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Hepatitis B virus (HBV) specifically infects liver cells, leading to progressive liver

cirrhosis and significantly increasing the risk of hepatocellular carcinoma (HCC). The

maturity of sequencing technology, improvement in bioinformatics data analysis and

progress of omics technologies had improved research efficiency. The occurrence and

progression of HCC are affected by multisystem and multilevel pathological changes.

With the application of single-omics technologies, including genomics, transcriptomics,

metabolomics and proteomics in tissue and body fluid samples, and even the novel

development of multi-omics analysis on a single-cell platform, HBV-associated HCC

changes can be better analyzed. The review summarizes the application of single omics

and combined analysis of multi-omics data in HBV-associated HCC and proposes the

importance of multi-omics analysis in the type of HCC, which provide the possibility for

the precise diagnosis and therapy of HBV-associated HCC.

Keywords: hepatitis B virus, hepatocellular carcinoma, metabolomics, proteomics, genomics, transcriptome,

non-coding RNA

INTRODUCTION

Globally, 830,180 people died of cancers in 2020, and liver cancer became the third causative
factor of cancer-associated death (8.3% of 9.9 million deaths) (1). Hepatocellular carcinoma (HCC)
is the most dominant primary liver cancer, which can be caused by hepatitis B virus (HBV),
hepatitis C virus (HCV), alcohol abuse, and so on (2, 3). Although acquired HBV infection
has been well-controlled by vaccines, HBV remains the main cause of HCC due to nearly 300
million individuals with chronic HBV (CHB) infection worldwide (4). It is estimated that 8–20%
of untreated patients with CHB infection will progress to liver cirrhosis within 5 years (5), and
∼2–8% of the patients with liver cirrhosis can be transformed into HCC (6). Persistent HBV
infection or activeHBV replication results in liver injury, fibrosis, cirrhosis, and liver cancer, leading
to most of the end-stage liver diseases (7, 8). Up to one-third of patients with HBV-associated
HCC will develop cirrhotic tumors (2). Additionally, inactive HBV carriers with serum alanine
aminotransferase (ALT) levels in the normal range have substantial risk of HCC compared to those
without HBV infection (9).

Nucleos(t)ide analogs (NAs) and PEG-interferon are recommended antiviral treatments in
routine medicine (such as lamivudine, adefovir, dipivoxil, entecavir, and tenofovir) that can prevent
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viral replication and CHB progression. However, these drugs
don’t affect the HBV genome in the host liver cells, which
has always been in the form of covalently closed circular DNA
(cccDNA) (10). Additionally, HBV-associated HCC presents
more chemoresistance than non-HBV tumors. Thus, current
treatment regimens are not curative, and the primary objective
of therapy for CHB infection is to permanently inhibit HBV
replication, followed by lifelong therapy (11). Given the above
limits in treatment and huge scale of HBV infection worldwide,
new therapeutic strategies are necessary.

CHB infection is dynamic interactions among the hepatocytes,
virus and immune system of the host. In recent years,
significant progress has been made in genome and proteomic
analysis, clinical data management, next generation sequencing
data mining, machine learning and deep learning algorithms.
“Omics” technologies are used to mainly detect all protein,
transcripts, and metabolites for mining for available data in
the biological sample. These high-throughput technologies play
critical roles in describing gene and/or protein expression
profiles, and their effects on HBV-associated HCC (12–14).
Although many biomarkers for diagnosis and prognosis have
been identified through omics analysis of HBV infection, the
previous studies focus on a single aspect of the natural history
of CHB. However, most studies on systematic omics are based
on genomics, transcriptomics and proteomics. The integration
of multi-omics data analysis is critical for providing novel
insights into the transitions andmolecular mechanisms in related
diseases (15, 16).

With the technological advances of platforms, multi-omics
analysis will be more crucial for molecular therapies and
precision medicine. Integrative analysis of multi-omics platforms
mainly relies on innovative technology platforms including
genomics, metabolomics, and proteomics. Multi-omics studies
have been successfully exploited to elucidate the pathogenic
mechanism of infectious diseases, such as helicobacter pylori
(HP)-associated gastric carcinoma (17), COVID-19 (18), and
herpes simplex virus-1 (HSV-1) infection (19). The promise
of the multi-omics approach has been well-described in more
complex diseases, and several studies have proposed potential
biomarkers for HCC using omics resources. Although “omics-
level” studies have been very useful in understanding the
mechanism of HCC manifestation, few are available to integrate
different omics data.

Herein, we review recent advances in multi-omics
applications, including genomics, epigenetics, transcriptomics,
proteomics, andmetabolomics. Overall, this review will highlight
the omics advances in HBV-associated HCC to provide novel
insights into immunotherapies based on specific biomarkers in
the future (Figure 1).

EPIDEMIOLOGY

Hepatitis B virus is a DNA virus with a partial double-stranded
relaxed circular DNA genome, containing four open reading
frames (ORFs) with P, pre-S/S, pre-C/C, and X genes, and Pre-S/S
comprises the pre-S1, pre-S2, and S genes. The P region encodes

DNA polymerase and RNase H, which is associated with virus
replication. Pre-C/C encodes hepatitis B core antigen (HBcAg)
and hepatitis B e antigen (HBeAg), and X region encodes a
hepatitis B x (HBx) non-structural protein, which is involved
in viral replication and oncogenic activity. A recent report
showed that the HBx protein could promote the degradation of
the structural maintenance of chromosome (SMC) 5/6 protein
complexes to increase HBV replication and indirectly proves the
association with the occurrence of HCC again (20).

Mutations of the viral genome causing biological behavior
changes may have crucial effects on HBV pathogenicity
and are closely associated with the malignant transition of
liver cancer (21). The occurrence of HBV-associated HCC
is a complex process. HBV infection can promote HCC
through direct or indirect mechanisms, including HBV gene
integration, genomic instability, and activation of cancer-
associated signaling pathways. Additionally, new insights into
the mechanism of HCC-related pathway activation, including
epigenetics, autophagy, exosomes, metabolism, and immune
responses (22–25), are being continuously focused on. Previous
studies also showed that HBV-associated HCC individuals
displayed distinctive profiles including chromosomal alterations
and β-catenin mutations (26). Furthermore, genetic alterations
in subgroups of HCC cases were remarkably associated with
HBV-DNA levels (27). Additionally, novel biomarkers, such as
DNA mutations, DNA or RNA methylation, long non-coding
RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs
(circRNAs), are under investigation and can be considered for
future clinical practice of HCC.

Thus, integrated multi-omics analysis must be performed
to obtain a better understanding of the pathogenesis of
HBV-associated HCC. The combined application of genomics,
epigenomics, and transcriptomics to illustrate the mechanism of
virus-associated carcinogenesis is required.

