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Frameshifts in protein coding sequences are widely perceived as
resulting in either nonfunctional or even deleterious protein
products. Indeed, frameshifts typically lead to markedly altered
protein sequences and premature stop codons. By analyzing
complete proteomes from all three domains of life, we demon-
strate that, in contrast, several key physicochemical properties of
protein sequences exhibit significant robustness against +1
and −1 frameshifts. In particular, we show that hydrophobicity
profiles of many protein sequences remain largely invariant upon
frameshifting. For example, over 2,900 human proteins exhibit a
Pearson’s correlation coefficient R between the hydrophobicity
profiles of the original and the +1-frameshifted variants greater
than 0.7, despite an average sequence identity between the two of
only 6.5% in this group. We observe a similar effect for protein se-
quence profiles of affinity for certain nucleobases as well as protein
sequence profiles of intrinsic disorder. Finally, analysis of significance
and optimality demonstrates that frameshift stability is embedded in
the structure of the universal genetic code andmay have contributed
to shaping it. Our results suggest that frameshiftingmay be a power-
ful evolutionary mechanism for creating new proteins with vastly
different sequences, yet similar physicochemical properties to the
proteins from which they originate.
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Frameshifts in the messenger RNA (mRNA) coding sequences
of proteins are typically considered to be unproductive

events, which, if unchecked, could result in nonfunctional and
sometimes even deleterious protein products (1–4). This notion
is mainly based on the dramatic difference between the se-
quences of wild-type proteins and their frameshifted counterparts.
For example, the average sequence identity between wild-type
human proteins and proteins obtained by +1 frameshifting their
mRNAs is only 6.2% (SI Appendix, Fig. S1). Following results like
this, it has been widely assumed that frameshifting produces
polypeptides that are essentially unrelated to wild-type proteins in
terms of their physicochemical properties and suitability to carry
out biological function (5–7). Equally importantly, frameshifted
mRNAs frequently contain premature stop codons and in eu-
karyotes are rapidly degraded by the nonsense-mediated decay
(NMD) machinery (8). It has even been suggested that the genetic
code has been optimized such that the hidden stop codons would
prevent extensive out-of-frame gene reading (6, 7, 9). More
practically, an introduction of frameshifts coupled to NMD has
become a standard strategy for disabling gene expression via
CRISPR/CAS9 (10).
On the other hand, it is also known that changes in the reading

frame do not necessarily lead to unwanted consequences. For
example, there exist several known genes that include frameshifts
as compared to related genes in other species (11). Moreover, it
has been suggested that frameshifts may result in proteins with
novel functions (12, 13). Finally, instances of overlapping genes
are well described not only in viruses, but even in human (14, 15). In
a related context, it has long been known that similar codons en-
code amino acids with related physicochemical properties (16–18).
Although the impact of this feature of the universal genetic code
(UGC) has been well appreciated in the case of point mutations, its

influence in the case of frameshifts has only recently been addressed
(19–21). In particular, Wang et al. (21) showed that wild-type se-
quences and their frameshifted variants exhibit higher than expected
similarity as captured by several classic substitution matrices in se-
quence alignment with gaps. Furthermore, Geyer and Madany
Mamlouk (19) analyzed a particular physicochemical property of
amino acids (i.e., a measure of their partitioning in pyridine/water
mixtures) and demonstrated a weak, but significant correlation be-
tween frameshifted counterparts at the UGC level. Finally, Wnȩtrzak
et al. (20) showed that UGC may have been optimized in part to
lessen the impact of frameshift mutations. Importantly, however, all
of these studies analyzed a limited set of amino acid properties or
substitution frequencies only and focused primarily on the UGC.
The structure, dynamics, and biological function of proteins

are determined by the physicochemical properties of their se-
quences. For example, sequence hydrophobicity profiles of mem-
brane proteins allow one to accurately identify their transmembrane
segments (22), while the hydrophobic/hydrophilic alterations in the
sequences of cytosolic proteins are seen as important determinants
of their tertiary folds (23). Moreover, nucleobase-affinity sequence
profiles of proteins have been suggested to provide relevant infor-
mation about their RNA-interaction propensity (24–27). Finally,
the lack of well-defined tertiary structure in intrinsically disordered
proteins is directly encoded in the sequences and their physico-
chemical properties (28). A fundamental question, therefore, is how
frameshifting affects the physicochemical properties of real protein
sequences. Here, we have analyzed the complete sets of protein
sequences in multiple representative organisms and compared them
against their +1 and −1 frameshifted counterparts using over 600
different physicochemical properties of amino acids. We show that
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several such properties are significantly robust against frameshifting,
a finding with potentially far-reaching biological implications.

