

Metabolomics represents a burgeoning field that has emerged in the
wake of genomics, transcriptomics, and proteomics, and is a pivotal
constituent of systems biology. The examination of metabolomics is of
paramount importance in scrutinizing non-biological stress response
mechanisms in fruits (Shen et al., 2021). A comparative analysis of
metabolomic data conducted by Moreno et al. (2018) on two citrus
cultivars, ’Murcott’ and ’Ellendale’, revealed that 'Ellendale’ evinced a
robust capacity to withstand both biological and non-biological stress
following heat treatment. In a study by Tunsagool et al. (2019), it was
demonstrated that the application of Bacillus subtilis lipopeptides could
mediate citrus fruit’s resistance response to stress. The application of
lipopeptides upregulated the levels of serotonin and tyramine, two
important secondary metabolites that have been reported to stimulate
the plant defense system during stress. Furthermore, metabolic pathway
analysis revealed that the application of Bacillus subtilis lipopeptides
triggers the metabolism of glycine, serine, and threonine, which are the
primary pathways inducing serotonin production, and activates tyrosine
metabolism, leading to an increase in tyramine production. Santin et al.
(2021) discovered that UV-B stress had a considerable influence on the
metabolome of peach fruits. Specifically, terpenes, phenylpropanoids,
plant toxins, and fatty acids decreased in content after 24 h of UV-B
treatment, but increased after 36 h.

Mechanical damage represents a recurrent and pervasive issue in fruit
cultivation and preservation, which can culminate in notable financial
deficits for growers, manufacturers, and vendors. Such impairment can
elicit physical and physiological alterations in fruit tissues, instigating a
reduction in firmness, an escalation in respiration rates, and an amplifi-
cation in the predisposition towards putrefaction and microbial
contamination, thereby expediting the proliferation of deteriorated fruit,
curtailing fruit shelf-life, and ultimately incurring substantial economic
losses for agricultural production (Lin et al., 2021). Among the various
modalities of mechanical damage, impact damage, resulting from dy-
namic loading, constitutes a predominant form of post-harvest fruit
impairment (Lin et al., 2022). This damage typically occurs during rough
handling in fruit loading and unloading, commercial processing, grading
and sorting, as well as collisions with conveyors during transportation or
as a result of packaging falling or sudden braking.

Most of the fruit species including apple are gained more popularity
in recently and the number of scientific studies on fruit species has been
increased. These fruits are genetically very diverse and among the
healthiest foods and provide a number of impressive health benefits.
They include high content of non-nutritive, nutritive, and bioactive
compounds such as flavonoids, phenolics, anthocyanins, phenolic acids,
and as well as nutritive compounds such as sugars, essential oils, ca-
rotenoids, vitamins, and minerals (Abanoz & Okcu, 2022; Bozhuyuk,
2022; Dawadi et al., 2022; Rymbai et al., 2023). The ’Red Fuji’ apple
(Malus x domestica Borkh. Red Fuji) is a widely recognized fruit
belonging to the Rosaceae family. Nonetheless, its delicate skin and
fragile texture render it vulnerable to damage during the post-harvest
supply chain, which could result in decay and deterioration (Lin et al.,
2021). Although some preliminary investigations have been conducted
on the molecular mechanisms underpinning the deterioration of apple
fruit quality and stress response triggered by post-harvest mechanical
damage, there exists a dearth of systematic research on the stress
response mechanisms of apple fruit subjected to impact damage, as well
as the metabolic network and molecular mechanisms of physiological
deterioration induced by impact damage.

The present investigation entailed a comprehensive analysis of the
stress response mechanism of "Red Fuji’ apple fruit subjected to impact
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damage, utilizing an integrated approach involving transcriptomic and
metabolomic analyses. The screening of candidate defense compounds
and genes, alongside the clarification of the metabolic regulation
network under impact damage stress, were accomplished. We hypoth-
esized that the resistance of apples to damage is associated with the
biosynthesis of volatile esters and flavonoids. The results of this study
bear substantial importance in facilitating the functional verification
analysis of pivotal defense genes in 'Red Fuji’ apple fruit.

2. Materials and methods
2.1. Fruit materials

The “Red Fuji” apple (Malus x domestica Borkh. Red Fuji) was pur-
chased from a local store in Hangzhou, Zhejiang Province, China. The
apples were selected based on their uniform size and color, commercial
ripeness, absence of mechanical damage, and lack of signs of pest or
disease. To prevent mechanical damage during transportation, the ap-
ples were packed in single-layer double corrugated boxes and covered
with foam mesh bags. Upon arrival at the laboratory, the apples were
carefully examined to exclude any that had been damaged during
transport.

2.2. Impact damage treatment of apple fruit

To simulate the impact, the fruit was dropped from a height of 40
mm onto a marble floor. The fruit was immediately caught after the fall
to prevent secondary damage. The fruits were stored at 20 °C after
impact, and samples were collected on 0, 2, 6, 24, and 60 d of storage. At
each time point, a total of 15 apple fruits are randomly sampled and
subsequently divided into three biological replicates, where each
replicate consists of 5 fruits. The damaged part and undamaged part of
the fruit were identified as the impact group (ID) and control group
(CKyp), respectively. The flesh samples were finely chopped, quickly
frozen in liquid nitrogen, and stored at —80 °C.