GENOMICS CHARACTERISTICS

In contrast to HCV, HBV can integrate the viral genome into
the host hepatocyte genome. A thorough understanding of
the pathogenesis of virus-associated carcinogenesis is critical
for early diagnosis, treatment and prevention of HCC. Recent
advances in deep sequencing technologies including next-
generation sequencing, nanopore sequencing, and single-cell
sequencing, contribute to revealing the landscape of genetic
and epigenetic changes in tumor tissues and chronic liver
damage caused by hepatitis virus infection, particularly HBV
(28). Persistent suppression and/or eradication of HBV/HCV
can contribute to reducing the incidence of HCC, but multi-
centric tumors in patients often arise after viral clearance (29–
31). Additionally, the accumulation of viral genetic alterations
negatively affects the epigenetic transformation of normal cells
into cancer cells (32). NGS technologies, including whole-exome
sequencing (WXS), RNA sequencing (RNA-seq), and whole-
genome sequencing (WGS), form the basis of current genomics
research. Therefore, vast amounts of sequencing data have been
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FIGURE 1 | Application of multi-omics in the diagnosis and therapy of HBV-associated HCC. The samples from HBV-associated HCC subjects were detected and

analyzed by mitiomics technology including genomics, transcriptomics, epigenetics, proteomics, metabolomics and other omics to accurately promote

biomarker-driven treatments and immunotherapies for HCC patients. HCC, hepatocellular carcinoma; HBV, hepatitis B virus; RNA-seq, RNA sequencing; LC-MS/MS,

liquid chromatograph-mass spectrometer/mass spectrometer.

shared in global databases, allowing researchers to synthesize
analyses that lead to new findings.

Host Profile
Genetic aberrations comprise nucleotide changes and structural
variations (STVs) (33–35). The accumulation of somatic genomic
alterations in primary tissues is the major cause of HCC. An
average of 40–60 somatic alterations is detected in the protein
coding regions of the genomes fromHCC patients (36) (Table 1).
Based on WES and single-nucleotide polymorphism (SNP) array
analysis, how these mutated genes and the copy number of their
alterations are involved in regulating these pivotal pathways,
including cell cycle control, telomere maintenance, chromatin
modification, and receptor tyrosine kinase, which have been
reported (51). Among these mutations, a few genomic alterations
are considered to be directly involved in the activation of the
important signaling pathways for hepatocarcinogenesis.

The integration of viral genome is a unique molecular
characteristic of HCC. Notably, the integration of HBV
genome affects gene expression near integration sites. Multiple
recurrent genetic aberrations and the disruption of the host

genome due to HBV-DNA integration are important for the
hallmarks of HBV-associated HCC. By large-scale genome
sequencing analysis of HCC, the core drivers (TERT, TP53,
and CTNNB1/AXIN1) have been identified as initial molecular
events and other low-frequency drivers including therapeutically
targetable drivers. These genes regulate some pathways, including
cell cycle (p53, p16), apoptosis (bcl2), cell proliferation and
differentiation (b-catenin, c-myc, APC, E-cadherin), metastasis
(MMP4, MMP9, Topoisomerase, Rb, Cyclin D1, Osteopontin),
angiogenesis (VEGFR-2,Angiopoietin-2), and other growth factor
signaling components (IGF-II, TGF, EGFR, HGF/c-MET, PTEN,
K-RAS) (37, 42). These findings indicate that HCC is not caused
by a specific driver mutation but involves in the multiple
carcinogenic pathways that enhances extremely heterogeneous
of HCC.

By next-generation sequencing, somatic mutations in TP53,
TERT promoter, and CTNNB1 have often been reported in HCC
patients (38). Somatic mutations are abundant in TERT gene
promoters and occur in more than 50% of the patients with
HCC, while the protein alterations caused by gene mutations
are often observed in CTNNB1 genes and TP53. Additionally,
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TABLE 1 | The common somatic genomic alterations and HBV integration events in HCC.

Genomic aberration Aberration frequency

(% of patients)

HBV integration events Pathway Biological roles References

TP53 3–40% (mutations);

2–15% (loss)

No P53 pathway Tumor suppressor (37, 38)

CTNNB1 11–41% No Wnt pathway Regulation in cell adhesion, growth,

and differentiation

(38, 39)

ARID1A 5–15% No Chromatin remoedling Transcriptional activation of selective

genes and inhibition of chromatin

remodeling

(39)

ARID2 3–15% No Chromatin remoedling Tumor suppressor gene in the

transcriptional activation and inhibition

of specific genes

(40, 41)

JAK1 7.70% No JAK1/STAT3 pathway Good prognostic marker for survival of

HCC patients

(25)

AXIN1 5–19% No Wnt pathway As signal transducer to regulate cell

adhesion, growth, and differentiation.

(37, 42)

CDKN2A 7–8% No cell cycle Tumor suppressor genes that promote

cell cycle arrest in G1 and G2.

(39)

KEAP1 2–8% No Oxidative stress pathway Proteinase adaptor (14)

ARID2 3–15% No Chromatin remodeling Growth hormone receptor (40, 41)

FGF family members

(FGF3, FGF4, FGF19)

4–5.6% No FGF pathway Mitogenic and cell survival activities (36)

TERT ∼60% Polymerase, X protein,

Precore/core protein

Telomere maintenance Telomere repeat (TTAGGG) was added

to the end of chromosome;the erosion

of telomere protective end was

compensated.

(39, 40, 43, 44)

MLL4 3% Polymerase, X protein Chromatin regulators Epigenetic modification (45, 46)

CCNE1 10% X protein, Precore/core

protein, S

TP53 /cell-cycle pathway Strong CcnE1 overexpression is

correlating with poor prognosis of HCC

patients.

(47, 48)

FN1 No Precore/core protein, X

protein, polymerase

No FN1 promotes the migratory and

invasive of hepatoma cells.

(40, 45, 47, 49)

CDK15 No S, Polymerase, X protein,

Precore/core protein

No Protein Coding gene (41)

ROCK1 No X protein, S No Stable overexpression of ROCK2

remarkably promoted cell motility and

invasiveness in HCC cells.

(50)

ApoA2 No Polymerase, X protein, S No Apolipoprotein family (50)

somatic structure variants (SVs) affect gene expression in
cancers. The Pan-Cancer Analysis ofWhole Genomes (PCAWG)
Consortium revealed that 100-kb SV breakpoints for hundreds
of genes were associated with their altered expressions by
aggregating whole-genome sequencing data from a cohort of
1,220 cancer individuals. For most of these genes, SVs result
in increased expression rather than decreased expression, and
the up-regulated cancer-related genes included TERT, CDK4,
MDM2, ERBB2, PDCD1LG2, and IGF2 (39). Simultaneously,
WGS analysis demonstrated several important types of SVs in
the genome of liver cancer, including TERT, APC, CDKN2A,
ARID1A, and new genes such as TTC28, LRP1B, andMACROD2,
and these SVs affected their expressions (39).

The increased copy number of HBV-DNA at HBV breakpoint
locations indicates that chromosomal instability is associated
with HBV genome integration (52). Hama et al. identified the
structural rearrangement that integrated the viral genome by

WGS analysis in HBV-associated HCC (50). Therefore, the
structural instability of the integrative viral genome is periodic
and may be related to the chromosomal instability of the host
hepatocyte genome.