Results
Effect of Frameshifting at the Level of the Genetic Code. We have
first evaluated the impact of frameshifting on different physico-
chemical properties of individual amino acids as encoded in the
UGC. A frameshift of the genetic code table produces a total of
232 pairs involving original and all possible respective frameshifted
amino acids (64 × 4 − 24 pairs involving stop codons). As a
measure of the impact of frameshifting, we have calculated the
Pearson’s R over this set of pairs for each of the 604 different
amino acid property scales studied (Fig. 1A). A distribution of
Pearson’s Rs over all properties corresponds approximately to a
Gaussian background distribution calculated from 106 scales with
randomly chosen values (see Materials and Methods for details).
Specifically, the distribution is centered around zero and the
best-performing scales reach ∼0.4. In comparison, newly derived
scales that were computationally optimized for frameshift ro-
bustness in the context of the UGC (see Materials and Methods
for details) exhibit Pearson’s Rs of ∼0.56 (Fig. 1A, arrow).
Importantly, a P value analysis demonstrates that a subset of
scales, belonging mostly to the hydrophobicity category (Fig. 1,
green bars), performs outstandingly well when compared to the
random background (Fig. 1B).
As representative examples, we highlight two consensus hy-

drophobicity scales: The Factor 1 scale (P = 0.0014), derived by
Atchley et al. (29) via factor analysis of more than 500 different
amino acid scales, including over 100 hydrophobicity scales, and its
predecessor (P = 0.0005), derived by Kidera et al. (30) using
similar means. A high significance is also reached by several in-
dividual scales in other categories, including the knowledge-based
scale of amino acid affinity for the RNA/DNA nucleobase guanine
(25) and an amino acid β-propensity scale (31). On the other hand,

separating the amino acid scales according to physicochemical
categories (Fig. 1B) reveals the superiority of the hydrophobicity
category, with over 100 scales exhibiting P < 0.05 (Fig. 1B and
Datasets S1 and S2). This is supported by an enrichment analysis
via Fisher’s exact test showing that hydrophobicity is the only
significantly enriched category among scales with P < 0.05. Similar
results are also obtained with different P value cutoffs or a
somewhat different assignment of categories (24). Importantly,
randomizing the genetic code with its block structure retained
yields practically identical P values for all scales as the random
background used above (SI Appendix, Figs. S2 and S3). More-
over, less conservative methods of randomizing the genetic code
(e.g., abolishing its block structure) give qualitatively similar re-
sults (SI Appendix, Figs. S2 and S3). This shows that the signif-
icance of frameshift stability of certain physicochemical
properties may be intrinsically connected to the specific archi-
tecture of the UGC. Finally, our findings are in general agree-
ment with previous studies on the topic (19, 20), although those
were limited to just a few specific scales. In contrast, we present a
comprehensive analysis of the full scale space providing the
necessary context for understanding frameshift stability.
A set of scales that exhibit optimal frameshift stability in the

context of the UGC was derived in a consistent manner via dif-
ferent local minimization algorithms (see Materials and Methods
for details and SI Appendix, Fig. S4). This set is practically entirely
described by the first two dimensions of a principal component
analysis (PCA) and is therefore depicted by the dashed circle in
Fig. 1C. The relative contributions of individual amino acids to
these two PCs are visualized as uniformly rescaled vectors (Fig.
1C). A transformation of the 604 studied physicochemical scales
to this PCA space reveals strong clustering of hydrophobicity
scales near the optimal scales (Fig. 1C and SI Appendix, Fig. S4).
At the same time, scales that themselves exhibit significant
frameshift stability, yet belong to other categories, colocalize with