The experiment encompassed two distinct groups: the impact group
(ID) and the control group (CKjp). Samples were collected from both
groups at five time points, enabling subsequent analysis of metabolites
and transcriptomes. The analysis comprised the identification and ex-
amination of metabolites and transcriptomes individually, as well as a
comprehensive joint analysis of transcriptomes and key metabolites. The
metabolite data analysis incorporated principal component analysis
(PCA), cluster analysis, and assessment of replicate correlation. The
transcriptome data analysis encompassed sequence alignment against a
specified reference genome, differential expression analysis, functional
annotation of genes exhibiting differential expression, and functional
enrichment analysis based on expression levels. The joint analysis
entailed correlation analysis and the investigation of eight KEGG
pathways.

2.3. Detection and analysis of transcriptome

2.3.1. Extraction of RNA

The total RNA extraction method used in this study was based on Wu
et al. (2022). The method involved adding 0.5 g of pulp sample powder
to 4 mL of pre-warmed CTAB/p-mercaptoethanol solution, followed by
lysis and extraction using chloroform/isoamyl alcohol. The supernatant
was then treated with lithium chloride, and the resulting precipitate was
dissolved in SSTE and re-extracted with chloroform/isoamyl alcohol.
The RNA was precipitated with ethanol, collected by centrifugation, and
dissolved in DEPC water. The integrity and purity of the RNA samples
were assessed by agarose gel electrophoresis and UV spectrophotometry.

2.3.2. Analysis of the transcriptome
RNA sequencing on fruit samples of impact and control groups at
different storage times (0, 2 d, 6 d, 24 d and 60 d) was conducted using
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the Illumina Hiseq sequencer platform (Beijing Biomarker Technologies
Co., Ltd.). Each sampling point sample had three biological replicates.
The data was preprocessed to remove low quality data and assembled
with reference to the apple genome Malus x domestica Genome V1.0
database. GO enrichment analysis was performed using GOseq R pack-
age software, and KEGG signaling pathway enrichment analysis was
performed using KOBAS software. Gene expression abundance was
measured using the FPKM value (Fragments per kilobase of transcript
per million fragments mapped), which was calculated as follows.

cDNA Fragments

FPKM = prems .
Mapped Fragments (Millions) x Transcript Length (kb)

2.4. Detection and analysis of a wide range of targeted metabolomes

2.4.1. Sample preparation and extraction

Fruit samples of impact and control groups at 6 d of storage were
chosen for extensive targeted metabolomic assays conducted by Wuhan
Metwell Biotechnology Co., Ltd. The pulp samples were first vacuum
freeze-dried and ground to powder using a grinder. Then, 100 mg of the
sample powder was dissolved in 0.6 mL of 70% methanol aqueous so-
lution and left to extract overnight at 4 °C. The following day, the
samples were centrifuged, and the supernatant was filtered and aspi-
rated for UPLC-MS/MS analysis. Three biological replicates were con-
ducted for each sampling point sample.

2.4.2. Conditions for ultra-performance liquid chromatography and tandem
mass spectrometry

The primary method of data acquisition was through ultra-
performance liquid chromatography (UPLC) and tandem mass spec-
trometry MS/MS. The liquid chromatography conditions and the mass
spectrometry conditions were referred to Yang et al. (2022).

2.5. Statistical analysis

In order to understand the overall metabolic differences between
sample groups and the variability within each group, PCA was
employed. The data processing steps associated with PCA involve
compressing the original data into a set of n principal components,
thereby capturing the salient characteristics of the initial dataset. Prin-
cipal Component 1 (PC1) denotes the most prominent feature within the
multidimensional data matrix, followed by PC2, which represents the
subsequent significant feature after PC1. This sequential pattern con-
tinues with PC3...PCn. The R software’s built-in statistical function
prcomp was used to conduct PCA (https://www.r-project.org).

To identify differential metabolites, the metabolomic data was sub-
jected to analysis using Orthogonal Partial Least Squares-Discriminant
Analysis (OPLS-DA). This technique employs predictive parameters
such as R2X, RZY, and Q2 to assess the model’s performance. R%X rep-
resents the percentage of variance explained by the model for the in-
dependent variable matrix X, while R%Y represents the percentage of
variance explained for the dependent variable matrix Y. Q? is a measure
of the model’s predictive ability. The closer these three indicators are to
1, the more stable and reliable the model is considered. A Q? value
greater than 0.5 is typically indicative of an effective model, while a Q?
value exceeding 0.9 suggests an outstanding model. In the present study,
Q? is 0.932, which proves the stable reliability of the model.