HBV Profile
Approximate 350–400 million people worldwide are infected by
HBV, and persistent HBV infection leads to more than 50% of
HCC patients. HBV plays an important role in the development
of HCC by integrating the HBV genome into the host genome.
Several high-throughput sequencing studies have reported that
HBV genome integration occurs in a high rate of HBV-associated
HCC patients (Table 1) (52). Although HBV can randomly
and repeatedly integrate into the host genome including TERT
and MLL4, suggesting functional consequences for the host by
HBV integration events (45). Some studies have also identified
that the region between 1,600 and 1,900 nucleotides within
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the viral genome, corresponding to the 3
′

-end of HBx gene

and 5
′

-end of precore gene, is not only preferentially involved
in structural alterations within the viral genome, particularly
deletion and inversion events, but also significantly related with
the insertion into the host genome (43, 53). In a previous study,
HBV genome integration was significantly enriched on the q-
arm of chromosome-10 in a cohort of 48 HCC cases, and
the event was related with poorly differentiated tumors (43).
In several studies, HBV has been reported to integrate into
the CCNE1 and TERT genes. However, CDK15, ROCK1, FN1,
ApoA2, andMLL4 have rarely been reported as HBV integration
sites (40, 47, 49). In 76 samples of HBV-associated HCC cases,
4 cases of HBV integration within CCNE1 were reported,
resulting in the high expression of CCNE1 (47). Multiple high-
throughput genomic studies have found that repeated integration
sites on TERT promoters are the most frequent integration
sites (40). Disruption of the telomerase reverse transcriptase
(TERT) promoter may result in the dysregulation of TERT
expression (44). The mRNA expression of TERT is increased
when HBV binds to the TERT transcription start site, which
implies HBV sequences as enhancers forTERTmRNA expression
(43). In a Chinese cohort of forty-four HBV-associated HCC
tissues, 8 fusion transcripts of HBx/MLL were found, leading to
high expression of the MLL4 gene (46). Furthermore, multiple
transcripts with HBV-CDK15 fusion were observed in an HCC
case, including one in-frame fusion, which induced CDK15
overexpression (41). Hence, the genes of CCNE1, ANGPT1, and
TERT are not only mutated in somatic cells, but also integrated
in viruses (48).

EPIGENETICS CHARACTERISTICS

Viruses can alter the chromatin structure by redirecting the
modifications of chromatin and consequently affecting host cell
transcription, which may contribute to oncogenesis (54, 55).
Epigenetics refers to changes of gene expression without altering
the underlying DNA sequence, and comprises three major
components: histone modifications, DNAmethylation, and non-
coding RNA mechanisms (56). Hepatocellular carcinoma is
caused by the somatic mutations leading to the abnormalities
of chromatin regulations and epigenetic characteristics (57).
In the cases with HBV infection, the disorders of DNA/RNA
methylation and histone modifications have been reported, but
which have focused on specific genes or pathways, and genome-
wide mapping of the epigenetic alterations is rare.

DNA Methylation
DNA methylation in many tumor suppressor genes is related
with carcinogenesis. Through an array-based platform, the
genomic DNA methylation pattern of nearly 200 patients
with HCC further revealed the different cancer-specific DNA
hypermethylation clusters (58). DNAmethylation is significantly
different among HCV-related HCC, HBV-associated HCC
and normal tissue (Table 2) (66). However, some evidences
support more prominent DNA methylation alterations in
HCV-associated HCC than in HBV-associated HCC (67).
Similar to other cancers, HCC is characterized by the global

DNA hypomethylation and promoter hypermethylation, which
are related with the up-regulated tumor-promoting genes
(68, 69). High frequencies of aberrant DNA hypermethylation
of specific genes (GSTP1, RASSF1A, DOK1, and CHRNA3)
in HCC were reported, and these genes was suggested as a
prognostic marker of HCC combined with clinicopathological
data (59, 60). Furthermore, a recurrent hypomethylated
enhancer of CCAAT/enhancer-binding protein-beta (C/EBP-β)
promoted HCC tumorigenicity through global transcriptional
reprogramming (70). Methylation of the APC, RASSF1A,
and GSTP-1 genes is associated with HCC (61–64). Apart
from methylation at gene promoters and CpG islands, epigenetic
regulation and genome-wide enhancer hypomethylation patterns
in primary human HCCs must be elucidated by whole-genome
sequencing. In HCC patients, the latest three reports identified
6 CpG sites in white blood cell (WBC) DNA and showed that
DNA methylation at those sites could distinguish HCC from
healthy blood in prospective samples taken before diagnosis
(71–73). Additionally, compared with hepatitis and cirrhosis
liver tissues, increased DNA methylation of CpG island 3 in the
HBV genome indicated HBV methylation in HBV-associated
HCC pathogenesis (74). Furthermore, HBV infection induces
gene methylation in HCC (75). HBV infection promotes
the activity of DNA methyltransferase, which causes the
simultaneous methylation of host CpG islands and HBV-DNA
in cell experiments (76).

However, the potential for these markers to be used for
clinical application is low because biopsies are unsuitable for
early diagnosis. Because blood contains circulating tumor DNA,
blood may be a promising material for carrying the same DNA
methylation signals of markers as tumor tissue (71, 77). With the
important role of “liquid biopsy” in identifying specificmolecular
signals in nucleic acids released by cancer cells, some studies have
found that by detecting the methylation level of specific sites of
circulating tumor DNA(ctDNA) in a small amount (4–5ml) of
peripheral blood, it can be used to accurately diagnose HCC early
and to predict the curative effect and prognosis (78).

RNA Methylation
N6-methyladenosine (M6A) is present in most eukaryotic
messenger RNAs (mRNAs) and is the most commonly modified
form of mammalian RNA. Recently, some studies have reported
that hepatocarcinogenesis is closely related with abnormal m6A
modifications (79, 80). They found that high expression of the
m6A methylase METTL3 in HCC patients leads to high levels
of m6A in SOCS2 mRNA, resulting in the rapid degradation
of SOCS2 and HCC occurrence (79), while METTL14 had no
significant effect on HCC, and down-regulation of METTL14
expression was related with a poor prognosis in HCC patients
without recurrence (80). Although the relationship between
DNA and RNA m6A remains unclear, at least one independent
way can verify the m6A modification sites predicted by big
data (81). By transcriptome sequencing, some genes related
with m6A in HCC, particularly METTL3 and YTHDF2, had
been confirmed to be a risk signature (79). The processing of
miR-126 maturation is mediated by the methylation transferase
METTL14 in HCC, and the reduced expression of miR-126
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TABLE 2 | DNA methylation in HBV-associated HCC.

DNA methylation Methylation

status

Biological functions in HCC References

RASSF1A Hypermethylation As a diagnostic and prognostic non-invasive biomarker

for HCC.

(59, 60)

GSTP1 Hypermethylation As a diagnostic marker, GSTP1 methylation can

obviously enhance the risk of HBV-associated HCC

patients with cirrhosis.

(59–61)

DOK1 Hypermethylation A tumor suppressor gene, and methylation level of DOK1

is inversely related with gene expression.

