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against in fruitfly but not in human

Wilfried Haerty and Chris P Ponting

Abstract

mutations occurring within these loci.

drift.

Background: Previous studies in Drosophila and mammals have revealed levels of long non-coding RNAs
(INcRNAs) sequence conservation that are intermediate between neutrally evolving and protein-coding sequence.
These analyses compared conservation between species that diverged up to 75 million years ago. However,
analysis of sequence polymorphisms within a species’ population can provide an understanding of essentially
contemporaneous selective constraints that are acting on IncRNAs and can quantify the deleterious effect of

Results: We took advantage of polymorphisms derived from the genome sequences of 163 Drosophila
melanogaster strains and 174 human individuals to calculate the distribution of fitness effects of single nucleotide
polymorphisms occurring within intergenic INncRNAs and compared this to distributions for SNPs present within
putatively neutral or protein-coding sequences. Our observations show that in D.melanogaster there is a significant
excess of rare frequency variants within intergenic IncRNAs relative to neutrally evolving sequences, whereas
selection on human intergenic INcRNAs appears to be effectively neutral. Approximately 30% of mutations within
these fruitfly INcRNAs are estimated as being weakly deleterious.

Conclusions: These contrasting results can be attributed to the large difference in effective population sizes
between the two species. Our results suggest that while the sequences of IncRNAs will be well conserved across
insect species, such loci in mammals will accumulate greater proportions of deleterious changes through genetic

Background
Although protein coding sequence occupies a little over
1% of the human genome, approximately 10-fold more
non-coding sequence is predicted to have been under
purifying selection [1]. For smaller genomes, larger pro-
portions (for example, 50% of all Drosophila sequence)
have been predicted to have been under selective con-
straints [13]. These estimates are founded on the
assumption that sequence conservation is caused not by
low rates of mutation, but instead by the high rates at
which deleterious alleles are purged from the population
by natural selection, an assumption that is well sup-
ported [47].

A considerable fraction of conserved non-coding
sequences in human and fruitfly genomes are tran-
scribed [8,9]. Non-coding transcripts can be classified
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into small RNAs (<200 nt, such as microRNA) and long
RNAs (>200 nt, IncRNA). Many IncRNAs are spliced
and/or polyadenylated [10], and they show tendencies to
contain a smaller number of exons than protein coding
genes and to be expressed in a tissue and/or develop-
mental stage-specific manner [11]-[13].

A handful of IncRNAs have been functionally charac-
terised as being involved in dosage compensation in
either human (Xist [14]) or Drosophila (roX1, roX2
[15]), or having roles in imprinting or chromatin modifi-
cation (AIRN [16]; HOTAIR [17]), in alternative splicing
regulation or in cell differentiation (MALATI, Tugl
[18]-[20]). More broadly many IncRNAs appear to be
involved in gene expression regulation in either cis or
trans, through the local modification of chromatin and/
or direct interaction with protein complexes, DNA or
RNA sequences [11,12,21]-[23]. Recently IncRNAs have
also been associated with the maintenance of embryonic
stem cell pluripotency [24,25]. Furthermore, there is
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limited evidence to link some IncRNAs, such as ANRIL
or HOTAIR, to human pathologies [26,27]. However, the
functional contribution to biology from the vast majority
of long non-coding RNAs (IncRNAs) remains unknown.

If a IncRNA has retained functionality over a long
evolutionary time-period then mutations that abolish or
diminish the function would be deleterious and would
preferentially be purged from the species lineage. This
would be reflected in a greater level of sequence conser-
vation between species. Indeed, IncRNAs have been
found to be significantly better conserved between spe-
cies than are putatively neutrally evolving sequences,
such as ancestral repeats in mammals [28]-[30] or small
introns in Drosophila [13]. Furthermore, mammalian
IncRNAs are enriched in conserved sequences identified
either by elevated conservation (for example, phastCons
[2]) scores or by applying a neutral model based on
sequence insertions and deletions [28,30]. Additionally,
increased conservation of the dinucleotide splice sites
and a suppressed transversion rate have also been
reported for mammals [28]. However, in each organism
analysed thus far, IncRNA sequences have been shown
to diverge far more rapidly than have protein-coding
sequences [13,28]-[31]. These observations indicate an
intermediate state in selective constraints between pro-
tein-coding sequences and neutrally evolving sequences.
The rapid divergence of IncRNA sequences between
species complicates the identification of orthologous
sequences for many of the IncRNA loci. Therefore,
instead of nucleotide conservation, the conservation of
orientation and position relative to an orthologous pro-
tein coding-gene can be used to define positionally
equivalent IncRNAs between species [13,32].

To date, most evolutionary analyses on IncRNAs have
been conducted at the interspecies level using species
that diverged approximately 75 million (human - mouse
[28]) or 5 million years (Drosophila melanogaster - D.
simulans [13]) ago. Although there is mounting evi-
dence for purifying selection acting on IncRNAs, we
note that previous analyses have used only a single
reference genome per species. Previous studies reported
an increased conservation level relative to a neutral
reference [13,28]-[30], but they have not directly deter-
mined the strength of selection acting on these non-
coding sequences nor do they provide an understanding
of the fitness effects of mutations, in terms of the pro-
duct of the effective population size (Ne) and selection
coefficient (s), occurring within these transcripts.

It is important to compare interspecific indicators of
constraint to intraspecific estimates of fitness effects
since recent findings have demonstrated rapid evolution
of IncRNAs that are specific to individual lineages [33].
A comparison between species can inform on past
events but rarely does it have the power to identify
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contemporaneous or lineage-specific selective con-
straints. Even when employing comparisons among mul-
tiple species it is challenging to ascertain, within a
specific lineage, the nature and the strength of the selec-
tive pressures acting on rapidly evolving loci.