In addition to PCA, the ComplexHeatmap toolkit in R software was
utilized to create cluster heat maps, radar plots, and Pearson correlation
coefficients for clustering analysis and correlation analyses. Origin Pro
2020 Learning Edition software (OriginLab Corp., Northampton, MA)
was used to generate histograms and differential metabolite classifica-
tion heatmaps. For significance analysis, one-way analysis of variance
(ANOVA) was performed using the SPSS 17.0 software package (IBM,
New York, NY), and significant differences were indicated as *p < 0.05,
**p < 0.01, and *** p < 0.001.
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3. Results
3.1. Effect of impact damage on the transcriptome of apple fruit

3.1.1. Sequencing data and the quality of the data

RNA-Seq technology was employed to perform transcriptome anal-
ysis on 30 apple samples. A clean data set of 220.50 Gb was obtained,
with each sample reaching 5.69 Gb and Q30 base percentage exceeding
94.23%. Alignment efficiency with the designated reference genome
ranged from 66.41% to 71.96% for each sample. The sequencing quality
of the impact-damaged apple transcriptome was statistically analyzed,
and the results are presented in Table S1.

PCA was executed on the transcriptome data to examine the varia-
tions between samples, and the outcomes are demonstrated in Fig. la.
The first two principal components, Principal Component 1 (PC1) and
Principal Component 2 (PC2), could account for 62.3% and 18.7% of the
total variance, respectively. At the PC1 level, d6 CKjp could be distin-
guished from d6 ID distinctly. At the PC2 level, d2 CKjp was evidently
separable from d2 ID, and d6 CKjp from d6 ID, while the distinction
between the impact and control groups was less conspicuous at other
storage times. These findings suggest that the transcriptomes of the
diverse apple fruit samples were indistinguishable on the day after
impact damage and could only be distinguished at 2 d and 6 d of storage,
whereas the distinction was less prominent at 24 d and 60 d of storage.

3.1.2. Screening and expression analysis of differentially expressed genes
(DEGsS)

Table S2 shows the statistics of the impact damage on the number of
DEGs in apple fruit during storage. The number of DEGs gradually
decreased over time after the fruits were subjected to impact damage,
with 2723 DEGs identified at 0 d, 2681 and 2189 DEGs identified at 2
d and 6 d, and 685 and 598 DEGs identified at 24 d and 60 d,
respectively.

The Wayne diagram depicting the DEGs of apple fruit following
impact damage during storage is exhibited in Fig. 1b. Amongst all the
DEGs, a total of 124 were found to be common at each storage time point
for both the impact and control groups. Notably, KEGG annotation of
these DEGs revealed their association with various metabolic pathways,
including flavonoid synthesis and phenylpropanoid biosynthesis path-
ways (10 genes), signal transduction pathway (9 genes), carbohydrate
metabolism pathway (8 genes), transcription pathway (5 genes), amino
acid and other amino acid metabolism pathways (5 genes), terpenoid
and polyketide metabolism pathways (4 genes), and lipid metabolism
pathways (3 genes), as well as environmental adaptation (3 genes),
transport and catabolic pathways (3 genes), cofactor and vitamin
metabolism pathways (2 genes), folding, sorting, and degradation
pathways (2 genes), translation pathways (1 gene), and membrane
transport pathways (1 gene).

3.1.3. Functional annotation of differentially expressed genes

The functional annotation of differentially expressed genes (DEGs)
was performed using eight databases, and the results are presented in
Table S3.At0d, 2d, 6 d, 24 d, and 60 d of storage, a total of 2609, 2531,
2099, 670, and 581 DEGs, respectively, were annotated in the eight
databases for both the impact and control groups of apple fruit.

3.1.4. GO functional annotation and enrichment analysis of DEGs

GO annotation and enrichment analysis of DEGs (depicted in Fig. 1c,
le, 1 g, 1i, 1 k) were conducted to explore the biological processes
associated with DEGs in both impact and control fruits. Specifically, at
0 d, DEGs between the impact and control groups were predominantly
enriched in defense response, response to biotic stimulus, and response
to oxygen-containing compound processes. At 2 d, DEGs were primarily
enriched in translation and defense response processes. At 6 d, DEGs
were enriched in cell wall organization and defense response processes.
At 24 d, DEGs were chiefly enriched in cell wall organization and
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Fig. 1. Effect of impact damage on the transcriptome of apple fruit. PCA analysis of transcriptome data in ID and CKp group apples during storage. (b) Venn di-
agrams of DEGs in ID and CKjp group apples during storage. (c, e, g, i, k) Biological Process of GO enrichment of DEGs in ID and CKjp group apples on 0 d (c), 2 d (e),
6d (g), 24 d (i), and 60 d (k) of storage. (d, f, h, j, 1) KEGG enrichment of DEGs in ID and CKjp group apples on 0 d (d), 2 d (f), 6 d (h), 24 d (j), and 60 d (1) of storage.
ID: Impact damage; CKjp: Control check for ID.

carbohydrate metabolism processes. Lastly, at 60 d, DEGs were mainly such as plant-pathogen interaction, MAPK pathway-plant, and plant
enriched in response to oxygen-containing compound and defense hormone signaling, exhibited the highest enrichment of DEGs between
response process. the impact and control groups. At 2 d, the majority of the DEGs were
accumulated in metabolic pathways, such as ribosome, plant-pathogen

3.1.5. Functional annotation and enrichment analysis of KEGG of DEGs interaction, and amino acid biosynthesis. At 6 d, the DEGs were
The top 20 enriched metabolic pathways were identified by per- mainly concentrated in metabolic pathways associated with amino
forming KEGG functional annotation and enrichment analysis of DEGs, sugar and nucleotide sugar metabolism, plant-pathogen interaction,
as shown in Fig. 1d, 1f, 1 h, 1j, and 1 L. At day O, metabolic pathways, MAPK pathway-plant, plant hormone signal transduction, and other
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metabolic pathways. At 24 d, the DEGs were mainly concentrated in
pathways involved in plant-pathogen interaction, MAPK signaling
pathway-plant, and sucrose and starch metabolism. At 60 d, the DEGs
were mostly concentrated in metabolic pathways, such as glutathione
metabolism, tryptophan metabolism, flavonoid biosynthesis, and phe-
nylpropanoid biosynthesis.