(59, 60)

APC Hypermethylation Methylation of APC could involve in early stages of

HBV-related HCC, coupled with RASSF1A.

(61–65)

p16 Hypermethylation As a diagnostic marker, P16 methylation in promoter

region could obviously increase the risk of

HBV-associated HCC in patients with cirrhosis.

(37)

MGMT Hypomethylation Loss of methyl-cytosine at the MGMT gene promoter

may be considered as an early and transient biomarker

of hepatocarcinogenesis.

(60)

maturation will cause HCC metastasis (80). Thus, regulators
of m6A modification can become potential biomarkers for
prognosis in HBV-associated HCC.

Histone Modifications
In the hepatocyte nucleus, HBV-cccDNA assembles with the
histone proteins of host cells to form minichromatin, which
is dynamically regulated through histone post-translational
modifications (PTMs) to promote the expression of viral genes.
Previous reports have revealed a series of histone modifications
on HBV cccDNA, such as H3K4me2, H3K4me3, H3K9ac,
H3K27ac, H3K36me3, and H3K9me3. H3K4me2, H3K4me3,
H3K9ac, H3K27ac, and K3K36me3 are associated with activating
gene expression, while H3K9me3 is related to gene silencing (82).
A highly sensitive technique, 3C-high-throughput genome-wide
translocation sequencing (3C-HTGTS), was used to identify the
interactions of HBV-DNA and host DNA in which H3K4me1
histone modification is enriched by kmt2c/d, while H3K4me1
histone modification contributes to activate the transcriptional
activity of HBV. They found that histone modifications not
only strongly affected HBV transcription on minichromosomes
of HBV cccDNA but also affected host gene expression (83).
Recently, Alvarez-Astudillo et al. found that the histone variant
H3.3 was assembled from the histone chaperone HIRA to the
HBV-cccDNA, and this assembly was correlated with increased
levels of the active H3K4me and activation of HBV transcription
(84). The first genome-wide maps of PTMs obtained by
chromatin immunoprecipitation sequencing (ChIP-Seq) have
revealed that high levels of PTMs associated with transcription
activation are enriched at specific sites in the HBV genome,
whereas very low levels of PTMs are related with transcriptional
inhibition, even at silent HBV promoters (82). Herein, the effect
of transcriptional and active PTMs may open the possibility of
chromatin regulating HBV-cccDNA transcription, providing a
new way to treat chronic hepatitis B virus infection.

TRANSCRIPTOMICS CHARACTERISTICS

Host-HBV Transcription
Hepatitis B virus plays a crucial role in HCC progression by
integrating the viral genome into the host genome, and genome
integration events are observed in HBV-associated HCC patients
using high-throughput sequencing (43, 47, 52, 85). Pregenomic
RNA (pgRNA) of 3.5 kb, an RNA intermediate, is critical for
HBV replication. Thus, the level of HBV replication in tumors or
adjacent non-tumors is assessed by the presence of intact pgRNAs
in liver tissue, but few intact pgRNAs are observed, particularly in
the tumor tissues of HCC patients.

Most somatic mutations in HCC are in the coding regions
with potential functional effects. Five thousand four hundred
and eleven tumor-specific mutations were identified with an
average of 230 somatic mutations in each HCC patient,
and these somatic mutations were significantly different in
the distribution of the different genomic regions and their
predicted functions. Moreover, deep transcriptome sequencing
of HCC patients provides information on RNA expression,
transcriptional mutations and characteristics of HBV-human
chimeric transcripts (45). The integration characteristics of
HBV were identified by RNA sequencing, and the preferred
integration sites near the telomeres were reported (52). The
integration sites in the structural changes within HBV and host
genome have been well-described at the genomic level, but
the status of HBV transcripts in HBV-associated HCC has not
been comprehensively analyzed (86). To Target different HBV
transcripts in depth, Stadelmayer et al. have developed an HBV

full-length 5
′

RACE (rapid amplification of cDNA ends) method,
which significantly contributes to the understanding of HBV
transcription and may guide the development of new therapies
targeting HBV-cccDNA (87).

HBV fusion sequences are significantly enriched on
chromosome 10 (43). More HBV-human fusions (161 fusions) in
non-tumorous tissues were observed in the HCC transcriptome
of 22 HCC patients than in matched HCC tissues (33 fusions)
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(41). Notably, the data obtained through transcriptome analysis
showed that most chimeric transcripts in tumors fuse with
gene sequences more than at the genomic level, HBV was fused
with the repetitive sequences, particularly the LINE and SINE
families of the repetitive sequences in 40% of the chimeric
transcripts (43).

Although transcriptome sequencing can provide valuable
insights into the characteristics of HBV-associated HCC patients,
most studies have focused on host transcripts rather than
viral transcripts (88–90). More than 90% of HBV-associated
HCC contains transient HBV-DNA integration, which does not
produce all the HBV antigens, and these transient HBV-DNA
fragments encode epitopes that can be recognized by activate
T cells (47, 91–93). The HBV transcriptomes of the HCC cells
can be used for individualized immunotherapy with engineered
T cells and as a treatment measure for a wider range of HBV-
associated HCC patients (93). The transcriptome similarities
and differences in CD8+ T cell dysfunction were explored
in both chronic HBV infection and HCC patients through
high-throughput RNA-seq, and the results demonstrated that
CD8+ T cell dysfunction in the two groups shared high similar
characteristics, but each had its own characteristics in specific
genes and signal pathways (94).

Non-coding RNA
Non-coding RNAs (ncRNAs) are functional RNAs that cannot
encode proteins. ncRNAs make up a significant proportion of
cellular RNAs, accounting for more than 90% of human RNAs.
Recent reports have shown that ncRNAs play an important
role in multiple cellular processes including cell proliferation,
apoptosis, migration, and angiogenesis. Many tumor cells
including liver cancer cells, also release specific circRNAs,
microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and
extracellular vesicles containing proteins, lipids, RNAs and
miRNAs in peripheral blood (95–98). Non-coding variants are
closely linked to human cancers and are even involved in drug
resistance in HCC. Herein, we focused onmiRNAs, lncRNAs and
circRNAs implicated in the pathogenesis of HCC (Table 3).

miRNAs
miRNAs are one kind of important non-coding RNAs (ncRNAs),
∼22 nucleotides in length, and are highly expressed in many
types of tumors associated with HCC progression or suppression
(101, 102). miRNAs may act as tumor suppressor genes or
oncogenes by silencing and targeting mRNAs involved in
carcinogenesis. Recent studies showed that miRNA expression
is more valuable than mRNA-based profiling to identify tissue
types of tumor origin, and cancer treatments targeting miRNAs
are currently in clinical trials as early detection markers of
HCC (100, 121). In the past 2 years, many reports showed
that miRNAs were closely related with hepatocarcinogenesis
(116). A recent study showed that miR-154 as a tumor inhibitor
could suppress cell proliferation and metastasis, and the miR-154
expressionwas downregulated inHCC (99). Feng et al. found that
lncRNA PCNAP1 promoted HBV replication by regulating miR-
154/PCNA/HBV-cccDNA signal and PCNAP1/PCNA signal,
which drived the growth of both HBV-associated HCC and

