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Evidence suggests that various forms of α-synuclein- (αSyn-) mediated microglial activation are associated with the progression of
Parkinson’s disease. MicroRNA-155-5p (miR155-5p) is one of the most important microRNAs and enables a robust inflammatory
response. Triptolide (T10) is a natural anti-inflammatory component, isolated from a traditional Chinese herb. Theobjective of the
current studywasto identify theroleandpotential regulatorymechanismofT10inαSyn-inducedmicroglial activationvia themiR155-
5pmediated SHIP1 signalingpathway.Mouse primarymicrogliawere exposed tomonomers, oligomers, andpreformedfibrils (PFFs)
of human wild-type αSyn, respectively. The expressions of TNFα and IL-1β, measured by enzyme-linked immunosorbent assay
(ELISA) and qPCR, demonstrated that PFFs initiated the strongest immunogenicity in microglia. Application of inhibitors of toll-
like receptor (TLR) 1/2, TLR4, and TLR9 indicated that PFFs activated microglia mainly via the NF-κB pathway by binding TLR1/2
and TLR4. Treatment with T10 significantly suppressed PFF-induced microglial activation and attenuated the release of
proinflammatory cytokines including TNFα and IL-1β. Levels of IRAK1, TRAF6, IKKα/β, p-IKKα/β, NF-κB, p-NF-κB, PI3K,
p-PI3K, t-Akt, p-Akt and SHIP1 were measured via Western blot. Levels of miR155-5p were measured by qPCR. The results
demonstrated that SHIP1 acted as a downstream target molecule of miR155-5p. Treatment with T10 did not alter the
expression of IRAK1 and TRAF6, but significantly decreased the expression of miR155-5p, resulting in upregulation of
SHIP1 and repression of NF-κB activity, suggesting inhibition of inflammation and microglial activation. The protective
effects of T10 were abolished by the use of SHIP1 siRNA and its inhibitor, 3AC, and miR155-5p mimics. In conclusion,
our results demonstrated that treatment with T10 suppressed microglial activation and attenuated the release of
proinflammatory cytokines by suppressing NF-κB activity via targeting the miR155-5p/SHIP1 pathway in PFFs-induced
microglial activation.

1. Introduction

Parkinson’s disease (PD) is the second most common neuro-
degenerative disorder and is characterized by a progressive
deterioration of vulnerable dopaminergic neurons and the
presence of intraneuronal aggregates known as Lewy bodies
composed of α-synuclein (αSyn) [1]. Recent studies have
identified several non-cell-autonomous mechanisms of PD,
including microglial activation and proinflammatory cyto-
kine release [2]. More specifically, various forms of αSyn,

including monomers, oligomers, and preformed fibrils
(PFFs) derived from apoptotic dopaminergic neurons are
potential endogenous antigens, capable of activating microg-
lia and stimulating the release of more proinflammatory
cytokines [3, 4]. This results in positive feedback leading to
further apoptosis of dopaminergic neurons, which is an
important pathogenesis of PD. Among these, PFFs show
pathogenicity of prion-like spreading in the brain with seed-
ing capacity, which initiate the strongest immunogenicity in
microglia [5]. Thus, identification of novel therapeutic agents
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and methods against the PFF-induced microglial activation
is important.

It is evident that microRNAs (miR), which are highly
conserved small noncoding RNAs, are pivotal positive and
negative regulators of inflammatory response [6]. These par-
ticipate in various regulatory network motifs. Specifically,
miR-155-5p, which regulates macrophage inflammatory
response by forming a positive regulatory loop that alters
NF-κB activity, has been extensively characterized [7, 8].
However, the biological functions of miR155-5p need further
exploration, particularly in relation to PD.

Triptolide (T10) is a monomeric component isolated
from a Chinese herb, Tripterygium wilfordii Hook F, which
is characterized by anti-inflammatory and anticancer activity
[9, 10]. Additionally, it suppresses disturbances produced by
cell-autonomous mechanisms in PD, such as aggregation of
αSyn and disruption of the autophagy-lysosome system
[11]. However, at present, few studies have determined the
effect of T10 on the miRNAome related to αSyn-induced
microglial activation in PD.

The current study investigated the mechanism of PFF-
induced microglial activation and the functional interaction
between T10, miR155-5p, and NF-κB activity during the
stimuli produced by PFFs in primary microglia.