3.2. Effect of impact damage on the metabolome of apple fruit

3.2.1. PCA analysis and repeat correlation assessment

The variability between the impact and control group samples was
evaluated using PCA analysis. As shown in Fig. 2a, PC1 and PC2
cumulatively contributed 18.44% and 47.40% of the variation, respec-
tively. By using PCA analysis, the apple fruits in the impact and control
groups could be easily distinguished.

For the biological replicates of the fruit samples, correlations were
assessed using Pearson correlation coefficients (Fig. 2b). According to
the results, there was a significant degree of data consistency among the
three biological replicates of the impact and control groups, and the
correlation coefficients of the samples within groups were higher than
those between groups, indicating a high degree of data reliability.

3.2.2. Screening of differentially expressed metabolites (DEMs)
Based on broadly targeted metabolomic analysis methods, a total of
683 metabolites were identified in apple fruit samples. Of these, 175
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metabolites, including 142 up-regulated and 33 down-regulated me-
tabolites, were significantly altered after impact damage. Table S4
shows the details of DEMs. To further illustrate the patterns and
expression levels of metabolite changes between the impact and control
groups, the 175 DEMs were applied to a volcano plot analysis (Fig. 2c).

3.2.3. Classification of DEMs

The fold differences of DEMs between the impact and control groups
of apple fruit were subjected to Log, transformation and subsequently
plotted categorically in Fig. 2d. The identified metabolites were classi-
fied into various groups including 34 terpenoids, 30 flavonoids, 22
lipids, 17 amino acids and its derivatives, 15 phenolic acids, 12 nucle-
otides and its derivatives, 10 alkaloids, 10 others, 9 organic acids, 9
lignans and coumarins, and 7 tannin metabolites.

The top 10 metabolites with the largest fold difference were pre-
sented as bars in Fig. 2e. Among them, the up-regulated metabolites
were isothankunic acid, 2,4,2,4-tetrahydroxy-3-prenylchalcone, 11-
keto-ursolic acid, succinic anhydride, Trans-5-O-(p-coumaroyl) shiki-
mate, 2a,3a-epoxy-5,7,3,4-tetrahydroxyflavan-(4f-8-catechin), Pro-
cyanidin A2, S-allyl-L-cysteine, syringic acid, 1-oxo-siaresinolic acid.
Downregulated metabolites were L-tryptophan, 1-methoxyindole-3-
acetamide, methoxyindoleacetic acid, L-lysine, L-glutamine, 6-methyl-
mercaptopurine, L-phenylalanine, = N-benzylmethylene-isomethyl-
amine, piceatannol-3'-O-glucoside, N-monomethyl-L-arginine.
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Fig. 2. Effect of impact damage on the metabolome of apple fruit. (a) PCA score plot metabolite profiles from CK;p and ID group. (b) Correlation heat map of CKjp
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3.2.4. Functional annotation and enrichment analysis of the KEGG
metabolic pathway for DEMs

The 175 DEMs between apple fruit samples of the impact and control
groups were annotated with KEGG pathways, and the KEGG classifica-
tion (Fig. 2f) and KEGG enrichment analysis (Fig. 2g) were plotted. The
first 20 enriched pathways mainly included (1) metabolic pathways
related to biosynthesis of other secondary metabolites, such as flavonoid
biosynthesis, phenylpropane biosynthesis, isoflavonoid biosynthesis,
indole alkaloid biosynthesis, tropane, piperidine and pyridine alkaloid
biosynthesis, stilbenoid, diarylheptanoid and gingerol biosynthesis,
glucosinolate biosynthesis, etc. (2) metabolic pathways related to amino
acid metabolism, such as valine, leucine and isoleucine biosynthesis,
valine, leucine and isoleucine catabolism, tryptophan metabolism,
lysine catabolism, etc. (3) metabolic pathways related to the metabolism
of other amino acids, such as cyanoamino acid metabolism; (4) meta-
bolic pathways related to nucleotide metabolism, such as purine meta-
bolism, pyrimidine metabolism, etc.; (5) metabolic pathways related to
carbohydrate metabolism, such as propanoate metabolism; (6) meta-
bolic pathways related to global and outline maps, such as 2-oxocarbox-
ylic acid metabolism; (7) metabolic pathways related to cofactor and
vitamin metabolism, such as biotin metabolism (8) metabolic pathways
related to membrane transport, such as ABC transport; (9) metabolic
pathways related to translation, such as aminoacyl-tRNA biosynthesis;
(10) metabolic pathways related to lipid metabolism, such as ketone
synthesis and degradation. In addition, the KEGG enrichment map re-
sults showed that six metabolic pathways were significantly enriched (p-
value < 0. 05), including flavonoid biosynthesis, tropane, piperidine and
pyridine alkaloid biosynthesis, aminoacyl-tRNA biosynthesis, valine,
leucine and isoleucine degradation, thioglucoside biosynthesis and ABC
transport.