HBV-free HCC (98). Some studies have considered that miRNA
expressions play an important in the pathogenesis of HCC by
the downregulation of miRNAs that upregulate oncogenes or the
upregulatedmiRNAs that target tumor suppressor genes (122). In
the “Expert consensus on early screening strategy for liver cancer
in China,” serum miRNAs as a potential diagnostic marker have
made some progress. In a study of 934 subjects, including groups
of healthy people, patients with CHB, liver cirrhosis and HBV-
associated liver cancer, 723 miRNAs were screened on a large
scale in plasma samples. The results showed that seven specific
miRNAs were selected to construct the diagnosis model of HCC
and can distinguish liver cancer from healthy people (sensitivity
for 83.3%, specificity for 93.9%), liver cancer from hepatitis
(sensitivity for 79.1%, specificity for 76.4%), and liver cancer from
liver cirrhosis (sensitivity for 75.0%, specificity for 91.1%) (123).
At the same time, other studies have also proven that miRNAs
have important value in the diagnosis of HCC, but the sensitivity
and specificity of this technology must be further improved.
Furthermore, the application values of miRNAs require large-
scale samples and multicenter clinical verification, which can be
used as a supplement for individualized diagnosis.

LncRNAs
Benefiting from advances in the transcriptome sequencing,
lncRNAs, transcripts more than 200 bp in length without
encoding proteins, play roles in different physiological and
pathological processes and affect cellular functions (106, 124).
To date, most of lncRNAs play important roles in regulating
specific cellular processes, particularly in the expressions of
protein-coding genes at the epigenetic, transcriptional and
post-transcriptional levels in cancer including HCC (125).
Previous studies have shown that the lncRNAs MALAT1, H19,
HOTAIR (HOX transcript antisense intergene RNA), HULC,
and PRNCR1 are abnormally expressed in various human
cancers, particularly HCC (104). LncRNAMALAT1 induces
murine HCC experimentally, H19 expression is upregulated
in HBV-associated HCC, HOTAIR is overexpressed in tumor
tissues from HCC patients and in liver cancer cell lines,
and is related with poor prognosis of HCC, HBx upregulates
lncRNAHULC by inhibiting P18 and promoting the occurrence
of HCC (103, 105, 107, 108). Additionally, the up-regulated
expressions of lncRNA-HEIH and HOTTIP promoted tumor
progression and significantly associated with tumor progression
and disease outcome in HCC patients (109, 110). Low expression
of lncRNA-MEG3 was observed in HCC tissues and cells, and
overexpression of lncRNA-MEG3 could inhibit the proliferation,
migration and invasion of HCC cells (111). LncRNA Low
Expression in Tumor (lncRNA-LET) and lncRNA-SRHC were
generally downregulated in HCC, which was associated with
hepatic invasion and abdominal metastases (112, 113). Exosomal
miR-21 can inhibit the expression of the lncRNA-PTENp1 to
promote HCC growth, miR-21 inhibitors or lncRNA-PTENp1
overexpression can weaken the role of exosomal miR-21, which
indicates that PTENp1 can repress the tumorigenic properties
of HCC cells (114). These findings indicate that lncRNAs play
critical regulatory roles in the proliferation, migration and
invasion of HCC cells.
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TABLE 3 | Non-coding RNAs in HCC.

Non-coding RNAs Expression change Biological function References

microRNAs miRNA Panel (miR-122, miR-192, miR-21,

miR-223, miR-26a, miR-27a and miR-801)

Up-regulation The miRNA panel can differentiate HBV-associated HCC

from healthy subjects, CHB and cirrhosis, respectively.

(99)

miR-154 Down-regulation As a tumor suppressor, the miR-154 expression is

down-regulated in HCC.

(98, 100)

miR-519d, miR-595, miR-939, miR-494

and miR-21

Up-regulation miR-939, miR-595 and miR-519d could differentiate

cirrhotic patients with and without HCC. Moreover,

miR-519d, miR-494 and miR-21 were related with the

progression of HCC.

(101)

miR-21 and miR-10b Up-regulation The exosomal miR-21 and miR-10b promote cancer cell

proliferation and metastasis in HCC, and may serve as

prognostic markers and therapeutic targets for HCC.

(102)

miR-15a/miR-16-1 Down-regulation HBx transcript directly drives the down-regulation of

miR-15a/miR-16-1 by the miRNA targeting sequences in

the viral RNA.

(103)

miR-204, miR-1236 Down-regulation miR-204 and miR-1236 can inhibit HBV replication

involved in two different mechanisms.

(100)

LncRNAs H19 Up-regulation

down-regulation

Promote HCC growth, inhibit migration and invasion of

HCC cells.

(104, 105)

HULC Up-regulation Triggering autophagy via stabilizing Sirt1; Promoting

HCC growth

(104, 106, 107)

HOTAIR Up-regulation Activating STAT3/ABCB1 pathway and promoting HCC

growth

(104, 108)

MALAT1 Up-regulation Associated with tumor metastasis, recurrence (103, 104)

HEIH Up-regulation Associated with HBV-HCC and prognosis (109)

HOTTIP Up-regulation Associated with tumor progression and disease outcome (110)

MEG3 Down-regulation Associated with methylation and Inhibit cell growth (111)

LncRNA-LET Down-regulation Reduces hepatic invasion and abdominal metastases (112)

SRHC Down-regulation Inhibit cancer proliferation (113)

PTENP1 Down-regulation Suppress the tumorigenic properties of HCC cells (114)

circRNAs circ_104075 Up-regulation Circ_104075 as a ceRNA can upregulate YAP

expression by absorbing miR-582-3p, and may provide

new insights in HCC diagnosis and therapy.

(115)

cSMARCA5 Down-regulation It has diagnostic value for patients with alpha-fetoprotein

<200 ng/mL.

(97)

circ_0009582, circ_0037120,

circ_0140117

Up-regulation The high sensitivity and specificity of the combination of

three circRNAs and AFP could be used to distinguish

HBV-infected patients with and without cancer.

(116)

circ_KIAA1429 Up-regulation Post-transcriptional modification of circ_KIAA1429 may

also play a role in influencing translation.

(117)

circMET Up-regulation Inducing development and immune tolerance of HCC by

the Snail/DPP4/CXCL10 axis.

(118)

circPTGR1 Up-regulation Associated with the clinical stage and prognosis. (119)

circ−0051443 Down-regulation Potential therapeutic target for HCC (120)

CircRNAs
CircRNAs (circular RNAs), is a new type of non-coding RNA

with a closed circular structure without a 5
′

-end cap and a 3
′

-
end poly A tail. Most of circRNAs are formed by exon loops
encoding polypeptides, but some are lariat structures formed by
intron loops without encoding ability. Currently, the biological
functions of circRNAs are recognized as miRNA sponges,
regulatory protein binding, regulation of gene transcription,
and coding functions (126). Currently, the circRNAs in
human body fluid have been identified in human disease
including cancers, autoimmune diseases and infectious diseases.