Fig. 1. Frameshifting at the level of the universal genetic code (UGC). (A) Histogram of Pearson’s correlation coefficients R for UGC vs. its frameshifted
version for all 604 scales investigated. Scales are grouped by category (alpha: α and turn propensity; beta: β propensity; hydro: hydrophobicity; nuc: nucle-
obase affinity; other) and presented as a stacked, normalized histogram. The expected density derived via a random model is shown as a dashed line, and the
highest achievable Pearson’s R obtained for computationally optimized scales is marked by an arrow. (B) First panel: Pearson’s Rs for UGC with the associated
P values, select scales indicated. Other panels: P values of 604 studied scales grouped by category with Gaussian jitter added along the x-dimension to separate
the data points. (C) Clustering of scales according to optimal frameshift stability: The 604 studied scales were transformed into the space defined by the PCA
of scales computationally optimized for frameshift stability at the UGC level. The first and second principal components of this space (PC1 and PC2) account
for almost 100% of explained variance of optimal scales, which therefore lie on a circle (gray, dashed). The 604 physicochemical scales are shown as individual
dots whose sizes reflect the negative logarithm of their P values as in B. Please note how scales with significant frameshift stability tend to cluster in the
vicinity of scales with optimal frameshift stability. The arrows correspond to relative contributions of the respective amino acids to PC1 and PC2.
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the hydrophobicity clusters. This indicates that these scales share
certain characteristics that are relevant for frameshift stability with
hydrophobicity scales. Please note that the two main clusters shown
in Fig. 1C are congruent in the sense that inverting a scale moves it
to the opposite cluster. In other words, in the case of the hydro-
phobicity category, the two clusters correspond to hydrophobicity
and its inverse, hydrophilicity.

Effect of Frameshifting at the Level of Protein Sequences. In a bio-
logical setting, frameshifts always appear in the context of pro-
tein sequences. There, the reading frame can be shifted one
nucleotide either toward or away from the 3′ end of the mRNA,
resulting in two different frameshifted protein variants (+1 shift
and −1 shift, respectively). In Fig. 2A, we show the hydropho-
bicity profile of an exemplary wild-type protein (UniProt ID
Q6NUP7) overlaid with the hydrophobicity profiles of its +1
and −1 frameshifted variants in the case of the Factor 1 consensus
hydrophobicity scale (29). In order to quantify the similarity be-
tween the profiles before and after frameshifting, we use the
Pearson’s R, which in this case is ∼0.7 for both the +1 and the −1
shift as compared to the wild-type (Fig. 2A). Importantly, over
2,900 human proteins exhibit a Pearson’s R between their wild-type
and +1 frameshifted Factor 1 profiles of 0.7 or greater, despite a
sequence identity of only 6.5% on average (SI Appendix, Fig. S1).
In order to illustrate the impact of frameshifts at a proteomic scale,
in Fig. 2B we show the distributions of Pearson’s R as obtained by
comparing wild-type Factor 1 profiles against the respective +1
(Rmedian = 0.55) or −1 shifted (Rmedian = 0.45) profiles over the
whole human proteome.
Extending the proteomic analysis to all scales, in Fig. 2C we

report the distribution over all 604 studied scales of median
Pearson’s Rs in human (wild-type vs. +1 shift) together with the
appropriate Gaussian background calculated from 105 scales with
randomly chosen values (see Materials and Methods for details). As
expected from the results obtained at the UGC level, hydrophobicity
scales dominate among the scales with the highest median Pearson’s
Rs and the lowest corresponding P values in Homo sapiens (Fig. 2 C
andD) as well as Escherichia coli andMethanocaldococcus jannaschii
(SI Appendix, Figs. S5 and S6). Remarkably, the Factor 1 (29) and
Kidera et al. (30) consensus hydrophobicity scales rank among the
top four scales in this regard in human, where they are also joined
by the Levitt hydrophobicity scale (32) and the knowledge-based
scale of amino acid affinity for guanine (25) (Fig. 2D). In general,
scales that are significantly resistant to frameshifts at the UGC
level also exhibit significant invariance in the sequence context. In
many cases, in fact, the P values tend to be lower in the sequence
context than in the case of the UGC (Fig. 2D, SI Appendix, Fig. S6,
and Datasets S1 and S2).
As a next step, we have analyzed the enrichment of different