3.2.5. Clustering analysis of KEGG annotation information of DEMs

To analyze the modifications in the content of DEMs within poten-
tially significant metabolic pathways in both the impact and control
groups, KEGG pathways that contained no less than five distinct dif-
ferential metabolites were selected based on the DEMs’ annotation in-
formation within the KEGG pathway, and all the differential metabolites
annotated to these pathways underwent cluster analysis (as depicted in
Fig. 2h). The results revealed that the aforementioned DEMs consisted of
eleven amino acids and their derivatives, ten flavonoid metabolites,
eight nucleotides and their derivatives, seven phenolic acid metabolites,
six organic acid metabolites, five alkaloid metabolites, four additional
categories of metabolites, as well as one lignan and coumarin
metabolite.

3.3. Integrating transcriptome and metabolome analysis of apple fruit
under impact damage

3.3.1. Correlation analysis of transcriptome and metabolome expression
data

To demonstrate the correlation of DEGs and DEMs, a nine-quadrant
plot was used to analyze the differential multiplicity of DEGs and DEMs
with Pearson correlation coefficients greater than 0.8 (Fig. 3a). The
analysis revealed that genes and metabolites in quadrants 3 and 7 had
similar patterns of differential expression, suggesting that genes posi-
tively regulate the expression of these metabolites. Further analysis
showed that 2217 differential genes positively regulated 190 differential
metabolites, which may be associated with the response of apple fruit to
impact damage. On the other hand, the opposite patterns of differential
expression for genes and metabolites in quadrants 1 and 9 suggest that
changes in the expression of these metabolites may be negatively
regulated by genes. The analysis showed that 2184 differential genes
adversely regulated 188 differential metabolites, which may also be
related to how apple fruit responds to impact damage as a source of
stress. When genes or metabolites were up- or down-regulated but not
both, they were located in quadrants 2, 4, 6, and 8. Quadrant 5 indicates
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no differential expression of both genes and metabolites.

3.3.2. Analysis of the KEGG pathway for co-enrichment of DEGs and DEMs

Enrichment analysis was performed on the DEGs and DEMs between
fruit samples from the impact and control groups, and the enrichment
levels of metabolic pathways with both DEGs and DEMs were shown in
Fig. 3b. The results showed significant enrichment (p-value < 0.05) of
DEGs or DEMs annotated in the flavonoid biosynthesis, degradation of
valine, leucine, and isoleucine, ABC transport, linoleic acid metabolism,
ketone body synthesis and degradation, plant hormone signal trans-
duction, and butanoate metabolism pathways. Among them, only the
flavonoid biosynthesis, ABC transport, and degradation of valine,
leucine, and isoleucine pathways showed significant enrichment of both
DEGs and DEMs (p-value < 0.05).

3.3.3. Analysis of differential gene and differential metabolite expression in
the flavonoid biosynthesis pathway

As shown in Fig. 4a, 19 DEGs and 12 DEMs were annotated in the
flavonoid biosynthesis pathway. Nineteen DEGs and twelve DEMs in the
flavonoid biosynthesis pathway were annotated to observe their
expression changes between the impact and control groups of apple
fruits, as shown in Fig. 3c (i). Among the 19 DEGs, MdCHI (Chalcone—
flavonone isomerase, MDP0000759336, MDP0000682951,
MDP0000274127), MdF3H (Naringenin, 2-oxoglutarate 3-dioxygenase,
newGene 4095), MdCCoAOMT (MDP0000226279), MAUGT88A1 (UDP-
glycosyltransferase 88A1, MDP0000294531), MdCYP450 98A2
(MDP0000836708, MDP0000466557, MDP0000287029), MdCYP75B2
(Flavonoid 3'-monooxygenase, MDP0000190489), MdPKS5 (Polyketide
synthase 5, MDP0000686661), MdBAHD1 (BAHD acyltransferase
At5g47980, MDP0000641254), MdSALAT (Salutaridinol 7-O-acetyl-
transferase, MDP0000391122), MdHST (Shikimate O-hydrox-
ycinnamoyltransferase, MDP0000307780, MDP0000264424), MdTAT
(Tabersonine-19-hydroxy-O-acetyltransferase, MDP0000271527), and
MdALAR (Leucoanthocyanidin reductase, newGene 2561) were signifi-
cantly upregulated after being mechanically damaged by impact.
MdACER2 (Protein ECERIFERUM 2, MDP0000275850) and MdVSR7
(Vacuolar-sorting receptor 7, MDP0000242900) were significantly
downregulated after impact. The information for 12 DEMs is shown in
Fig. 3c (ii), among which, trans-5-O-caffeoylquinic acid content
increased significantly (LogoFC = 12.84) after being mechanically
damaged by impact.