For example, circ-KIAA1244 serves as a novel circulating

biomarker to detect gastric cancer (115). CircRNA_0001178
and circRNA_0000826 are considered potential diagnostic

biomarkers for liver metastases from colorectal cancer (117).

Differential expression of circRNAs and lncRNAs is found in

recurrent COVID-19 patients (118). These reports indicated
that circRNAs could serve as biomarkers for the diagnosis and
therapeutic intervention of human diseases.

To date, the most common mechanism by which circRNAs
act as miRNA sponges and interact with certain mRNAs and
miRNAs is via competing endogenous RNAs (ceRNAs) (127,
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128). RNA sequencing revealed that circRNA cSMARCA5 is
downregulated in HCC, inhibiting the growth and migration
of hepatocellular carcinoma cells, and is associated with a
poor prognosis (97). Furthermore, Wu et al. reported that the
combination of circ_0009582, circ_0037120, circ_0140117, and
AFP has a high sensitivity and specificity to predict HCC (116).
Zhang et al. reported that hsa_circ_0001445 levels in plasma
are significantly downregulated, which had high specificity
(94.2%) and sensitivity (71.2%) in HCC patients, and the
efficient combination of plasma hsa_circ_0001445 and AFP levels
can be used for HCC diagnosis rather than each parameter
alone (129). Furthermore, another circRNA, hsa_circ_104075,
was significantly increased in serum from HCC patients, and
the AUC value of hsa_circ_104075 (0.973) suggested high
sensitivity of 96.0% and specificity of 98.3% (119). Plasma
three circRNAs (circ_0009582, circ_0037120, and circ_0140117)
were overexpressed in HCC patient, and the combination of
the three circRNAs and AFP acquired both valuable positive
predictive value (PPV) and negative predictive value (NPV) of
95%, suggesting that these three circRNAs can predict HBV-
associated HCC patients or healthy individuals (116).

In addition to the typical miRNA sponging mechanism,
post-transcriptional modification of circRNAs may influence
translation. The phenomenon was confirmed by overexpressed
circ_KIAA1429 in HCC (120). Some circRNAs are associated
with drug resistance in HCC treatment. For PD-1 antibody-
mediated immunotherapy, circMET makes HCC cells resistant
to PD-1 by enhancing the therapeutic microenvironment of
immunosuppressive tumors (130). The mechanism revealed that
circMET as a sponge of miR-30-5p could promote SNAIL-
mediated dipeptidyl 4 (DPP4) expression, leading to CXCL10
degradation, and CXCL10 is a key chemokine in driving
intratumor infiltration of effector T cells and may cause
subsequent resistance to anti-PD-1 therapy.

Currently, exosomal circRNAs play significant roles in
HCC progression, and several exosomal circRNAs function as
either diagnostic/prognostic biomarkers or oncogenic/tumor-
suppressive factors in HCC (65, 131). The first study in 2015
demonstrated the presence of abundant circRNA inexosomes
(132). Previous studies have shown that three exosomes secreted
by HCC cells with high metastatic potential, the circPTGR1
subtype, can enhance HCC metastasis with low metastatic
potential via the miR449a-Met signaling pathway (133). The
exosomal circ-0051443 is produced from normal cells and
transferred into HCC cells to inhibit the progression of
HCC through competitive combination with miR-331-3p and
aggravating apoptosis and cell cycle arrest of HCC cells (134).
Therefore, recently described properties of circRNAs can not only
help us improve understanding but also contribute to the clinical
diagnosis and treatment of HCC.

PROTEOMICS CHARACTERISTICS

Proteomics are a large-scale study to unveil the profile of
proteins expressed under certain biological conditions (135).
Recently, proteomics has been used to analyze the overall level

of proteins to investigate the pathogenesis, cellular patterns, and
functional practices of HBV-associated HCC. With alterations in
protein expression in the progression of HCC, some proteins
can be considered as potential biomarkers for diagnosis and
therapy (136). In a validation study, 28 proteins could separate
acute-on-chronic liver failure (ACLF) from CHB patients, the
proteomic features developed in this study reflected deficiencies
of important hematologic functions in patients with HBV-
ACLF, and demonstrated the potential for diagnosis and risk
prediction of HBV-ACLF, complementing current clinical-based
parameters (137). Compared with serum sample, urine sample
is non-invasive and easy to collect, making it more suitable for
HCC surveillance in high-risk patients who require frequent
examination. Seven protein features were selected in a previous
study; among them, HPX, APOH, APCS and PLG were
upregulated in HCC urine samples, and GOT1, GLRX, and
NCR3LG1 were downregulated (138).

Presently, mass spectrometry is considered a means of protein
identification. Pollination mass spectrometry has developed
rapidly with the emergence of electrospray ionization mass
spectrometry (ESI) and matrix-assisted laser desorption and
ionization time of flight mass spectrometry (MALDI-TOF-
MS), which provide technical support for proteomics research.
Because of its high throughput and sensitivity, MALDI-TOF-
MS has provided an optimal response surface for proteomics
research as an advanced technique in recent years. The
application of MALDI-TOF-MS by the translocation of boron
effectively detects the differential serum proteins of HBV-
associated HCC, providing important support for diagnosis
and treatment of HBV-associated HCC. Tandem mass tag
(TMT), isobaric tags for relative and absolute quantification
(iTRAQ), stable isotope labeling by amino acids in cell culture
(SILAC), and liquid mass spectrometry are used to identify
differential proteins. Among them, iTRAQ is considered as
one of the most robust quantitative proteomics techniques
(139). Compared with 2D gel electrophoresis, iTRAQ technology
has many advantages including recognition of low-abundance
proteins and high-throughput capabilities. Based on iTRAQ
quantitative comparative proteomics, researchers have utilized
liquid chromatograph-mass spectrometer/mass spectrometer
(LC-MS/MS) to recognize and quantitate differential proteins in
HepG2 cell lines stably containing different functional domains
of HBx, and p90 ribosomal S6 kinase 2 (RSK2) has been identified
as a new host protein that plays a key role in HBx enhancing
HBV replication (140). Plasma fibronectin was demonstrated
to be related with serum clearance of HBsAg and may be a
potential predictor of “functional cure” of CHB by iTRAQ-based
quantitative proteomics (141), meanwhile the TMT isobaric
labeling-based technology was used to quantitatively characterize
the renal proteome of HBV transgenic mice, and to elucidate
the pathogenesis of HBV-associated glomerulonephritis (HBV-
GN) (142). Additionally, proteomic analyses of formalin-fixed
paraffin-embedded (FFPE) HCC graft samples, conducted using
a label-free proteome mass spectrometry workflow, were used to
characterize the global quantitative analysis of protein expression
profiles after gene therapy and to identify differentially expressed
proteins (143). Thus, a proteomic strategy to identify HCC
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candidate biomarkers requires more integrated analysis, and no
single methodology can perform this function.