For instance, the HOTAIR locus has evolved rapidly
since the last common ancestor of mouse and human
and differences in the consequences of knockout in
these species’ cell lines have been interpreted as indicat-
ing the evolution of lineage specific biological functions
[34]. Additionally, it was recently demonstrated that
expression of a large number of IncRNA loci has altered
rapidly among murid lineages [33]. Consequently, a low
level of sequence conservation between two species
could reflect, at one extreme, a historically low level of
sequence constraint in both lineages, or, at the other
extreme, it could reflect sequence that is constrained in
only a portion of a single species lineage. Deciding
among this range of possibilities relies on determining
constraint within extant populations, for example by
identifying whether derived low frequency alleles are
enriched, relative to neutral sequence, within human or
Drosophila IncRNA sequence [35]. A recent study indi-
cated that this was, indeed, the case for human IncRNAs
identified by the ENCODE consortium [36].

In such studies we need to consider that most human
variants are recent [7,37], and there is a negative corre-
lation between the age of the variant and its deleterious
effect [7]. Consequently the bulk of deleterious muta-
tions within a species are less likely to be detected when
comparing distantly-related species as they will not
often reach fixation.Therefore inter-species comparison
will focus on substitutions events that are at most
weakly deleterious as deleterious mutations are rarely
fixed. Once again this underscores the importance of
analysing, at the population level, nucleotide variation
occurring within IncRNA loci if we are to better under-
stand the relationships linking their evolution and func-
tion. A potentially important confounding issue that
needs to be considered in such analyses is that of back-
ground selection as well as selective sweeps, where
selection at one site reduces genetic diversity, but not
divergence, at linked sites [38]. To account for this
effect, variation at tested sites needs to be compared
against variation in physically linked putatively neutral
sites.

For this study, we have taken advantage of recent
high-throughput sequencing projects win D. melanoga-
ster [39] and humans [37][40], and the annotation of
intergenic IncRNAs in both species [13,41]. The avail-
ability of these large population datasets permits poly-
morphism and divergence distributions to be
investigated in both species across both coding and
non-coding gene models. If the function of a IncRNA
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locus is mediated through the act of transcription rather
than through the RNA transcript itself [42,43] then we
expect no difference in nucleotide conservation between
exons and introns. In contrast, if the spliced transcript
primarily has a RNA sequence-dependent function then
its exonic sequence is expected to be well-conserved
relative to its introns, as has been observed for protein-
coding genes [44].

Our results reveal hitherto unappreciated distinctions
in constraint between IncRNA exons and introns which
are abundantly evident for Drosophila but are far less so
for humans. In Drosophila striking differences in conser-
vation between exons and introns suggest that the
spliced transcript is often important in mediating the
biological functions of IncRNA loci. Our analysis of site
frequency spectra indicates that purifying selection has
been effective on D. melanogaster IncRNA sequence but,
importantly, not on human IncRNAs. Selection on
mutations within human IncRNAs appear to be effec-
tively neutral as a consequence of our species’ unusually
low effective population size.

Results

Conservation of intergenic IncRNA exons in Drosophila
Our previous evolutionary rate analyses of Drosophila
[13] or mammalian [28,30,45] intergenic IncRNAs con-
sidered the degree of constraint associated with tran-
scribed IncRNA sequence under the assumption that
small introns and preserved transposable element
sequences (‘ancestral repeats’) evolve neutrally [3,46-48].

We extended these analyses firstly by addressing the
issue of whether, as for protein-coding sequence [44], exo-
nic sequence is better conserved than intronic sequence.
To do this we performed a metagene analysis by recording
the median phastCons scores of decile portions for the
first, middle or last exons, or their intervening introns, of
1,115 fruitfly and 4,662 human IncRNAs (Figure 1).

For Drosophila IncRNAs, we observed a strong con-
trast in median phastCons scores between their exons
and their introns (Figure 1). While protein-coding exons
exhibit the greatest degree of conservation, as expected
IncRNA exons are associated with intermediate conser-
vation levels, greater than those for protein-coding or
IncRNA introns or indeed randomly sampled intergenic
sequence (P<0.001, Figure 1A). Strong purifying selec-
tion in exonic, but not intronic, sequence implies that
the molecular functions of these multi-exonic fruitfly
IncRNAs are predominantly RNA-sequence specific
rather than requiring only the process of transcription,
for example during chromatin remodelling [11,42,43].

Performing the identical analysis on a set of human
IncRNAs [41] revealed their median phastCons scores to
be low not just for introns but also for exons (Figure
1B). There is a significantly greater conservation for
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IncRNA exons compared with introns (P < 0.05) except
for the 3' last-most exon whose conservation is not sig-
nificantly different to that of introns (P >0.05 in all com-
parisons, Additional File 1). Moreover, sequence
conservation in human IncRNA exons or introns is little
different from conservation of intergenic sequence. We
found similar results when using different human
IncRNA sets as well as a set of positionally equivalent
IncRNAs between human and mouse (Additional File 2).

Interestingly, when, instead of median values, mean
phastCons scores for human IncRNA exons are consid-
ered, these are marginally higher than intronic scores
(Additional File 1). We conclude from these observa-
tions that there is substantial heterogeneity in conserva-
tion among human IncRNA loci, yet sequence for the
majority of such loci shows little or no conservation.

We noted that D. melanogaster IncRNAs exhibit no
elevation of phastCons scores at their 5" or 3’ splice
sites using either the median or mean conservation
scores (Figure 1A, Additional File 1). To investigate this
further we compared the conservation of splice site
dinucleotides (GT’ and ‘A’G’) across five species with
randomly selected ‘GT” and ‘AG’ dinucleotides yet found
no significant difference in their levels of conservation
(Additional File 3). One conceivable explanation is that
across the approximate 300 million years of evolution
represented in the Diptera and Coleoptera phastCons
scores, splice site dinucleotides have been conserved less
than over the approximate 450 million years represented
in the vertebrate phastCons scores.