Correlation analysis was performed on DEGs and DEMs in the
flavonoid biosynthesis pathway with Pearson correlation coefficients
greater than 0.8. The correlation coefficients between the DEGs and
DEMs are shown in Table S4. Notably, 5-O-caffeoylquinate, trans-5-O-p-
coumaroylshikimic acid, and naringin were significantly correlated with
most of the DEGs.

3.3.4. Analysis of differential gene and differential metabolite expression in
the ABC transporters pathway

As shown in Fig. S1, 15 DEGs and 14 DEMs were annotated in the
ABC transport pathway. Fifteen DEGs are shown in Fig. 3d (i). Among
them, MdABCBI (ABC transporter B family member 1,
MDP0000183294), MdABCB11 (ABC transporter B family member 11,
MDP0000302716, MDP0000849544), MdABCB19 (ABC transporter B
family member 19, MDP0000248803), MdABCC3 (ABC transporter C
family member 3, MDP0000842997), MdABCC4 (ABC transporter C
family member 4, MDP0000211981, MDP0000321920), MdABCC5
(ABC transporter C family member 5, MDP0000269936), MdABCC10
(ABC transporter C family member 10, MDP0000842161), MdABCC14
(ABC transporter C family member 14, MDP0000138090), MdABCG3
(ABC transporter G family member 3, MDP0000942052), MdABCG36
(ABC transporter G family member 36, newGene 9561), MdPDRI
(Pleiotropic drug resistance protein 1, newGene 755), MdPDR2 (Pleio-
tropic drug resistance protein 2, newGene 5084), and other genes were
significantly upregulated after being mechanically damaged by impact;
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MdABCG22 (ABC transporter G family member 22, MDP0000318338)
was significantly downregulated after being mechanically damaged by
impact. Information on the 14 differentially expressed metabolites is
shown in Fig. 3d (ii). Among them, the content of one alkaloid and eight
amino acids and their derivatives decreased after being mechanically
damaged by impact, while the content of one sugar and alcohol, four
nucleotides, and their derivatives increased after being mechanically
damaged by impact.

DEGs and DEMs with Pearson correlation coefficient greater than 0.8
in the ABC transport pathway were subjected to correlation analysis, and
the correlation coefficients of DEGs and DEMs are shown in Table S5.
Among them, MdABCG3, MdABCC5, MdABCB19, and MdPDR2 were
significantly correlated with most of the differential metabolites.

3.3.5. Analysis of differential gene and differential metabolite expression in
the linoleic acid metabolism pathway

As shown in Fig. 4b, 9 DEGs and 1 DEM were annotated in the
linoleic acid metabolic pathway. Nine DEGs were shown in Fig. 3e (i).
Among them, MdLOX5 (Linoleate 9S-lipoxygenase 5, MDP0000204470),
MdLOX1.5 (Probable linoleate 9S-lipoxygenase 5, MDP0000120271,
MDP0000264666, MDP0000398931, MDP0000423544, MDP0000452
083, newGene 11793), and MdPLA2-I (Probable phospholipase A2 ho-
molog 1, MDP0000154214) were significantly upregulated after impact
mechanical damage. MdLOX1.5 (MDP0000312397) was significantly
downregulated after impact mechanical damage. One DEM is shown in
Fig. 3e (ii), in which the content of 9,10-dihydroxy-12,13-epoxy-octade-
canoic acid increased after impact mechanical damage.

Further correlation analysis of 9 DEGs and 1 DEM identified in the
comparison between impact and control groups showed that 9,10-dihy-
droxy-12,13-epoxy-octadecanoic acid was significantly positively
correlated with MdPLA2-I (0.977***) and MdLOX1.5 (newGene 11793)
(0.938***),

3.3.6. Analysis of differential gene and differential metabolite expression in
the valine, leucine and isoleucine degradation pathway

As shown in Fig. 4c, 14 DEGs and 4 DEMs were annotated in the
valine, leucine, and isoleucine degradation pathway. Fourteen DEGs
were identified as shown in Fig. 3f (i), including MdAAT, MdHMGS
(MDP0000138071, MDP0000661951), MdALDH2B7 (Aldehyde dehy-
drogenase family 2 member B7, MDP0000834156, MDP0000859857),
MdPHI-1 (Protein PHOSPHATE-INDUCED 1, MDP0000158045,
MDP0000158046, MDP0000158047), MdAAE18 (Probable acyl-
activating enzyme 18, peroxisomal, MDP0000319265), At2g26850 (F-
box protein At2g26850, MDP0000319818), MdEXL2 (Protein
EXORDIUM-like 2, MDP0000641053), which were significantly upre-
gulated after experiencing mechanical damage caused by impact. In
contrast, MdHT1 (Serine/threonine/tyrosine-protein kinase HT1,
MDP0000306767), MAALDH3F1 (Aldehyde dehydrogenase family 3
member F1, MDP0000260947), and MdALDH2B4 (Aldehyde dehydro-
genase family 2 member B4, MDP0000140980) were significantly
downregulated after experiencing mechanical damage caused by
impact. Information about the four DEMs is shown in Fig. 3f (ii), in
which the content of methylmalonic acid increased after experiencing
mechanical damage caused by impact, while the contents of L-valine, L-
leucine, and L-isoleucine decreased after experiencing mechanical
damage caused by impact.