2. Method

2.1. Reagents. T10 and human wild-type αSyn were
purchased from Sigma-Aldrich (St. Louis, MO, USA). 4-
Hydroxynonenal (HNE) was purchased from Abcam
(USA), while miR155-5p mimics, inhibitor, and negative
control were purchased from Rio Bio (Guangzhou, China).
The pRL-TK plasmids were purchased from GenePharma
(Shanghai, China). SHIP1 siRNA and scrambled control
siRNA were purchased from GeneChem (Shanghai, China).
Lipofectamine 2000 and Lipofectamine RNAiMAX were
purchased from Invitrogen (Carlsbad, CA, USA). TNFα
and IL-1β enzyme-linked immunosorbent assay kits were
purchased from Abcam (USA). Cu-CPT22, resatorvid,
E6446, and 3α-aminocholestane (3AC) were purchased from
MedchemExpress (New Jersey, USA). Antibodies against
IRAK1, TRAF6, p-IKKα/β, IKKα/β, NF-κB (p65), p-NF-κB
(phospho-p65), PI3K (p85), p-PI3K (phosphor-p85), t-Akt,
p-Akt, SHIP1, and β-actin were purchased from Cell Signal-
ing Technology (Beverly, MA, USA). Goat anti-rabbit and
goat anti-mouse secondary antibodies were purchased from
Boster (Wuhan, China). Alexa Fluor 568 anti-rabbit second-
ary antibody and DAPI were purchased from Invitrogen
(Carlsbad, CA, USA). Luciferase Reporter Gene Assay kit
was purchased from Roche (Basel, Switzerland).

2.2. Preparation of Recombinant αSyn Species. Monomeric
αSyn was purchased from Sigma (USA). In order to construct
oligomers, the protein was dissolved in PBS, generating a
concentration of 1mg/ml and incubated with HNE (Abcam,
USA) at 37°C for 24h with a αSyn :HNEM at a ratio of 30 : 1.
Following incubation, residual aldehyde was removed with
an Amicon 3 kDa cut-off ultra-centrifugal unit (Millipore,
USA) at 4000×g for 40min (3-16KL, Sigma, Germany). αSyn

oligomerization was determined by SEC-HPLC analysis, as
previously described [12].

PFFs were produced via agitation of 5mg/ml protein in a
ThermoMixer (Eppendorf, USA) for 7 days at 1000 rpm in a
37°C incubator. Thioflavine T (ThT) assay was performed to
confirm successful formation of fibrils.

2.3. Primary Culture of Microglia and Treatments. Microglia
were prepared from cerebral cortices of 1-3-day-old neonatal
C57BL/6 mice as previously described [13]. Briefly, a cell
suspension of dissociated brain tissues was prepared. Next,
the isolated cells were cultured for 2 weeks in Dulbecco’s
modified Eagle’s medium/F12 (Gibco, USA) containing
10% fetal bovine serum with 1% penicillin and streptomycin.
The microglia were purified in flasks shaken at 180 rpm,
37°C for 3 h (SI-200, Major Science, USA). OX-42 and Iba-
1 staining was used to determine the purity of enriched
microglia (data not shown). A purity of 95% was considered
as satisfactory.

PFF was sonicated with 60 pulses at 10% power (total of
30 s at 0.5 s on and 0.5 s off) before use. Primary microglia
were treated with 2μM PFFs for 12 h and with or without
40 nM T10 (Sigma-Aldrich, USA) for a further 12 h. Also,
2μMmonomers and oligomers were allowed to form in cul-
tured cells for the purpose of comparing immunogenicity.
Equivalent PBS and 0.1μg/ml LPS were added as negative
and positive controls, respectively.

2.4. Inhibitors. The final working concentration of TLR1/2
receptor inhibitor Cu-CPT22, TLR4 receptor inhibitor resa-
torvid, TLR9 receptor inhibitor E6446, and SHIP1 inhibitor
3AC were 10μM, 10μM, 50nM, and 20μM, respectively.
Cells were pretreated with inhibitors for 12h and then
subjected to further treatments. All inhibitor and DMSO
control-group concentrations were optimal as per our previ-
ous experiments (data not shown). All inhibitors were pur-
chased from MedchemExpress (New Jersey, USA).

2.5. siRNA and Plasmid Transfection. miR155-5p mimics,
miR155-5p inhibitors, and the controls (RiboBio, China)
were transfected into primary microglia using Lipofectamine
2000 (Invitrogen, USA). SHIP1 siRNA or recommended
scrambled siRNA (GeneChem, China) was transfected using
Lipofectamine RNAiMAX (Invitrogen, USA) according to
the manufacturer’s protocol.