Lowered polymorphism levels within intergenic IncRNA
exons relative to introns

The conservation analysis that we present above illus-
trates qualitatively the relative conservation between
exons or introns, and differences in constraint between
fruitfly and mammalian IncRNA sequences. This analy-
sis is based on aligned sequences from highly divergent
species and therefore provides us with evidence on past
selection but unfortunately not on more contemporary
evolutionary processes. To address this, we looked to
DNA polymorphism data from both D. melanogaster
and human populations.

We considered 2,263,316 polymorphic sites in D. mel-
anogaster and 12,640,342 in human, and used pairwise
alignments with D. simulans and D. yakuba, or with P.
troglodytes and M. mulatta, respectively to polarise
SNPs for D. melanogaster or human according to
whether they were ancestral or derived using maximum
parsimony (Table 1). For all subsequent analyses, we
compared observed levels of polymorphism and diver-
gence within IncRNA loci to polymorphism and diver-
gence observed within putatively neutrally evolving
sequences such as small introns (< 86nut) in Drosophila
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Figure 1 Median sequence conservation (phastCons) score across protein coding (blue) and IncRNA (red) exons and introns in D .
melanogaster (A) and in human (B). Non-overlapping windows each comprising 10% of the sequences were used. The shaded areas represent
the 95% confidence intervals over the median. The grey lines represent the median scores computed using 1,000 resampling of intergenic
sequences matching the IncRNA size distribution.
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Table 1 Number of polarised polymorphic sites among
162 D.

Feature D. melanogaster H. sapiens
Total 2,263,316 12,640,342
INncRNA exons 29,535 49,505
Ancestral repeats - 317,098
Others 921,066 8,039,366

melanogaster strains and among 174 humans of African origin. The ancestral
and derived states for each SNP were defined using alignments of D.
melanogaster with D. simulans and D. yakuba and of H. sapiens with

P. troglodytes and M. mulatta.

[3,46,48] and ancestral repeats in human [47]. Impor-
tantly, in order to take into account potential variation
in local rates of mutation and/or substitution as well as
nucleotide content in human or Drosophila, we limited
our analyses to just those protein-coding genes that
flank intergenic IncRNAs. Additionally, we considered
only small introns present within protein coding genes
that are direct neighbours and within 5 kb of IncRNA
loci in D. melanogaster and only ancestral repeats found
within intergenic sequences that are direct neighbours
of mammalian IncRNA loci. We retained only those
IncRNA loci for which matching small introns or ances-
tral repeats could be identified.

For both human and Drosophila, we observed a lower
density of polymorphic sites within protein-coding exons
than in introns (P <0.001 in both species), which indicates
strong negative selection having acted on these exons.
Although similar trends were observed for IncRNAs, differ-
ences in SNP densities for IncRNA exons and introns were
not significant (P >0.05 in both species, Tables 2 and 3).

The ratio of D. melanogaster polymorphism to D. mel-
anogaster-D. simulans divergence within IncRNA exons
or introns was compared to that of small introns or ran-
domly sampled flanking intergenic sites. The significant
excess of polymorphism with respect to divergence
within IncRNA exons (y2 test, P <0.001), but not
introns (y2 test, P >0.05, Figure 2), illustrates the
strength of purifying selection acting on fruitfly
IncRNAs, and specifically their exons.

Evidence for strong purifying selection on intergenic
IncRNAs in Drosophila

Next, to test for the strength of selection within exons
or introns from fruitfly or human IncRNA loci, we
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compared the nucleotide variation within IncRNAs and
protein coding exons and introns to putatively neutral
sequences using the average number of pairwise nucleo-
tide differences per sites (77, OW [49,50]), and Tajima’s
D [51] which tests for departures from neutrality. We
also assessed the nucleotide divergence between D. mel-
anogaster-D. simulans, and human-macaque using the
Jukes-Cantor corrected divergence (k [52]).

As expected, we inferred stronger selective constraints
on the protein-coding exons and introns of fruitfly genes,
owing to their lower Tajima’s D and divergence (k), than
for small introns, our neutral evolution proxy (Kruskal-
Wallis test, P <0.05 in all comparisons, Table [2]). Like-
wise, D. melanogaster IncRNA exons and introns were
associated with lower Tajima’s D and k values relative to
our neutral sequence proxy, namely small introns
(P <0.001 in both comparisons). Greater selective con-
straint on Drosophila IncRNA exonic sequence was
observed: values for IncRNA exons were significantly lower
than for IncRNA introns (P <0.01 in both comparisons).
Although we found no difference in 77", W or Tajima’s D
values between IncRNAs and protein coding upstream
sequences (P >0.05 in all comparisons), we found IncRNA
upstream sequences to be less diverged than those of pro-
tein coding sequences (P <0.001). This observation of
lower interspecific divergence is likely to be the conse-
quence of IncRNA gene models being incomplete, which
in turn is a consequence of their low expression levels.

Like fruitflies, human protein coding exons are under
stronger selective constraints than either IncRNA exons,
introns or protein-coding introns as indicated by lower
T, Tajima’s D and k values (P <0.001, Table [3]). In
contrast to Drosophila, we found no significant differ-
ence in Tajima’s D values computed for human IncRNA
exons, introns and their flanking ancestral repeats. Addi-
tionally intergenic IncRNAs that are positional equiva-
lents between human and mouse do not show a
significant reduction of polymorphism or Tajima’s D
value relative to a control set of intergenic IncRNAs (P
>0.05, Table [3], Additional Files 5 and 6).

Excess of low frequency variants in Drosophila intergenic
IncRNAs relative to neutral sequences

We next compared the derived allele frequency spectra
of polymorphic sites within fruitfly IncRNA exons to
those within small introns. This revealed that IncRNA
exons have a significantly higher proportion of SNPs

Table 2 Average (standard deviation) polymorphism estimates for 1ncRNA loci and their flanking protein coding

genes (within 5 kb) in D.