A correlation analysis was conducted on the DEGs and DEMs with
Pearson correlation coefficients greater than 0.8 for valine, leucine, and
isoleucine biodegradation. The correlation coefficients of the DEGs and
DEMs are shown in Table S6. L-valine, L-leucine, and L-isoleucine were
significantly negatively correlated with most DEGs, while methyl-
malonic acid was significantly negatively correlated with most DEGs.

3.3.7. Analysis of differential gene and differential metabolite expression in
ketone bodies synthesis and degradation pathway
As shown in Fig. 4d, four DEGs and one DEM were annotated on the
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ketone synthesis and degradation pathway. The expression levels of the
four DEGs are shown in Fig. 3g (i). Among them, MdAAT, HMGS
(MDP0000138071, MDP0000661951), and At2g26850 (MDP000031
9818) were significantly upregulated after experiencing mechanical
damage caused by impact. Information about one DEM is shown in
Fig. 3g (ii), in which the content of 3-hydroxybutyrate increased after
experiencing mechanical damage caused by impact. Further correlation
analysis of the four DEGs and one DEM revealed a significant positive
correlation between 3-hydroxybutyrate and MdAAT (0.976**%),
At2g26850 (0.920%**), and HMGS (MDP0000661951) (0.967%**).

3.3.8. Analysis of differential gene and differential metabolite expression in
butanoate metabolism pathway

As shown in Fig. 4e, 7 DEGs and 2 DEMs were annotated in the
butanoate metabolism pathway. The expression levels of the 7 DEGs are
shown in Fig. 3h (i), and genes such as MdAAT, MdHMGS
(MDP0000138071, MDP0000661951), MdAAAE18 (Probable acyl-
activating enzyme 18, MDP0000319265), At2g26850 (F-box protein
At2g26850, MDP0000319818), MdLRR1 (Leucine-rich repeat protein 1,
MDP0000331536), MdGAD1 (Glutamate decarboxylase 1, MDPO00058
7459) were significantly up-regulated after impact mechanical
compression. Information on the 2 DEMs is shown in Fig. 3h (ii), where
the contents of succinic acid and 3-hydroxybutyric acid increased after
experiencing mechanical damage caused by impact. Further correlation
analysis of the 7 DEGs and 2 DEMs revealed that succinic acid was
significantly positively correlated with MdHMGS (MDP0000661951)
(0.983***), MdLRR1 (0.935***), At2g26850 (0.94***), MdJAAEI18
(0.951***), and MdAAT (0.978***). 3-hydroxybutyric acid was signifi-
cantly positively correlated with MAHMGS (MDP0000661951)
(0.967***), MdLRR1 (0.97***), At2g26850 (0.92***), MdJAAEI18
(0.931***), and MdAAT (0.976***).

3.3.9. Analysis of differential gene and differential metabolite expression in
plant hormone signal transduction pathway

As shown in Figure S2, there were 67 annotated DEGs and 1 anno-
tated DEM in the plant hormone signal transduction pathway. As shown
in Fig. 3i, the 67 DEGs included 51 up-regulated genes and 16 down-
regulated genes. Information on the 1 DEM is shown in Table S7, with
an increase in the content of Indole 3-acetic acid (IAA) after impact
damage. Further correlation analysis of the 67 DEGs and 1 DEM revealed
that Indole-3-acetic acid was significantly correlated with 43 DEGs, as
shown in Table S8.

4. Discussion

Flavonoid metabolism represents a significant branch of the phe-
nylpropanoid pathway and has the potential to generate more than
6,000 polyphenolic metabolites (Hichri et al., 2011). Flavonoid com-
pounds are classified into nine categories, namely chalcones, flava-
nones, flavones, isoflavones, dihydroflavonols, flavonols,
anthocyanidins, anthocyanins, and aurones, based on the variation of
the heterocyclic C ring (Nakayama et al., 2019). As effective antioxi-
dants, flavonoid compounds have been shown to alleviate oxidative
damage caused by non-biological stresses, such as soil salinity, drought,
and extreme temperatures, through the accumulation of reactive oxygen
species (Nakabayashi & Saito, 2015). Research has demonstrated that
the upregulation of F3H and DFR genes in plants such as purple clover
(Feyissa et al., 2019) and Arabidopsis thaliana (Nakabayashi et al.,
2014) can enhance drought tolerance by synthesizing anthocyanins.
Furthermore, cold stress has been shown to induce the upregulation of
CHS, CHI, FLS, and DFR genes associated with flavonoid biosynthesis,
thus promoting the accumulation of flavonoids and improving plant
adaptability to low-temperature environments, as evidenced in chamo-
mile (Zhang et al., 2019) and apples (An et al., 2020). In this study, we
observed a significant upregulation of key genes in the flavonoid
biosynthesis pathway, such as MdCHI, MdF3H, MdCCoAOMT, and
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MdAUGT88A1, in apple fruit subjected to impact damage. Furthermore,
the concentration of flavonoid pathway metabolites, including trans-5-
O-p-coumaroyl-mongolinoate, naringin, kaempferol 3-O-rutinoside,
phloretin 2'-O-glucoside, luteolin 7-O-glucoside, and hesperetin chal-
cone, increased. Our findings suggest that apple fruit may activate a
stress response mechanism to mitigate the effects of impact damage by
promoting the accumulation of flavonoids.