At the same time, the application of proteomics also plays
a role revealing the mechanism of the regulation of HBV viral
protein in HCC progression, such as HBx, HBs, and HBc. High
expressions of GNA13 and GNAi3, belong to the members of
the guanine nucleotide-binding protein subunit α (GNA) protein
family, are involved in the development of liver cancer through
positive and negative regulatory mechanisms, respectively (144,
145). Additionally, recent studies found that the HBx protein
promotes the expression of the DNA methylation enzymes
DNMT1 and DNMT3A, thereby increasing the methylation
level of CpG islands in the promoter region of GNA14 and
inhibiting GNA14 expression (146). Endoplasmic reticulum (ER)
dysfunction is closely associated with malignant transformation,
particularly liver transformation (147). Reticulon (RTN), which
is located in the ER, is important for ER maintenance (148).
Relevant research results show that HBsAg promotes HCC
development by inducing non-mutagenic inactivation of the p53
signaling pathway through the interacting protein RTN3, and
proteomic analysis of HBV core protein (HBc) interactions in
the nucleus of HepaRG cells revealed that the interaction of
HBc with multiple RNA-binding proteins (RBPs) that regulate
viral mRNA metabolism provides a new perspective to develop
novel host-targeted antiviral strategies (149). Ribosome profiling
(RiboSeq) is a novel technology, which could accurately locate
the position of ribosomes on mRNA. By combining with RNA-
ribosome profiling and proteomics, novel post-translational
events hereby detected were then characterize. One study
integrated multi-omics analysis, such as RNA-seq, Ribosome
profiling and quantitative mass spectrometry, uncovered that
an RNA element derived from HBV enhancer I forms a stem-
loop which suppresses HBV translation (150). Furthermore, 11
RBPs (RAN, BRIX1, SMG5, DYNC1H1, PRKDC, GTPBP4, and
so on) are associated with the overall survival of HCC patients
by integrating RNA sequencing and proteomic data (13). These
RBPs bind to various RNAs, such as mRNAs, rRNAs, ncRNAs,
play a critical role in post-transcriptional gene regulation (PTGR)
and are associated with RNA splicing, transport, maturation,
degradation, stability, and translation (151). Therefore, they may
be drug targets that will help optimize future clinical therapies.

The role of post-translational modifications (PTMs) includes
modification events of biochemical functional groups, such as
phosphorylation, glycosylation, ubiquitination and so on, which
also play an key role on regulating development of HCC. Studies
have proved that PTMs are very rich, and the same protein
may be modified at multiple sites, which contributes to the
diversity of protein structure and function (152). Recent studies
have shown that HBV proteins can be modified by different
types of PTMs, which affect their protein-protein interaction,
subcellular localization and function (153). Recently, multi-
omics platforms have performed to systematically interrogate
HBV-host interactions. At the transcriptome, proteome and
phosphoproteome levels of liver cancer tissues, it was observed
that the key enzymes of glycolysis pathway (HK2, ALDOA,
PKM2) were significantly up-regulated, indicating that liver
cancer has an increased demand for glucose metabolism, and

phosphorylation of glycolytic enzymes including ALDOA,
may drive metabolic reprogramming and proliferation in
liver cancer with CTNNB1 mutation (14). A proteomic
analysis had identified that SRSF10as a RNA-binding proteins
(RBPs) could be able to alter its phosphorylation and then to
regulate HBV RNA metabolism (154). Using high-resolution
mass spectrometry, 22,539 phosphorylation sites on 5431
proteins had identified in an HBx-transgenic mouse model
of HCC, and these phosphoproteome data highlight potential
mechanisms of kinase regulation, especially kinase activities
of Src family kinases (SFKs), PKCs, MAPKs, and ROCK2
in HCC (155). Hu et al. revealed the relationship between
metabolic reprogramming and antiviral innate immunity
against HBV infection usingLC-MS/MS. And O-linked-
N-acetylglucosaminylation (O-GlcNAcylation) was proved
to regulate host antiviral response against HBV, and O-
GlcNAcylation of SAMHD1, as an effector of innate immunity,
could stabilize samhd1 structure and enhance host antiviral
activity (156). Protein glycosylation is a well-known post-
translational modifications and analysis of which based on
MS technology commonly. It was reported that the change
of glycan heterogeneity in HCC promotes the occurrence,
progression and metastasis of tumor, and N-glycosylation is
related to the development and progression of HBV-related
HCC (157, 158). They showed that altered N-glycopeptide
may be part of the unique glycan characteristics, indicating the
IgA mediated mechanism and providing potential diagnostic
clues for HBV-related HCC. Interferon-α (IFN-α) signaling is
crucial for antiviral response. Through high-throughput RNAi
screening, Chen et al. identified that the methylation of STAT1
catalyzed by methyltransferase SETD2 was determined to be
IFNα-dependent antiviral immunity and showed the potential
of SETD2 in controlling HBV infection (159). In the process
of viral infection, ubiquitin system is an important part of
cellular defense mechanism. Recent studies have shown that
ubiquitination may be involved in the degradation of host
protein after HBV integration, and there is a negative correlation
between the whole proteome and ubiquitin group by performing
an Ubiscan quantifcation analysis based on stable isotope
labeling of amino acids in cell culture (SILAC) of HepG2.2.15
and HepG2 cell lines (145). Overall, HBV infection mediated
changes in post-translational modifications will provide valuable
data for further study of the pathogenesis of HBV-related HCC.

METABOLOMICS CHARACTERISTICS

The liver is an internal organ in the human body and is
responsible for substrate metabolic and detoxification activities.
As a hepatotropic virus, the infectious status of HBV affects
liver metabolic function. Understanding how HBV infection
relates to hepatic metabolism may provide new insights into the
pathogenesis of HBV infection.

Metabolomics is the study of the profile of metabolites
(e.g., amino acids, lipids, sugars, and hormones) that are
detectable under certain conditions. Tumors from HCC patients
may alter metabolic pathways, and the resulting changes in
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nutritional supply are essential to overcome nutritional hunger
and changes in environmental conditions (160). Compared
with other “omics,” metabolomics not only provides the most
direct snapshot of the actual functional and physiological state
of biological networks but also establishes a key technique to
investigate metabolic alterations in carcinogenesis (161, 162).
Currently, no standard or routine screening test exists for liver
cancer. X-ray computed tomography scan, ultrasound and α-
fetoprotein (AFP) are the typical tests used to screen for liver
cancer, while liver biopsy is used as the gold standard (163).
Metabolomics studies uncover new insights into the biological
understanding of HCC and reveal particular implications related
to clinical and therapeutic plans. The main techniques applied
to metabolomics are nuclear magnetic resonance spectroscopy
(NMR), gas chromatography-mass spectrometry (GC-MS) and
LC-MS (164). Recent studies based on mass spectrometry
and next-generation sequencing unveiled the active status of
signaling pathways and reprogramming of hepatic metabolism
in HBV-associated HCC at the genomic and proteomic levels
(14, 38). MS-based technologies can provide measures of
the global changes in protein abundance related to the
deregulation of signaling and metabolic pathways in HCC.
NMR spectroscopy-based metabolomics provide a non-targeted,
quantitative snapshot of global metabolite abundance to provide
additional biological insights that cannot be deciphered by
proteomics alone (165). Additionally, the combination of GC-
MS- and NMR-based metabolomic platforms is promising
because the application of multi-metabolomics platforms yields
a superior biomarker panel to diagnose bipolar disorder (166).
Previously, in the field of metabonomics, substantial efforts have
been made to search for biomarkers of HCC, some of which
are candidate biomarkers (167). However, how the metabolic
phenotype is driven remains unclear in HBV-associated HCC.