48 x10° (44 x 107)
494 % 107 (32 x 107)
101 x 102 (1.12 X 109

Upstream coding
INCRNA exons
Small introns

539 x 10° (3.8 x 107)

896 x 107 (8.16 x 107)

036 (0.97) 0.095 (0.74)
588 x 10° (3.2 x 107) 053 (0.81) 0.064 (0.072)
015 (117) 0.115 (0.10)

melanogaster.
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Table 3 Average (standard deviation) polymorphism estimates for TncRNA and their flanking protein coding genes in

human.

Upstream coding 105 % 107 (1 x 107) 103 x
INcRNA exons 1.06 x W03(885><1O ) 1.16 X
Upstream IncRNA 1.09 x 10° (1.07 x 107 ) 1.19 x
PE IncRNA exons 973 x 10% (787 x 107 113 X
PE IncRNA introns 1.04 x 107 (762 x 107 1.08 x
Controls INCRNA exons 104 x 107 (862 x 107 115 x
Controls IncRNA introns 084 x 10 (648 x 107 1.08 x
Ancestral repeats 151 x 102 (1.81 x 1073) 1.68 x

3(oo7x1o ) 0.003 (091) x3 (174 x 107)
2691 x 107 -0.21 (0.99) 159 ><3 (158 x 107)
3(826><1o ) -0.14 (0.92) 164 x> (179 x 107)
2 (661 x 107 -0.27 (0.88) 146 x> (141 x 107)
3(467><1O ) -0.20 (0.77) 142 ><3(92><1O )
? (657 x 107 -0.22 (0.85) 146 x> (154 x 107)
(509 x 107 -0.26 (0.75) 147 x3 (133 x 107)
3 (1.14 x 107) -0.13 (092) 234 %3 (348 x 107)

PE: position equivalent.

with low frequency (<0.01) derived alleles (Kolmogorov-
Smirnov test, P <0.001). This indicates that they have
been subject to a greater degree of purifying selection in
these fruitflies’ recent evolution, since their divergence
with D. simulans (Figure 3). This effect was not solely
due to a G+C enrichment of conserved non-coding
regions relative to non-conserved non-coding regions
[53] since significant enrichment for low frequency
derived alleles was observed for both G:C —A:T and A:
T—G:C substitutions in IncRNA exons (Kolmogorov-
Smirnov tests P <0.001 in both comparisons) relative to
small introns. The strength of purifying selection for
fruitfly IncRNA exons appears to be lower than for non-
synonymous or 3" UTR SNPs in protein-coding tran-
scripts but stronger than for SNPs in their 5" UTRs or
four-fold degenerate sites (Additional File 7). We
observed that sequences upstream of the IncRNA loci in
D. melanogaster are also enriched in low frequency var-
iants relative to small introns or to upstream sequences
of protein-coding genes (Additional File 8). This could
reflect purifying selection acting on these elements and/
or the presence of unannotated upstream IncRNA
exons.

An equivalent analysis on the set of human IncRNAs,
using data from the 1000 Genomes Project [40],
revealed no enrichment of rare variants within human
IncRNA exons relative to candidate neutrally evolving
sequences such as four fold degenerate sites, introns or
ancestral repeats (P >0.05, Figure 3). This result is
important in allowing us to extend from our previous
observation of a low degree of conservation between
species, to effectively neutral or weak negative selection
occurring since the emergence of modern humans. We
similarly found that the derived allele frequency (DAF)
of SNPs within positionally conserved IncRNAs does not
depart significantly from the distribution observed for
neighbouring ancestral repeats. While we observe a
departure in the human IncRNA SNP DAF with respect
to that for ancestral repeats sampled genome-wide, this
is likely attributable to the effects of background

selection: negative selection acting on the genomically
proximal protein-coding genes.

Deleterious effect of mutations within intergenic IncRNAs in
fruitfly but not in human

In our final analysis we estimated the distribution of fit-
ness effects of new mutations within D. melanogaster or
human IncRNA exons from their respective site fre-
quency spectra. Because the DAF spectra can be influ-
enced by past variation in effective population size, we
employed the method of Keightley and Eyre-Walker
[54] that estimates the distribution of fitness effect of
new mutations and demographic parameters from the
folded frequency spectrum.

As our proxy for neutrally evolving sequence we con-
sidered site frequency spectra from sites randomly
sampled within flanking intergenic sequences. Likewise,
we used four-fold degenerate sites as neutral proxy
when calculating the distribution of fitness effect of new
mutations at 0-fold degenerate sites. In fruitflies, two-
thirds of mutations in IncRNA exons are predicted to be
effectively neutral (Nes <1; 64.18%, 95% CI 63.8% to
64.5%) while one-third are likely to be deleterious (Nes
>1; 35.82%, 95% CI 35.0% to 36.6%). In stark contrast,
no mutations in human IncRNAs were classified in this
analysis as being deleterious, including those IncRNAs
with positional equivalents in mouse. Consequently, we
predict that the great majority of substitutions in human
IncRNA sequence are effectively selectively neutral or
nearly neutral (Figure 4). As an additional comparison
we also computed the distribution of fitness effect for
non-degenerate sites within protein-coding genes asso-
ciated with lethal mutant phenotypes in D. melanogaster
or associated with genetic diseases or syndromes in
human. As expected for these two sets of sites we
observed an increased proportion of sites classified as
being highly deleterious (Nes >100) relative to non-
degenerate sites from all remaining protein-coding
genes. Once again the proportion is strikingly higher for
the D. melanogaster set (70.92%) than it is for the
human set (59.74%) of deleterious amino acid changes.
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Figure 2 McDonald-Kreitman test for IncRNA exons and
introns. Small intronic sequences (<86 nt, disregarding the first 6 nt
and last 16 nt) were used as a proxy for neutrally evolving
sequences. *** P <0.001, ns: not significant.

Our estimates of the distribution of fitness effects of
newly arising mutations within non-degenerate sites are
in agreement with previous analyses conducted in
human. Boyko et al. [55] as well as Keightley and Eyre-
Walker [54] identified between 22% and 34% of newly
arising mutations within the African population as being
selectively effectively neutral (our estimate: 26.69%).