2.6. ELISA. Cytokine levels were determined in the superna-
tants collected from primary microglia. TNFα and IL-1β
enzyme-linked immunosorbent assays (Abcam, USA) were
performed according to the manufacturer’s protocol. Absor-
bance was measured at 450 nm. The resulting concentra-
tions were adjusted to final concentrations according to
dilution folds.

2.7. qRT-PCR. Total RNA were extracted using TRIzol
reagent (Invitrogen, USA) and reverse-transcribed using
the TaqMan Universal Master Mix (Applied Biosystems,
USA) or PrimeScript™ RT reagent Kit (TaKaRa, Japan)
according to the manufacturer’s protocol. The primers used
in this study were obtained from Applied Biosystems. The
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qRT-PCR reaction with SYBR Green (TaKaRa, Japan) was
performed using a Real-time PCR Detection System
(CFX96, Bio-Rad, USA) in the 25μl reaction mixtures. The
expression levels of the target genes were analyzed using
the 2−ΔΔCt method.

2.8. Western Blot. Following sonication and centrifugation,
the supernatants were diluted with 5x SDS loading buffer
and separated via SDS-PAGE. Next, the proteins were trans-
ferred to PVDF membranes (Millipore, USA). After blocking
for 2 h, with 5% skim milk in Tris-buffered saline at 37°C, the
membrane was probed with primary antibodies against
IRAK1, TRAF6, p-IKKα/β, IKKα/β, NF-κB, p-NF-κB,
PI3K, p-PI3K, t-Akt, p-Akt, SHIP1, and β-actin overnight
at 4°C. Next, the membranes were incubated with appropri-
ate secondary antibodies for 1 h at 37°C. Bands visualized
using a Bio-Rad imaging system (Bio-Rad, USA) were ana-
lyzed using ImageJ software.

2.9. Immunofluorescence. Cells were fixed with 4% parafor-
maldehyde for 1 h followed by permeabilization in 0.3%
Triton X-100 for 30min. Next, cells were blocked with 5%
bovine serum albumin for 1 h and incubated with primary
antibody against NF-κB overnight at 4°C. After washing with
PBS, the cells were incubated with Alexa Fluor 568-
conjugated secondary antibody for 2 h at room temperature.
The nuclei were then stained with DAPI for 8min. Images
were acquired via confocal microscopy (A1R, Nikon, Japan).

2.10. Luciferase Reporter Assay. The pRL-TK plasmid con-
taining a Renilla luciferase gene for internal normalization
and various constructs containing pMIR-SHIP1 and pMIR-
SHIP1-mut were purchased from GenePharma. HEK-293T
cells were seeded into 96-well plates and transfected with
plasmids by using Lipofectamine 2000. Following incubation
for 24 h, cells were harvested and luciferase activity was mea-
sured using the Luciferase Reporter Gene Assay kit (Roche,
Switzerland) according to the manufacturer’s protocol.

2.11. Statistics. GraphPad software, version 7, was used to
analyze the data which are presented as mean ± standard
error of the mean (SEM). One-way ANOVA test was applied
to assess statistical significance, which was set at p < 0 05.

3. Results

3.1. PFFs Induce the Strongest Immunogenicity in Microglia.
Prior to stimulating primary microglia with αSyn, physico-
chemical properties of oligomers and PFFs were identified
through SEC-HPLC and ThT assay, respectively (Figures 1(b)
and 1(c)). The effects of different aggregations of αSyn
(monomers, oligomers, and PFFs) on the inflammatory
response were evaluated. Exposure of PFFs induced a pro-
found release of TNFα and IL-1β. Stimulation with mono-
mers also induced a similar release of TNFα and IL-1β;
however, the amounts were far lower compared to that
with PFF stimulation (Figures 1(d) and 1(e)). Notably, olig-
omers appeared to be immunogen-free towards primary
microglia, and changes were not observed following treat-
ment with oligomers.