gene ontology (GO) terms for human proteins with the highest
frameshift stability using the Factor 1 hydrophobicity scale. For
+1 frameshifts, there is a significant enrichment of integral
membrane proteins with approximately one-third of all proteins
in the top quartile of the human proteome having this GO an-
notation, while for −1 frameshifts, one observes an enrichment
of RNA-binding functions and nucleolus localizations (Fig. 2E
and Dataset S3). Finally, a comparison of Factor 1 frameshift
stability for more than 12,000 orthologous proteins in H. sapiens
and Mus musculus reveals a high degree of similarity (Fig. 2F).
On the other hand, no such similarity is found for orthologous
proteins in organisms belonging to different domains of life (SI
Appendix, Table S1). Nevertheless, GO analysis in E. coli along
the same lines as in H. sapiens also shows significant enrichment
of integral membrane proteins (+1 shift P value of 9.7 × 10−3).

Frameshift Stability of a Membrane Protein’s Hydrophobicity Profile.
The strong frameshift stability in the hydrophobicity profiles of
many membrane proteins is exemplified in Fig. 3 in the case of

sodium/potassium/calcium exchanger 1 (Uniprot ID O60721).
The wild-type Factor 1 hydrophobicity profile of this trans-
membrane protein differs only slightly from its +1 frameshifted
variant (R = 0.90), despite a sequence identity of 5.4% only.
Importantly, different protein domains can easily be identified by
analyzing the wild-type Factor 1 hydrophobicity profile with
the transmembrane helices adopting extremely low values and
the intervening soluble linkers and domains adopting signifi-
cantly higher values (Fig. 3 A–C). Remarkably, the +1 frame-
shifted variant exhibits a pronounced similarity in its alteration of

Fig. 2. Frameshifting at the level of protein sequences. (A) Comparison of
wild-type and +1 (Upper, red) and −1 (Lower, blue) frameshifted Factor 1
hydrophobicity profiles for Ser/Thr phosphatase 4 regulatory subunit 4
protein (UniProtID Q6NUP7) with the associated Pearson’s Rs. (B) Distribu-
tions of Pearson’s R for wild-type vs. +1 frameshift (red) and wild-type vs. −1
frameshift (blue) for Factor 1 over all human proteins (n = 17,083) with their
medians indicated. (C) Histogram of median Pearson’s R for 604 scales when
comparing wild-type and +1 frameshifted profiles in human for all in-
vestigated scales, grouped by category and presented as a stacked, nor-
malized histogram. The expected density derived via a random model is
shown as a dashed line. (D) Comparison of P values for frameshifting at the
level of UGC and +1 frameshifted human sequences for 604 studied scales.
(E) Enrichment of GO cellular compartment (CC) terms in the top quartile of
human sequences according to Pearson’s Rs between wild-type and +1 or −1
frameshifted Factor 1 profiles (low P values: light green; high P values: dark
green). (F) Comparison of Pearson’s Rs (wild-type vs. +1 frameshifted Factor
1 profiles) between orthologous proteins in H. sapiens and M. musculus (n =
12,174; R = 0.74). The same is shown for −1 frameshifts in the Inset (n =
12,174; R = 0.71).

Bartonek et al. PNAS | March 17, 2020 | vol. 117 | no. 11 | 5909

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911203117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911203117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911203117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911203117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911203117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911203117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911203117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911203117/-/DCSupplemental


hydrophobic and hydrophilic regions even within the two trans-
membrane regions (Fig. 3 B and C). In Fig. 3D, we highlight an N-
terminal stretch in which only 2 of 19 residues remain the same
upon +1 frameshifting and, in Fig. 3E, a C-terminal stretch where
not a single residue of 31 remains the same, with nevertheless,
highly similar hydrophobicity profiles. On the other hand, while the
absolute value of electrostatic charge is largely retained upon +1
frameshifting, the shift results in an inversion of the sign of the
charge (Fig. 3E). In fact, at a whole proteome level, the +1 fra-
meshifting produces sequences whose net charge is negatively cor-
related with the wild-type net charge (R = −0.45), although charge
density profiles show a weaker relationship (median R = −0.15).