Discussion

Previous between species comparisons predict IncRNAs
to have evolved under a regime of purifying selection
that is considerably weaker than for protein-coding
sequences [13,28]-[31]. Because of their design, vir-
tually all of these experiments consider evolutionarily
ancient selective events. However by taking advantage
of available sequenced genomes of individuals from
within the same species, we can now: (1) infer the evolu-
tion of these sequences at a considerably shorter time
scale; (2) quantify more precisely the strength of recent
or contemporaneous selection acting on IncRNAs; and
(3) assess the distribution of fitness effect of new dele-
terious mutations occurring within these sequences.
From the reported importance of a limited subset of
IncRNAs in gene regulation [23,25,26], it might have
been expected that human IncRNAs would exhibit a
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weak signature of purifying selection at the population
level.

D. melanogaster intergenic IncRNA evolution

Our results show that D. melanogaster intergenic
IncRNAs are subject to moderately strong selective con-
straints. SNPs occurring within fruitfly IncRNAs are
characterised by an excess of rare variants relative to
neutral sequences (either small introns or randomly
sampled sites within flanking intergenic sequences),
leading to a negative estimate of Tajima’s D, and a L-
shaped site frequency spectrum. We reached the same
conclusion when considering the minor allele frequency
or the derived allele frequency or when taking account
of mutational biases (AT—>GC, GC—AT). Although this
effect could be explained by a recent population expan-
sion [56], we reached identical conclusions when using
an algorithm that estimates population parameters
before testing for the distribution of fitness effect of
newly arising mutations [54,57].

Our findings of fruitfly IncRNA constraint at the
population level are confirmed at the interspecific level
by comparing nucleotide conservation between IncRNA
exons and introns, an extension to our previous findings
[13]. LncRNA exons were shown to exhibit an inter-
mediate level of conservation between protein-coding
exons and intergenic sequences, while conservation of
IncRNA introns does not differ significantly from that of
intergenic sequence.

These differences in conservation between Drosophila
IncRNA exons and introns, as well as the observation of
a greater proportion of low frequency variants within
IncRNA exons relative to IncRNA introns, argue
strongly for spliced transcripts being important for the
function of many fruitfly IncRNAs and not RNA
sequence-independent biological function as found for
some IncRNA loci such as HSI and Airn [42,43].

In contrast to results for human IncRNAs (which con-
firm our previous observations [28,31]) we found no sig-
nificantly increased conservation for splice sites in
Drosophila IncRNAs relative to randomly selected ‘GT’
and ‘AG’ dinucleotides within intergenic and intronic
sequences. This lack of increased splice site conservation,
despite an increased nucleotide conservation of the
IncRNA exons, may indicate a rapid divergence of splicing
elements within these long non-coding RNAs. This obser-
vation could, however, also result from the mis-annotation
of splice sites as a consequence of typically low sequence
coverage for IncRNA models in RNA-Seq experiments.

Human intergenic IncRNA evolution
In contrast to evidence in flies, we found no evidence
from human population data for widespread purifying
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selection acting on IncRNA sequence, and only a weak
signal of elevated sequence conservation between verte-
brate species. Few human IncRNAs were as highly con-
served as those from Drosophila (Additional File 9).

As evidence for IncRNA sequence conservation across
species is scarce, potentially orthologous transcripts

transcribed with the same orientation and syntenic posi-
tion relative to an orthologous protein coding locus
have been identified among human, mouse and zebra-
fish [32]. If such positionally equivalent IncRNAs are
orthologous and retain ancestral function then purifying
selection acting on these loci might be expected to be
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stronger than for the remaining IncRNAs. However,
these positionally equivalent IncRNAs’ sequence conser-
vation across vertebrates, as well as their site frequency
spectra, were found not to differ from those of a control
set of human IncRNAs. Once again this highlights the
weak selective constraints that have acted both recently
and more historically on vertebrate IncRNAs. Accord-
ingly, zebrafish IncRNAs with positional equivalents in
human or mouse were found not to exhibit sequence
conservation between these species [32].

The lack of evidence for strong or widespread purify-
ing selection or the weak selective effect of mutations
within non-coding sequences in human has been
reported previously, although not specifically for tran-
scribed non-coding sequence. Torgerson et al. [58] com-
pared polymorphisms in human within conserved
intergenic sequences (>5 kb upstream and downstream
of annotated transcripts) with synonymous site poly-
morphisms and found no evidence for selection on
intergenic conserved sequences. Likewise, Krukyov et al.
[59] and Chen et al. [60] found that despite purifying
selection acting on the most conserved non-coding ele-
ments in human, of mutations within them have only
weak effects on fitness.

Why might fly intergenic IncRNA evolution differ from
human intergenic IncRNA evolution?

We estimated that an average of 35.82% of new muta-
tions within D. melanogaster intergenic IncRNAs are
effectively negatively selected. However, selection on all
mutations within human intergenic IncRNAs, even
those with a positional equivalent in mouse, was pre-
dicted to be effectively neutral.

Some of the observed differences in conservation and
selection acting on IncRNAs between D. melanogaster
and humans could be due to different origins of the two
datasets. Our set of human IncRNAs was derived from
adult tissues [41] whereas the fruitfly IncRNAs were
identified from a developmental time course gene-
expression analysis [9,13] and could therefore be subject
to stronger selective constraints. Previous studies
showed increased purifying selection on protein-coding
genes expressed early during development relative to
genes expressed during the adult stage [61].