3.2. PFFs Activate NF-κB Signaling by Both TLR1/2 and
TLR4. In order to determine the involvement of TLRs in
PFF-induced primary microglial activation, highly selective
inhibitors of TLR1/2, TLR4, and TLR9 were applied to avoid
cross-inhibition [14–16]. PFF-induced release of TNFα and
IL-1β was completely abolished by Cu-CPT22 and partially
abolished by resatorvid, but not by E6446 (Figures 2(a) and
2(b)). Expressions of IRAK1 and TRAF6, two crucial adap-
tors for TLR-mediated NF-κB signaling, were measured.
Cu-CPT22 suppressed IRAK1 and TRAF6 expression as well
as phosphorylation of IKKα/β and NF-κB, induced by PFFs.
Resatorvid demonstrated effects similar to that of Cu-CPT22,
but at a lesser level. E6446 did not show significant inhibitory
effects on PFF-induced inflammation (Figures 2(c)–2(f)).
Immunofluorescent results indicated that translocation of
NF-κB induced by PFFs may be fully prevented by Cu-
CPT22 and partially blocked by resatorvid, while E6446 did
not have any effects (Figure 2(g)).

3.3. PI3K/Akt Pathway Was Involved in the Repression of T10
on the Expression of miR155-5p and the NF-κB Activity in
Primary Microglia. T10 significantly prevented elevation of
miR155-5p and reduced the release of TNFα and IL-1β
induced by PFFs, leading to the downregulated inflammatory
status of microglia (Figures 3(a)–3(c)).

We further examined the effects of T10 on the NF-κB
pathway. Immunofluorescence staining of NF-κB showed
that T10 significantly decreased the translocation into the
nucleus (Figure 4(a)). Interestingly, although p-IKKα/β
and p-NF-κB levels were significantly downregulated after
treatment of T10, primary microglia did not show any
changes in IRAK1 or TRAF6 levels, indicating that T10
may influence the NF-κB pathway in other interventions
(Figures 4(b)–4(g)). According to previous studies, besides
IRAK1/TRAF6, PI3K/Akt is also an intracellular pathway
vital for regulating IKKα/β phosphorylation [17]. To deter-
mine whether the PI3K/Akt pathway is involved in the
repression of T10 on NF-κB activity, the phosphorylation
of PI3K and Akt was assessed by Western blot. The results
showed that treatment of T10 significantly decreased the
expression of p-PI3K and p-Akt. Interestingly, treatment of
PFFs did not alter the expression of p-PI3K or p-Akt, sug-
gesting that T10 and PFFs may regulate NF-κB activity
through two independent pathways and that IKKα/β may
be a cross-molecular component of the two pathways.

3.4. Downregulation of miR155-5p Alleviates PFF-Induced
Inflammatory Response. Considering the increase of
miR155-5p following PPF treatment as well as its decrease
following T10 treatment, we investigated the potential role
of miR155-5p in NF-κB activity by altering miR155-5p
levels with its inhibitors and mimics. Treatment with
miR155-5p inhibitors suppressed phosphorylation of PI3K,
Akt, and IKKα/β, as well as the expression of p-NF-κB
(Figures 5(a)–5(d)). This resembled the effect of T10 treat-
ment. On the contrary, treatment with miR155-5p mimics
reversed the repression of T10 on NF-κB activity in PFF-
treated primary microglia (Figure 5(e)).
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3.5. SHIP1 Is Requisite for the Regulatory Effect of miR155-
5p on NF-κB in Primary Microglia. According to TargetS-
can search results, SHIP1 is a predictive target for
miR155-5p (Supplementary Figure 1a). We verified
whether SHIP1 expression was hampered by hybridization
between SHIP1 3′-UTR and miR155-5p via the luciferase
report assay. The results indicated that transfection with
miR155-5p mimics significantly repressed luciferase activity
in wild-type SHIP1 3′-UTR, while the mutant did not
(Supplementary Figure 1b). Therefore, we investigated the
effect of SHIP1 on miR155-5p function in primary
microglia. Upon transfecting primary microglia with SHIP1
siRNA, the endogenous mRNA and SHIP1 protein levels
were significantly decreased, suggesting that the siRNA
functioned perfectly (Figures 6(a) and 6(b)). Furthermore,
SHIP1 knockdown significantly increased the expressions
of p-PI3K, p-Akt, p-IKKα/β, and p-NF-κB, suggesting