The metabolomics profile identified in HCC offers
unprecedented opportunities to screen candidate metabolites
for early diagnosis and treatment. From the perspective of
metabolomics, lipid, energy and amino acid metabolism may
be affected in the progress of HCC (168). Glycolysis-related
metabolites, TCA cycles and pyrimidine synthesis change in
tumor tissues at different stages. Carbohydrates that are energy
sources of hepatocytes and carbohydrates, such as mannose,
galactose, and arabinose, are significantly reduced in the serum
of HCC patients and other liver diseases (169). The reductional
feature of carbohydrates in HCC is also consistent with most
cancer cells, in which they can produce energy by undergoing
high speed glycolysis followed by lactic acid fermentation in
the cytoplasm instead of using oxidative phosphorylation in
mitochondria (170). Dysregulation of amino acid metabolism
is associated with liver disease and HCC development (171).
Because of increased tumor protein synthesis and energy
demand of amino acids in malignant tumor cells (172), multiple
amino acids, such as proline, lysine, ornithine, phenylalanine
serine, and tyrosine, are upregulated significantly in HCC
and HBV-cirrhosis patients (165). Additionally, because of
aggressive cell proliferation in HCC, the energy supply and
cell membrane synthesis must increase fatty acids including
arachidonic acid, which is at a higher level in HBV-cirrhosis and

HCC patients (173, 174). Thus, the fatty acids may be involved
in the pathogenesis of HCC.

During the viral life cycle, HBV is associated with hepatic
metabolism. This evidence of the involvement of cell metabolism
in HBV-associated cancer prognosis raises interest in metabolic
enzymes-targeted cancer therapy (175). In the study of the
metabolic pathway, omics evidence also shows that immune
patterns between HBV and the host are closely associated with
the disease progression of patients infected with viruses, and
metabolic alterations can be regulated by HBV protein in HCC
cells. Through multiomic analysis, Xie et al. demonstrated that
HBV core protein (HBc) increased the secretion of metabolites
and expression of metabolic enzymes in HCC cells, and activated
the amino acid and glycolysis metabolism pathways (176).
Similar to previous studies, HBc can bind to human gene
promoters to mediate primary metabolic processes (177). The
metabolic components of liver microenvironment are actively
involved in the occurrence and development of HBV infection,
and hot-spot mutations in HBc, including L60V, I97L, and S87G,
affect viral replication, persistence and immune pathogenesis
in CHB infection (178, 179). Additionally, HBs, HBx, and
HBc integrate into human genes to affect patient survival (47).
Cellular retinoid X receptor alpha (RXRα), a key transcription
factor for monitoring hepatic lipid metabolism, regulates HBV
infection, and the arachidonic acid (AA)/eicosanoid biosynthesis
pathway may be involved in the regulation of HBV infection
(180). Therefore, hepatic lipid homeostasis is critical to modulate
viral infection.

MICROBIOME CHARACTERISTICS

Microbiome is becoming a potentially key regulator of cancer
development, especially in gut and liver microbiomes. Because
the microbial group is mainly located in the intestines, the gut
microbiome is the most studied and associated with a variety
of human diseases, including Alzheimer’s disease, cardiovascular
disease, diabetes, arthritis and cancer, which is not surprising
(181). Actually, gut bacteria play a key role in maintaining gut-
liver axis health, and intestinal flora disorders occurred in 20–
75% of patients with chronic liver disease (182). One study
carried out 16S rRNA analyses in 35 individuals with HBV
related HCC (B-HCC). Compared with 22 individuals with non-
HBV/non-HCV (NBNC) relatedHCC (NBNC-HCC), the species
richness of fecal microbiota of B-HCC patients was much higher.
The results showed that there are differences in the number of
bacteria involved in different functions or biological pathways
(183). Zheng et al. also showed that gut microbiota disorder
was more common in patients with liver cirrhosis-induced
HCC, however, hepatitis virus infection was not associated
with intestinal microbial imbalance. The data indicated that
butyrate-producing genera was decreased and genera producing-
lipopolysaccharide (LPS) was increased in liver cirrhosis-induced
HCC (184). In HBV induced tumors, this tumor inhibitory effect
is inferred based on the down-regulation of microorganisms
that induce cancer and stem cell pathway. Using next-generation
RNA-sequencing against HBV-relatedHCCpatients and adjacent
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normal liver tissues, the results of this study suggest that
both heavy drinking and HBV infection may use the tumor
microbiome to promote the development of cancer, however,
only HBV infection could downregulate microorganisms that
may promote stem cell function (185). They suggested strains
of Escherichia coli were to be potentially important to HCC
progression. The change of liver microenvironment in HCC
patients may lead to the change of bacterial level in gut. Overall,
gut-liver-axis could be used to monitor and prevent the progress
of liver disease and liver cancer.

CONCLUSIONS

The initiation and progression of liver cancer are involved in
multisystem and multilevel pathological changes. Single-omics
analysis plays a key role in the diagnosis and therapy of
diseases in modern society. However, with the development of
research technologies and needs, single-omics is not sufficiently
comprehensive; one type of omics change can’t represent the
overall status of the disease, only 10–20% of transcriptome
changes are associated with proteomic data (186). Abnormal
gene expression is also a risk factor leading to tumor cell
formation. Changes in DNA nucleotide sequences and epigenetic
mechanisms may result in aberrant gene expression profiles. The
entire regulatory network may be clearly illustrated by more
advanced and sensitive high-throughput omics technologies.
Single-omics research is crucial, and this method often has some
limitations. By contrast, the integrated analysis of multi-omics
data can better describe the overall changes in liver cancer, thus
achieving more valuable data in the diagnosis and development
of therapeutic targets in human diseases. The latest advances
in analytical technology, including ultra deep sequencing, have
made multi-omicsmulti-omics analysis faster, more accurate and
simpler. Many omics technologies are widely used in cancer
research. The introduction of omics technology to analyze the

pathogenesis or treatment of HBV-associated HCC may help not
only to identify biomarkers for clinical use but also to explore
the experimental research background of the pathogenesis of
various diseases. Several studies have detected exome sequencing
or whole genome sequencing and have used genome sequencing
to identify driver gene mutations in liver cancer. The application
of currently rapidly developing omics technology will promote
the development of knowledge-based diagnosis and treatment
strategies. In the future, more cohort studies will explore the
prognostic factors of HCC patients, and candidate genes related
to prognosis or recurrence of HCC will be identified using
omics technology.
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