A second explanation for the observed differences
between D. melanogaster and human IncRNAs in con-
servation and allele frequency distribution relates to dif-
ferences in the effective population sizes of the two
species. The influence of effective population size on the
probability of fixation of a deleterious mutation is well
documented [62]. According to the nearly neutral theory
of molecular evolution,the probability of fixation of such
a mutation is a function of 4Neus (u: mutation rate, s:
selection coefficient), and thus a weakly deleterious
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mutation will be effectively neutral if the product of its
selection coefficient (s) and the effective population size
(Ne) is near to one [63-65]. There is a considerable dif-
ference in estimated effective population sizes of D. mel-
anogaster or H. sapiens: 1,450,000 versus 1,200-15,000,
respectively [66-68]. This results in a wide range of low
selection coefficients s for which deleterious mutations
have widely varying fixation probabilities between the
two species. A deleterious mutation with a small selec-
tion coefficient in human is likely to evolve essentially
neutrally, while a mutation with the same selection coef-
ficient in Drosophila will tend to be subject to stronger
purifying selection. More formally any mutation with |s|
> 1/Ne human will be under the scrutiny of selection in
either species while any mutation with 1/Ne human > |
s| > 1/Ne Drosophila will be under a selectively near
neutral regime in human but will be under more effec-
tive negative selection in D. melanogaster. According to
the effective population size estimates cited above, the
minimum value of s for selection to act on deleterious
variants ranges from approximately 7 x 10-5 in human
to three orders of magnitude lower, 7 x 10-8 in D. mel-
anogaster. This difference in effective population size
between human and Drosophila is a likely explanation
of the striking differences in the DAF distributions of
variants within IncRNAs in D. melanogaster and human.

A third explanation might be that the repertoires of
fruitfly or human IncRNA molecular mechanisms are
very different, leading to differences in the signatures of
selection in their IncRNA sequences. If this is indeed
the case then we speculate that fruitfly IncRNA mechan-
isms will be more critical to its biology than are IncRNA
mechanisms to human biology.

From these results testable predictions can be made
regarding the evolution and conservation of IncRNA
sequences. Deleterious mutations with a particular value
of s within IncRNA in species with large effective popula-
tion size, such as insects [59,69], are more likely to be
purged leading to a greater sequence conservation. In
contrast within species with low effective population size,
such as human, weakly to mildly deleterious mutations
are more likely to be fixed leading to a greater turn-over
of non-coding transcribed sequences [33]. This effect
explains the difference in the distribution of fitness effects
of deleterious mutations at genes annotated with disease/
lethal phenotypes in human and fruitflies.

Comparison with Ward and Kellis [36]

Our conclusion that negative selection is highly ineffi-
cient within human IncRNA variants appears to be at
odds with evidence from Ward and Kellis that their var-
iants exhibit a lower mean DAF than genomic samples
[36]. This apparent discrepancy could not be explained
by the different IncRNA sets being considered. This was
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because results from our reanalysis of the Ward and
Kellis IncRNA set from ENCODE were equivalent to
those we report above. It could also not be explained by
Ward and Kellis’ [36] consideration only of SNPs of
Yoruba origin, since when we re-ran our approach using
only Yoruba SNPs, no substantive differences were
found (Additional Files 10 and 11). Instead, we believe
the discrepancy likely arises from the differences in the
choice of proxy for neutral sequence. In our analysis, we
account for the otherwise potentially confounding fac-
tors of background selection and mutational variation
by considering sites either within ancestral repeats
that flank IncRNA loci, or within flanking intergenic
sequence that has been masked for conserved sequence.
By contrast, the approach of Ward and Kellis [36] sam-
ples sites from concatenated unannotated intergenic
sequences drawn from across all autosomes, and thus
does not account for background selection or muta-
tional rate variation.

Although interspecies sequence conservation over long
evolutionary time is rightly considered as an indicator of
functionality, the lack of conservation within IncRNAs
does not necessarily imply their lack of functionality
[70]. Sequences encoding heart enhancers have been
found to be as poorly conserved as randomly sampled
sequence [71]. The accumulation of weakly to mildly
deleterious mutations within poorly conserved sequence,
such as human IncRNA loci, raises the question of how
a population can carry an ever increasing burden of
deleterious variants within loci that regulate gene
expression? Previous hypotheses proposed that such
sequences interact with only a limited number of factors
or that only a very restricted proportion of sequence is
required to convey biological function [70]. Others sug-
gest that compensatory mutations within the locus
maintain secondary structure [72] or similarly within the
sequence of its interacting partner maintain molecular
function. Such compensatory mechanisms [34] and net-
work redundancy have been proposed to explain the
rapid sequence evolution of IncRNAs and the absence of
mutant phenotypes for some IncRNA knockout models.
Finally, the accumulation of slightly deleterious muta-
tions could also be explained by synergistic epistasis,
when interactions between mutations produce a greater
effect than expected from the sum of their independent
effects. This hypothesis was first proposed to explain the
mutational load paradox in species with low effective
population sizes [73] but may also help to explain the
accumulation of potentially deleterious mutations at
synonymous sites [74] and within conserved non-coding
sequences [59].

The inefficiency, or low degree, of selection acting on
mutations within human IncRNAs suggests that for the
great majority of these loci extensive phenotyping will

Page 11 of 16

be necessary to identify the potential deleterious effects
of their disruption. Accordingly, several recent studies
have reported that despite phenotypes being observed in
cell-based assays for several IncRNA loci (HOTAIR,
Malatl, Neatl), no overt phenotype (for example, litter
size, body weight or viability) was found in the knockout
mice under normal laboratory conditions ([34,75-78]).
However an absence of overt phenotype in laboratory
conditions does not necessarily imply that there is no
deleterious effect of the knockout. Although the knock-
out mice did not differ from the wild-type individuals,
further analyses found evidence for phenotypes for Evf2
[79], and Bcl [80,81] mutants. Analyses in yeast and in
worm have revealed that despite the observation of a
lack of phenotype for a vast majority of the knockout
mutants, fitness effects measured as population growth
under a wide range of conditions are apparent for up to
97% of Saccharomyces cerevisiae genes [82] and between
42% and 60% of genes assayed in Caenorhabditis ele-
gans. Finally, because IncRNAs are most often expressed
at low levels in a developmental stage and/or tissue spe-
cific manner this increases the difficulty of identifying
potential phenotypes associated with their disruption.