aggravation of inflammation (Figures 6(c)–6(f)). Treatment
with SHIP1 Inhibitor, 3AC, also promoted p-NF-κB
expression, which was similar to the effect of SHIP1 siRNA
(Figure 6(g)). Both SHIP1 siRNA and 3AC inhibited
negative regulation of TNFα and IL-1β release by T10,
without altering miR155-5p expression (Figure 6(h)–6(j)).
Additionally, changes in the miR155-5p levels caused
significant fluctuations in SHIP1 expression, indicating
that miR155-5p may negatively regulate the expression of
SHIP1 (Figure 7(a)). The results of Western blot
indicated that when SHIP1-silenced cells were treated
with miR155-5p inhibitors, SHIP1 expression was elevated
and p-NF-κB expression was decreased (Figures 7(b) and
7(c)). Furthermore, miR155-5p inhibitors reversed the
enhancement effect of SHIP1 siRNA on the expression of
TNFα and IL-1β (Figures 7(d) and 7(e)). These results
indicated that T10 may suppress the NF-κB activity and
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Figure 1: αSyn activates primary microglial aggregation-dependently. (a) Schematic overview of the preparation of different αSyn species. (b)
Size exclusion chromatography HLPC (SEC-HLPC) was performed to determine the HNE-mediated oligomerization after being incubated at
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reduced release of proinflammatory cytokines potentially
through the miR155-5p/SHIP1 pathway. Taken together,
our findings indicate that PFFs activate NF-κB signaling
through binding TLR1/2 or TLR4 and T10 is capable of
suppressing NF-κB activation induced by PFFs through the
miR155-5p/SHIP1 pathway (Figure 8).

4. Discussion

The current study investigated a PFF-based neuroinflamma-
tion model in order to analyze the anti-inflammatory effects
of T10 on PFF-induced neuroinflammation. Our findings
demonstrated that PFFs induced neuroinflammation via
activation of NF-κB signaling by binding either TLR1/2 or
TLR4 and that T10 suppressed NF-κB activation and
reduced the release of proinflammatory cytokines in pri-
mary microglia. Moreover, the miR155-5p/SHIP1 pathway
is critical for the regulation of NF-κB activity during PFF-
induced neuroinflammation. The mechanism underlying
the anti-inflammation role of T10 may be inhibition of
miR155-5p expression and the subsequent upregulation of
SHIP1, leading to the repression of NF-κB activity.

PD is characterized by a slow and progressive degenera-
tion of dopaminergic neurons in the substantia nigra and
the presence of proteinaceous inclusions known as Lewy
bodies, which are composed of αSyn [18]. Despite intensive
studies, the cause of neuronal loss in PD and the presence
of protein inclusions remain unclear. Among the many fac-
tors related to PD pathology, microglia-mediated neuroin-
flammation have attracted much attention. Microglia may
function in sustaining survival or promoting cell degenera-
tion during PD [19]. Recently, a novel perspective on αSyn
declares that it is released by dopaminergic neurons and
taken up by neighboring cells and describes microglia that
can recognize, devour, and digest extracellular αSyn [20,
21]. Microglia’s response to αSyn will therefore be an impor-
tant determinant of the progression of PD. However, mis-
folding, oligomerization, and fibrillation of αSyn are a cyclic
process, and both αSyn monomers and aggregates may be
secreted by affected neurons via exocytosis [22, 23]. Our
study demonstrated that activation of microglia by αSyn is
based mainly on its aggregation status. PFFs have been con-
clusively provided with superlative immunogenicity while

monomers have similar but weaker immunogenicity and
oligomers only exhibited faint immunogenicity. This may
partly explain why some patients developed levodopa resis-
tance in late-stage PD. Prion-like PFFs cause a drastic release
of proinflammatory cytokines, such as TNFα and IL-1β,
which could promote degeneration of neurons resulting in
more leakage of intracellular αSyn, finally trapping the pro-
cess in a vicious spiral. Therefore, interruption of microglial
activation has become a promising target against neurode-
generation [19, 24]. Our study further demonstrated that
PFFs may be recognized by TLR1/2 and TLR4 and activate
NF-κB signaling through IRAK1 and TRAF6. These two
key adapter molecules function as a signal transducer which
activates IKK in response to proinflammatory cytokines,
including TNFα and IL-1β.