Frameshift Stability of Nucleobase-Affinity and Intrinsic Disorder. So
far, we have focused mainly on frameshift stability of properties
in the hydrophobicity category. As an example of a different
scale that also shows significant behavior, we present analogous
results for the knowledge-based scale of amino acid affinity for
the nucleobase guanine (Fig. 4 A–C). Importantly, this scale
provides context for analyzing frameshift stability from a different
perspective: That is, comparing both wild-type and frameshifted
protein profiles with the nucleobase density profile of the wild-type
coding mRNA.
Namely, we have recently demonstrated a strong matching

between nucleobase-density profiles of mRNA coding sequences
and the nucleobase-affinity profiles of the proteins they encode
(24–27). For example, mRNA purine (PUR) density profiles
match their autologous proteins’ guanine (GUA)-affinity profiles

with an absolute value of the median Pearson’s R of 0.80 in
human (wild-type in Fig. 4B). We have used this to hypothesize
that mRNAs and the proteins they encode could interact in a
complementary, coaligned fashion, especially if unstructured
(24–27). As indicated above, some nucleobase-affinity profiles
of proteins, such as GUA-affinity profiles (Fig. 4A) in all studied
organisms and adenine (ADE)-affinity profile in M. jannaschi
(Datasets S1 and S2), exhibit significant robustness against fra-
meshifting. Moreover, the previously observed matching of
mRNA purine density profiles and their autologous proteins’
GUA-affinity profiles is also retained for frameshifted proteins,
as shown in Fig. 4B. Here we show the distributions of Pearson’s
R between the wild-type mRNA purine density profiles and ei-
ther wild-type, +1, or −1 frameshifted protein GUA-affinity pro-
files. As a specific example, the wild-type mRNA PUR-density

Fig. 3. Robustness of a membrane protein’s hydrophobicity profile against
frameshifting. (A) Factor 1 hydrophobicity profiles of wild-type sodium/potassium/
calcium exchanger (UniProtID O60721) and its +1 frameshifted variant with
relevant regions indicated with dashed lines. Close-up of the profiles in the
first (B) and the second (C) transmembrane domains of the protein. Note that
the specific locations of transmembrane helices are matched in all cases but
one. (D) Comparison of wild-type and +1 frameshifted sequences in a region
outside the transmembrane domains together with the associated Factor
1 profiles. (E) Inversion of the charge pattern upon +1 frameshift with a
retained hydrophobicity profile.

Fig. 4. Frameshifting in the context of GUA affinity and intrinsic disorder.
(A) Distributions of Pearson’s R between GUA-affinity profiles of wild-type
and +1 or −1 frameshifted human protein sequences (n = 17,083). (B) RNA
vs. protein: Distributions of Pearson’s R between mRNA PUR-density profiles
and autologous protein’s GUA-affinity profiles in human for wild-type, +1
and −1 frameshifted sequences (n = 17,083) with medians indicated. Note
that matched profiles are indicated by negative Pearson’s Rs due to the
standard definition of GUA-affinity scales. (C) RNA vs. protein: Comparison
of an mRNA PUR-density profile and protein GUA-affinity profile for the −1
frameshifted sequence of the nuclear RNA export factor (UniProtID:
Q9GZY0). (D) Comparison of disorder values averaged over full sequences
(avg. disorder) in wild-type (WT) and +1 (Left, red) or −1 (Right, blue) fra-
meshifted sequences. (E) Example IUPRED (33) intrinsic disorder profiles of a
wild-type protein and its +1 shift variant (UniProtID: P07093).
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profile shown in Fig. 4C matches the GUA-affinity profile of
its −1 frameshifted protein with a Pearson’s R of 0.76. This value
corresponds to the median of the proteomic distribution (−1
shift in Fig. 4B), thus reflecting the high level of profile similarity
even in a typical case. This is, in part, a consequence of the ro-
bustness in the GUA-affinity profiles (Fig. 4A), but even more so a
natural corollary of the fact that mRNA nucleobase-density pro-
files are unaffected by frameshifts combined with the original
observation that protein GUA-affinity profiles match their mRNA
purine density profiles.
Finally, we have also focused on intrinsic disorder (Fig. 4 D