Conclusions

Genetic drift appears to be the main driving force in the
evolution of intergenic IncRNAs, at least in humans, as
a consequence of our small effective population size.
Therefore, weakly to mildly deleterious mutations are
likely to have accumulated rapidly within intergenic
IncRNAs. The consequences of such an accumulation
on IncRNA function and on human biology have yet to
be experimentally assessed. Our observations serve to
highlight the pressing need for extending the study of
these loci to in-vivo systems combined with extensive
phenotyping. Our results support a less prominent bio-
logical role for many of these non-coding loci than has
been proposed previously [83,84].

Materials and Methods

In all analyses that we describe below, calculated P values
were corrected for multiple testing using a Bonferroni
correction [85].

Our analysis in D. melanogaster was conducted on the
set of 1,115 long non-coding intergenic RNAs defined
by Young et al. [13] using polyA+-selected transcrip-
tome data from the ModEncode Project [9] having
excluded four loci owing to their overlap with recently
predicted small open reading frames [86]. For compari-
son we also analysed a set of 4,662 human IncRNAs
identified by Cabili et al. [41] from polyA+-selected
libraries using conservative criteria, namely one isoform
reconstructed in at least two tissues or by two assem-
blers [41].
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Because mono-exonic IncRNAs models are not
stranded, we limited our analysis to multi-exonic loci.
Furthermore, in order to avoid the confounding effects
arising from selection acting on protein-coding genes
we focused our analysis on intergenic IncRNA loci,
instead of intronic, antisense or IncRNAs that overlap
untranslated regions of protein-coding genes.

We used the mouse IncRNAs annotated by Ensembl
and by Belgard et al. [87] to identify positional equiva-
lent IncRNAs between mouse and human. Using pro-
tein-coding genes with 1-to-1 orthologous relationships
between human and mouse and flanking a IncRNA
locus in both species, we defined as positional equiva-
lents those IncRNAs that were found in the same tran-
scriptional orientation and the same location relative to
a protein-coding gene in both species. Furthermore, in
order to take into account potential selection acting on
the nearby protein-coding gene, we also identified a
control set composed of IncRNAs flanking protein-cod-
ing genes with 1-to-1 orthologs but with different tran-
scriptional orientations and/or positions relative to the
protein coding gene. We identified 374 positional
equivalents loci between human and mouse, and 802
control IncRNAs.

We collected 2,993 genes described as being involved
in syndromes and genetic diseases from OMIM database
[88,89]. Using the FlyBase database [90], we collated
2,125 genes with lethal mutant phenotypes.

D. melanogaster and human gene annotations and
genomes were downloaded from FlyBase [90] (release
5.39) and Ensembl [91] (release 64), respectively.

Polymorphism data for 162 D. melanogaster strains
from Raleigh, North Carolina were downloaded from
the Drosophila Genetic Reference Panel [39,92,93]. Sites
covered by at least 10 reads and without base ambiguity
in at least 150 strains were retained for further analysis.
A total of 3,172,754 sites across the five major chromo-
somal elements were used for analysis. For the human
dataset, we discarded SNPs within 10 bp of indel calls
and chose a quality score threshold to give a 0.1% FDR.
The allele frequencies for polymorphic sites were
retrieved from the 1000 Genomes Project data. We col-
lected 18,745,840 SNPs in 174 individuals of African ori-
gin (a highly polymorphic population) called by the 1000
Genomes Project Consortium [40,94].

For both datasets, we polarised the alleles into ances-
tral or derived states using the pairwise alignments of D.
melanogaster with D. simulans and D. yakuba, and of H.
sapiens with the chimpanzee (Pan troglodytes) and
macaque (Macaca mulatta) which are available from
the UCSC genome database website [95]. We used max-
imum parsimony to infer the ancestral state of each site,
and ambiguous sites were removed from the final data-
set. Using genome annotations, we collated sites found
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within exons and introns of protein-coding genes,
IncRNA loci or intergenic sequences or ancestral repeats
(transposable elements shared between human, mouse
and rat) (Table [1]).

Evolutionary rates and sequence conservation

PhastCons scores [2] computed using the alignments of
11 Drosophila species, Anopheles gambiae, Tribolium
castaneum and Apis mellifera (whose divergence spans
approximately 300 Mya) were downloaded from the
UCSC database [95]. We computed the median phast-
Cons scores for for each of 10 successive windows that
each represents a 10% portion of IncRNA exon or intron
sequence; exons or introns were further subdivided into
‘first’, ‘middle’, ‘last’ or ‘unique’ classes with respect to
their genomic position. We also collected 1,000 nt of 5
and 3’ flanking intergenic sequences for both IncRNAs
and protein coding loci.

We computed, for each window, 95% confidence inter-
vals using 10,000 bootstraps. As a control, we randomly
selected intergenic sequences lying away (>1 kb) from
any annotated gene whose size distribution matched that
of the IncRNA exons or introns. One thousand such sets
of control sequences were defined to permit confidence
intervals to be calculated. For comparison this analysis
was also performed on the set of protein-coding genes
that flank IncRNA loci.

This procedure was repeated for human IncRNA loci
and their neighbouring protein-coding genes using
phastCons scores computed using the alignments of 46
vertebrate genomes from the UCSC database [95]
(approximately 400My).

In order to assess the difference in nucleotide conserva-
tion between IncRNA exons and introns, we implemen-
ted a resampling analysis in which we randomly sampled
a single site per feature (exon or intron) within a locus.
In total, 1,000 resampling analyses were performed.

We estimated the conservation of the splice sites of
both protein-coding and IncRNA loci in flies using the
sequence alignments of 50 nucleotides upstream and
downstream of the D. melanogaster splice sites with D.
simulans, D. sechellia, D. yakuba and D. erecta. For 5'
and 3’ splice sites and the 20 adjacent intronic sites of
protein coding genes and IncRNA loci we computed the
information content using the Shannon-Weaver index.

As control, we randomly selected ‘GT’ and ‘AG’ dinu-
cleotides within intergenic sequences flanking the
IncRNA loci and applied the same procedure.