T10 is an active component extracted from the Chinese
medical plant, Tripterygium wilfordii Hook F, which displays
strong anti-inflammatory and immunosuppressive activities.
According to previous studies, T10 has been proved to be a
negative regulator of the NF-κB pathway in diverse cell
models [25, 26]. Consistent with previous studies, T10
exerted a repressive effect on the phosphorylation of NF-κB
in the PFF-induced inflammatory model, as well as on the
expression of p-IKKα/β, which is associated with phosphor-
ylation of IκB, an inhibitor of NF-κB. In the TLR/NF-κB
pathway, IKKα/β is a direct target of TRAF6 [6]. In the pres-
ent study, we did not observe changes in the expression of
IRAK1 and TRAF6 following treatment with T10, suggesting
that T10 may regulate NF-κB activity via other mechanisms.
Additionally, our previous experiments confirmed that T10
did not have a significant effect on the expression of
TLR1/2 or TLR4 (data not shown). Besides, PI3K/Akt signal-
ing has also been extensively described as both a positive and
a negative regulator of NF-κB activity, which depends mostly
on cell type and treatment condition, thus investigated in this
study [27]. The results showed that T10 inhibited the expres-
sion of both p-PI3K and p-Akt. These findings indicated the
following 4 points: (i) PI3K is a positive regulator of NF-κB
activity in PFF-treated primary microglia, (ii) PI3K/Akt sig-
naling is upstream of p-IKKα/β and p-NF-κB, (iii) T10 regu-
lates NF-κB activity through PI3K/Akt pathway, and (iv)
IKKα/β is the downstream component shared by both
IRAK1/TRAF6 and PI3K/Akt pathway.
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Figure 7: The role of SHIP1 in the release of TNFα and IL-1β inhibited by miR155-5p in primary microglia. (a) Expression of SHIP1 after
treatment of miR155-5p mimics or inhibitors in primary microglia. (b-e) Levels of SHIP1, TNFα, and IL-1β after treatment of miR155-5p
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miRNA is a small molecule extensively involved in regu-
lating diverse biological processes, including inflammation as
well as development and progression of various human dis-
eases, via the regulation of translational repression, mRNA
cleavage, and deadenylation at posttranscriptional stage
[28]. Also, miR155-5p has been proven to be related to NF-
κB activity following TLR activation [29]. In this study, we
showed that stimulation by PFFs leads to the activation of
TLR/NF-κB signaling, which, in turn, activates miR155-5p
transcription. Furthermore, miR155-5p overexpression
serves as an amplifier, which provokes NF-κB activity
through the suppression of SHIP1 expression for the robust
release of proinflammatory cytokines. Our data shows that
miR155-5p provides vital initiation of the inflammatory

response to PFFs in primary microglia. T10 halts the flooding
of miR155-5p efficiently and stabilizes NF-κB activity within
the normal range, avoiding excessive release of proinflamma-
tory cytokines.

SHIP1 is a member of the inositol polyphosphate-5-
phosphatase family. It was initially identified as a protein that
negatively regulates B-cell receptor signaling. Sly et al.
reported that LPS-induced ERK1/2 and Akt phosphorylation
as well as cytokines were enhanced in SHIP1-/- BMφ cells
[30]. Rauh et al. reported that the SHIP1/PI3K axis may
manipulate macrophage phenotypes for cancer or inflamma-
tion [31]. In the present study, SHIP1 has been identified as a
direct target of miR155-5p in primary microglia, verified by
the luciferase assay report. Treatment with T10 disrupted
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the repression of miR155-5p on SHIP1, resulting in
reduced phosphorylation of downstream molecules includ-
ing PI3K, Akt, IKKα/β, and NF-κB. In order to obtain fur-
ther insight into the regulatory mechanisms of the
miR155-5p/SHIP1 pathway, we analyzed miR155-5p levels
and inflammatory cytokine products in T10-treated SHIP1
silenced cells. The results showed that the miR155-5p
levels decreased. However, no reductions were observed
in the levels of TNFα and IL-1β, which further demon-
strated that SHIP1 is associated with the regulation of
T10 on NF-κB activity.

In the present study, T10 has been determined as a
potent agent against microglial activation. Recent reports
have suggested a role for the T cell infiltration into the
substantia nigra in the progression of PD [4, 32]. Fur-
thermore, nitrated-synuclein elicited T cell responses in
mice [33]. Whether T10 could inhibit T cell activation
and infiltration remains unclear and further studies are
felt to be needed.

In conclusion, the current study suggests that PFFs may
activate microglia and enhance the release of TNFα and
IL-1β via the TLR/NF-κB pathway. T10 is antagonistic to
PFF-mediated inflammation, suppressing NF-κB activity
and TNFα and IL-1β release, by regulating the miR155-
5p/SHIP1/NF-κB axis in primary microglia.
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