and E) as a more complex property, which does not only depend
on individual amino acids in a given stretch but is also context
dependent. The average disorder in wild-type human proteins, as
assessed by IUPred (33), correlates with the average disorder of
their +1 and −1 frameshifted counterparts with median Pearson’s
Rs of 0.49 and 0.41, respectively (Fig. 4D and SI Appendix, Fig.
S7). Similar results are also seen for sequence profiles of intrinsic
disorder. In Fig. 4E, we show an example with a Pearson’s R of
0.40 between wild-type and +1 frameshift profiles, corresponding
approximately to the median of the respective distribution in hu-
man. Despite this relatively modest level of correlation in the
median case, there still exist thousands of proteins with an un-
deniably strong frameshift stability. For example, there are close to
2,800 proteins in human for which wild-type disorder profiles
correlate with their +1 frameshifted counterparts with a Pearson’s
R > 0.7 (Dataset S4), with similar results seen for representative
organisms from other domains of life (SI Appendix, Fig. S8). Finally,
it should also be emphasized that the common classification of
structured vs. unstructured regions, as given by an IUPRED cutoff
of 0.5, is largely retained across the whole exemplary sequence in
Fig. 4E and, even more importantly, across entire proteomes for
average disorder (Fig. 4D and SI Appendix, Fig. S7).

Discussion
While frameshift events usually result in markedly altered pro-
tein sequences, our findings show that key physicochemical
properties of the original sequences are retained in many cases.
This immediately suggests a plausible novel mechanism for the
evolution of protein sequences: Frameshift mutations could en-
able major jumps in protein sequence space, while at the same
time ensuring that some of the already optimized physicochem-
ical properties of the original sequences are preserved (Figs. 3
and 5A). For example, the hydrophobic/hydrophilic sequence
patterns are seen as a key feature of proteins when it comes to
determining the nature of their three-dimensional structures. By
keeping the hydrophobicity profile highly similar, the frameshifted
sequence increases its chances of being able to adopt a well-defined
fold. Recently, Gardner and colleagues (34) have observed that the
predicted secondary and tertiary structure of proteins is rel-
atively robust against point mutations but, unexpectedly, also
against frameshifting insertions and deletions. Our present re-
sults provide a potential explanation for this finding as frameshifted
protein sequences with largely retained hydrophobicity profiles could
lead to similar predicted secondary and tertiary structure features.
In a possible scenario of how new sequences could be generated

via frameshifting, a gene is duplicated prior to the frameshift event
(Fig. 5B). The premature stop codons, which are likely to appear
during frameshifting, would have to be mutated out, but this burden
could be more than compensated for by having a physicochemically
optimized starting point for further evolution. Naturally, one can also
envision local frameshifts resulting in hybrid sequences, which are
part wild-type, part new, increasing greatly the combinatorial rich-
ness of the resulting sequences. In this sense, our results capture the
most extreme case (i.e., frameshifts of full-length proteins): Hybrid
proteins are expected to be even more similar in physicochemical
properties to their wild-type counterparts. Recently, Tripathi and
Deem (35) provided evidence suggesting that the retention of

physicochemical properties of amino acids upon point mutations
improves the exploration of functional nucleotide sequences at
intermediate evolutionary time scales. We predict that this
may also apply to the much more impactful, sequence-altering
instances of frameshifting mutations.
It has already been suggested that compositionally similar