Polymorphism estimators

We used VariScan [96] to compute polymorphism indi-
cators (7T , W, Tajima’s D). Genomic alignments with
D. simulans and rhesus macaque for D. melanogaster
and human, respectively, were used to compute the
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Jukes-Cantor corrected per site divergence (k). To avoid
any potential bias arising from local variations in recombi-
nation rate, mutation rate, efficacy of selection or nucleo-
tide composition, we limited our analysis to only those
protein coding genes, small introns or ancestral repeats
that are found in the neighbouring genomic regions of
IncRNA loci (within 5 kb). Likewise in human we analysed
IncRNA loci flanked by proximal (<10 kb) ancestral
repeats and their flanking protein-coding genes. Similar
conclusions were reached from analyses with distance
thresholds of 5 kb and 20 kb (Additional Files 5 and 6).

Similarly we compared the derived allele frequency of
polymorphic sites within IncRNA exons or IncRNA
introns to sites within small introns, non-degenerate
sites and four-fold degenerate sites.

Because the putatively neutral sites we used are not
interdigitated with our sites of interest (such as IncRNA
exonic nucleotides), there remains the possibility that
our indicators of purifying selection are artificially
inflated [97]. In order to take such biases into account,
when considering N sites from each IncRNA locus asso-
ciated with an intergenic flanking sequence (>1,000 nt
following the masking of conserved non-coding ele-
ments with nucleotide identity >90% over >20 nt), we
randomly sampled this number N sites from this
masked flanking sequence to be used as a neutral proxy.
For the study of non-degenerate sites, we used four-fold
degenerate sites within the same protein as a neutral
proxy in human. However, because there is evidence for
selection having acted on four-fold degenerate sites in
Drosophila, we instead used small introns (<86 nt) as
our neutral proxy and limited our analysis to just those
protein-coding genes which contain such small introns.
This analysis permits the strength of selection acting on
IncRNAs to be estimated while controlling for variations
in the local mutation rate, as well as background selec-
tion associated with nearby functional elements includ-
ing protein-coding genes and well conserved non-
transcribed non-coding regulatory elements. We used
this methodology to assess the degree of selective con-
straints acting on intergenic IncRNAs through a general-
ised McDonald-Kreitman test [98-100]. We compared
the numbers of polymorphic over divergent sites within
IncRNA exons and IncRNA introns to the numbers
observed within sampled putatively neutral sites using a
X2 test with one degree of freedom.

For either D. melanogaster or human IncRNAs, we
used the site frequency spectra of mutations occurring
within the sampled putatively neutral sites to estimate
the distribution of fitness effect of new deleterious
mutations within IncRNAs (in terms of -Nes) using
DFE-alpha [54,57,103]. Confidence interval values for
the proportion of sites under the different Nes categories
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were estimated through 200 bootstraps per locus. This
analysis should therefore also take into account the
effects of background selection as for each locus a ‘neu-
tral’ reference is drawn from the same region.

Statistics

Comparisons between locus classes for the polymorph-
ism estimators were performed using Kruskal-Wallis
tests. The minor and derived allele frequencies distribu-
tions for each class were compared using Kolmogorov-
Smirnov tests.

Additional material

Additional File 1: Average phastCons scores across protein-coding
(blue) and IncRNA (red) gene models in D. melanogaster (A) and human
(B, O). Two hundred evenly-spaced nucleotides were randomly sampled
per feature. The gray lines represent the 95% confidence intervals
computed over 1,000 resampling. Average phastCons score for INcCRNAs
in human was computed over 200 randomly selected equidistant
nucleotides within each of the categories. Confidence intervals were
computed using 1,000 resampling of the data.

Additional File 2: Median sequence conservation (phastCons) score
across protein coding (blue) and positionally equivalent (PE)
IncRNA (red) in human.

Additional File 3: Comparison of protein-coding (blue) and IncRNA (red)
5" (A) and 3’ (B) splice site conservation in D. melanogaster . Only protein
coding sequences flanking INcRNAs were used in the analysis. The
control set is based on the random selection of ‘GT" and ‘AG’
dinucleotides within the intergenic sequence flanking the IncRNAs in D.
melanogaster. The Shannon-Weaver index was computed for each site
using the alignments of each splice site and its neighbouring sequences
with D. simulans, D. sechellia, D. yakuba and D. erecta with Muscle [102].

Additional File 4: Distribution of the distances between consecutive
SNPs within protein coding (black) and IncRNA (red) exons in D.
melanogaster.

Additional File 5: Average (standard deviation) polymorphism
estimates for IncRNA and their flanking protein coding genes in
human. PE: positional equivalent. A maximum distance threshold
between IncRNA loci and ancestral sequences of 5 kb was applied.

Additional File 6: Average (standard deviation) polymorphism
estimates for IncRNA and their flanking protein coding genes in
human. PE: positional equivalent. A maximum distance threshold
between IncRNA loci and ancestral sequences of 20 kb was applied.

Additional File 7: Comparison of derived allele frequency distribution of
SNPs at non-synonymous sites (dark blue), within 3" UTR (yellow), INCRNA
exons (red), 5" UTR, at four-fold degenerate sites (light blue), and within
small introns in D. melanogaster.

Additional File 8: Derived allele frequency spectra for 0-fold, four-fold
degenerate sites, sites within INCRNA, sites upstream (400 nt) IncRNAs
and protein coding genes in D. melanogaster (A) and human (B).

Additional File 9: Distribution of average conservation scores for
intergenic IncRNAs in human.

Additional File 10: Comparison of derived allele frequency
distribution of SNPs at 0-fold degenerate sites (blue), GENCODE
IncRNA exons (red), ancestral repeats (green) and four-fold
degenerate sites (light blue) in human.

Additional File 11: Comparison of derived allele frequency
distribution of SNPs at 0-fold degenerate sites (blue), GENCODE
IncRNA exons (red), ancestral repeats (green) and four-fold
degenerate sites (light blue) in individuals of Yoruba origin.
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