The ABC transporter superfamily, ubiquitous in both eukaryotic and
prokaryotic organisms, utilizes ATP hydrolysis to facilitate the transport
of various biomolecules across membranes, such as amino acids, pep-
tides, metal ions, cell metabolites, proteins, and sugars (Yazaki, 2006).
With a crucial role in transporting endogenous secondary metabolites,
encompassing phenols (Bartholomew et al., 2002), terpenoids (Jasinski
et al., 2001), and alkaloids (Terasaka et al., 2005), ABC transporters are
integral in the plant defense mechanism against fungal pathogens, by
shuttling antimicrobial secondary metabolites to the periphery of host-
pathogen interaction cells (Yazaki, 2006). In the present study, 13
ABC transporters were significantly upregulated in apple fruit after
impact damage, which led to the increase of a multitude of secondary
metabolites, such as lignins, tannins, coumarins, alkaloids, flavonoids,
and terpenoids. Hence, it is postulated that ABC transporters could be
involved in the transportation of secondary metabolites in response to
impact damage in apple fruit.

Nine DEGs were identified in the linoleic acid metabolism pathway
in apple fruit after being subjected to impact damage. Notably, MdLOX5,
MdPLA2-1, and six MdLOX1.5 (Probable LOX5) genes were significantly
upregulated. Prior research has demonstrated that lipoxygenase (LOX)
catalyzes the oxygenation of unsaturated fatty acids, leading to the
generation of oxylipins through enzymatic or non-enzymatic pathways.
These compounds participate in regulating plant growth, development,
and stress responses. LOX gene expression is induced in response to
various stresses, such as mechanical damage, drought, pathogen infec-
tion, and UV radiation (Grechkin, 1998). In beans, Mazur et al. (2018)
discovered that mechanical damage induced the expression of PcLOXA,
PcLOXB, and PcLOXD. Similarly, (Chauvin et al., 2013) observed that
AtLOX2, AtLOX3, AtLOX4, and AtLOX6 contribute to the rapid formation
of jasmonic acid in mechanically damaged Arabidopsis leaves. LOX is
the critical enzyme in the first catalytic step of volatile ester biosynthesis
and plays a pivotal role in the synthesis of apple volatile compounds
(Kumar et al., 2015). Furthermore, AAT, as the key enzyme in the final
limiting step of volatile ester biosynthesis, also plays a significant role in
fruit volatile compound synthesis (Cao et al., 2021; Yang et al., 2020).
The present study identified metabolic pathways enriched with both
DEGs and DEMs in apple fruit exposed to impact damage stress.
Remarkably, MdAAT genes were significantly upregulated and anno-
tated in pathways such as the degradation of valine, leucine, and
isoleucine, ketone body synthesis and degradation, and butanoate
metabolism. Consequently, it is speculated that apple fruit may promote
the synthesis of volatile esters by inducing the expression of MdLOX and
MdAAAT genes in the LOX pathway in response to impact damage stress.

5. Conclusions

The present study conducted a hybrid analysis of the transcriptome
and metabolome on apples subjected to mechanical damage. After being
subjected to impact damage, the expression levels of 124 DEGs were
consistently higher during storage, which enriched in biological pro-
cesses related to defense response, response to biotic stimulus, trans-
lation, and cell wall organization. Additionally, the levels of several
DEMs were significantly increased, including jasmonic acid, 2,4,2',4-
tetrahydroxy-3'-pentenyl chalcone, 11-keto-ursolic acid, succinic anhy-
dride, and trans-5-O-p-coumaroyl quinic acid, with all being up-
regulated. Metabolic pathway analysis showed that the annotated
metabolic pathways of DEGs and DEMs included flavonoid biosynthesis,
ABC transport, linoleic acid metabolism, ketone body synthesis and
degradation, degradation of valine, leucine, and isoleucine, butanoate
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metabolism, and plant hormone signal transduction pathways (p-value
< 0.05). Correlation analysis between transcriptome and metabolome
data showed up-regulation of MdAAT, MdLOX5, and six MdLOX1.5
genes in the LOX pathway, possibly related to biosynthesis of volatile
esters in impact-damaged fruits. Up-regulation of key flavonoid syn-
thesis genes, such as MdCHI, MdF3H, MdCCoAOMT, and MdUGT88A1,
indicated flavonoid accumulation in response to mechanical damage
stress. Upregulation of 13 ABC transporters and accumulation of sec-
ondary metabolites suggested their possible involvement in transporting
secondary metabolites during mechanical damage stress. Overall, the
results of the present study furnish additional biological insights into the
metabolic networks and molecular mechanisms underlying the response
of apple fruits to impact damage. These insights can potentially aid in
the development of more efficacious strategies for minimizing impact
damage and breeding fruit cultivars with heightened resistance to
impact damage.
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