codons encode amino acids with similar physicochemical proper-
ties (16–18), implying that the UGC may have been optimized for
robustness against not only point mutations, but frameshifts as
well. However, previous investigations of frameshift stability were
performed primarily at the UGC level and only considered few
amino acid properties or their indirect correlates, as in the case of
substitution matrices (19–21). In contrast, our present results are
based on a comprehensive analysis of over 600 different amino-
acid properties and report on the impact of frameshifts in the case
of biologically realistic sequences in multiple organisms. Impor-
tantly, correlations at the UGC level are quite weak (Fig. 1A) and
the realistic impact of frameshifts can only be gauged in the
context of protein sequences (Fig. 2). Our results at this level show
that frameshift stability is so strong that it indeed might have bi-
ologically relevant repercussions. Finally, we provide quantitative
evidence that frameshift stability applies to a whole category of
different hydrophobicity scales and not just select examples. We
find it particularly indicative that two consensus hydrophobicity
scales, derived previously by considering hundreds of individual
scales, rank in the very top when it comes to frameshift stability
(Fig. 2D and Datasets S1 and S2).
Our results suggest that, in addition to hydrophobicity,

frameshift stability could apply to several other protein sequence
properties, including affinity to some nucleobases and structural
disorder. It has been proposed that RNA-binding, a process with
a strong dependence on hydrophobic forces, was one of the most
important functions of ancient proteins (36, 37) and that the
UGC was shaped in response to the physicochemical pressures
related to such interactions (27, 38, 39). It is possible that the
frameshift invariant properties discussed above all partly reflect
protein ability to interact specifically with nucleic acids in an
unstructured context. The present results also suggest a gener-
alization of our recent complementarity hypothesis. Namely, we
propose that mRNAs bind in a coaligned manner not only their
autologous proteins, if unstructured, but also their frameshifted
variants (24–27). Finally, we also observe a bias for disorder
propensity to be retained after frameshifts.

Fig. 5. Evolution of protein sequences via frameshifting. (A) Frameshifts
enable major jumps in protein sequence space with little change in key
physicochemical properties like hydrophobicity. (B) An insertion or deletion
(INDEL) results in a frameshifted gene with potential premature stop codons.
These can be removed by either single point mutations or another INDEL-
induced frameshift. AUG: start codon.
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The present analysis opens up several directions for future
work. An important frontier concerns the investigation of more
complex protein properties that are directly dependent on their
primary structure. For example, to what extent are secondary and
tertiary structures of wild-type proteins related to those of their
frameshifted variants? On a more practical note, what are potential
implications of our results in a biomedical context? Is it possible that
frameshift robustness could lead to deleterious gain of function?
Finally, can evidence be found that frameshifting has indeed played
a relevant role during evolution of real proteins? Future studies
should shed light on these exciting questions and possibilities.

Materials and Methods
Complete annotated proteomes of M. jannaschii, Thermococcus kodakarensis,
E. coli, Pseudomonas aeruginosa, M. musculus, and H. sapiens were obtained
from the UniProtKB database (40). The corresponding mRNA coding sequences
were downloaded from the European Nucleotide Archive Database (41). Se-
quences including noncanonical amino acids or nucleotides were not analyzed.
The majority of the amino acid property scales studied were extracted from
the AAindex database (42, 43), and were complemented by additional con-
sensus scales derived by Atchley et al. (29) and an additional category of re-
cently derived nucleobase affinity scales (44–47). The frameshifted variants of
individual protein sequences were generated by removing the first four bases
(+1 shift) or the first two bases (resulting in the −1 shift) in their wild-type

mRNA coding sequences and translating them using the universal genetic code.
Protein sequences were then converted to numerical profiles by exchanging
each amino acid with its respective scale value and smoothing using 21-residue
windows (24). Premature stop codons in frameshifted variants were excluded
from the calculation of the average value in a local window, while the size of
the window was reduced by their number, except in the case of disorder
profiles. In order to capture the effects of frameshifting, Pearson's correlation
coefficient R was used throughout as a measure of similarity. Significance
analysis was performed on basis of either randomization of the UGC or scales
themselves. The PCA of scale space was performed on a set of scales with
computationally optimized frameshift stability (26). Experimentally derived
scales were subsequently transformed into this PCA space. Enrichment analysis
of GO terms was carried out using Gorilla (48), Panther (49), and REVIGO (50)
tools. Orthologous genes were sourced from InParanoid8 (51). The disorder
propensity of protein sequences was calculated using IUPred (33). Extended
methodological details can be found in SI Appendix.

Data Availability Statement.All data discussed in the paper are available in the
SI Appendix and Datasets S1–S4.
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