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Abstract: Helicobacter pylori causes severe diseases, such as chronic gastritis, peptic ulcers, 
and stomach cancers. H. pylori neutrophil-activating protein (HP-NAP) is an iron storage 
protein that forms a dodecameric shell, promotes the adhesion of neutrophils to endothelial 
cells, and induces the production of reactive oxygen radicals. HP-NAP belongs to the 
DNA-protecting proteins under starved conditions (Dps) family, which has significant 
structural similarities to the dodecameric ferritin family. The crystal structures of the  
apo form and metal-ion bound forms, such as iron, zinc, and cadmium, of HP-NAP have 
been determined. This review focused on the structures and metal-binding properties of 
HP-NAP. These metal ions bind at the di-nuclear ferroxidase center (FOC) by different 
coordinating patterns. In comparison with the apo structure, metal loading causes a series 
of conformational changes in conserved residues among HP-NAP and Dps proteins 
(Trp26, Asp52, and Glu56) at the FOC. HP-NAP forms a spherical dodecamer with  
23 symmetry including two kinds of pores. Metal ions have been identified around one of 
the pores; therefore, the negatively-charged pore is suitable for the passage of metal ions. 

Keywords: Helicobacter pylori; neutrophil-activating protein; ferroxidase center; iron; 
zinc; cadmium; Dps; ferritin; solvent channel; pore 
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1. Introduction 

Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and 
chronically infects up to 50% of the human population [1–3]. H. pylori infections cause severe 
diseases, such as chronic gastritis, peptic ulcers, and stomach cancers. The infiltration of neutrophils 
has been detected in the stomach mucosa of H. pylori-infected patients with chronic gastritis [4–6]. 

H. pylori neutrophil-activating protein (HP-NAP) is one of a number of virulence factors [7,8].  
This protein has been shown to promote the adhesion of neutrophils to endothelial cells, and activates 
NADPH oxidase to produce reactive oxygen species (ROS) via a cascade of intracellular activation 
events [6–10]. HP-NAP binds to the outer membrane surface, which mediates binding to mucin or 
glycosphingolipids [7,10–12]. This protein can also stimulate the production of tissue factor and 
plasminogen activator inhibitor-2 by human monocytes [10,13]. HP-NAP can cross the endothelium to 
promote neutrophil adhesion in vivo [14] and can activate the underlying mast cells [7,15]. HP-NAP 
has also been shown to stimulate Th1 immune responses by inducing the production of cytokines,  
such as interleukin-12 (IL-12) and IL-23 [16–18]. HP-NAP is a major antigen in the immune response 
to H. pylori infections, and the majority of infected patients produce antibodies specific for  
HP-NAP [8,10,18]. Therefore, HP-NAP is a candidate for an anti-H. pylori vaccine [10,19,20], and is 
currently undergoing clinical trials [18,21]. 

Based on amino-acid sequence comparisons [22], HP-NAP belongs to the DNA-protecting proteins 
under starved conditions (Dps) family [23], which has significant structural similarities to the 
dodecameric ferritin family [24]. HP-NAP protects H. pylori from iron-mediated oxidative DNA 
damage by sequestering free iron [25,26], similar to Dps proteins, which protect DNA from oxidative 
damage [27]. Dps proteins are able to incorporate Fe2+ ions inside their dodecameric shell, and the 
incorporated Fe2+ ions are oxidized to Fe3+ ions at the ferroxidase center (FOC) located within the 
dodecamer. After that, the ions mineralize as hydrous ferric oxides (FeOOH) [28]. The presence of 
Fe2+ can lead to the generation of hydroxyl radicals through the Fenton reaction [28]. Dps proteins 
prevent the production of ROS such as hydroxyl radicals by sequestering Fe2+ ions, which protects 
DNA from oxidative damage by ROS [28]. Ferritin has been shown to detoxify and store iron ions by 
sequestering them, and binds to metals, such as Cd2+, Zn2+, Tb3+, or Ca2+, in addition to Fe2+ [29].  
HP-NAP may bind metals other than iron given its similarity with dodecameric ferritin, however,  
to the best of our knowledge, this has not yet been examined. 

HP-NAP is a dodecameric protein consisting of 17-kDa monomers, and has a spherical shell 9–10 nm 
in diameter with a hollow central core in which iron ions bind [22]. HP-NAP can bind up to 500 atoms 
of iron per dodecamer in vitro [22]. The crystal structure of HP-NAP from H. pylori strain 26695  
(HP-NAP 26695) containing one iron ion per monomer was the first to be determined [30], and its 
structure was found to be similar to those of dodecameric Dps and dodecameric ferritins [24,31,32]. 
We recently determined the crystal structures of the apo form and metal-ion bound forms such as iron, 
zinc, and cadmium of HP-NAP from strain YS39 (HP-NAP YS39) [33,34]. This review focused on  
the structures of HP-NAP. We discussed the different metal-coordination patterns and structural 
rearrangements caused by metal-ion binding by comparing these structures. We also described the 
metal ion-uptake pathway. 
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2. Overall Structures of HP-NAP 

2.1. Dodecameric Structure 

HP-NAP has 144 amino-acid residues. The amino-acid sequences of HP-NAP from strains YS39 
and 26695 were found to be almost similar [34]. HP-NAP YS39 differs from HP-NAP 26695 at  
four residues (E46G, V59A, I73L, and Y101H). His25, His37, Asp52, and Glu56 are perfectly conserved 
among HP-NAPs, dodecameric ferritin, and Dps proteins, and play important roles in metal-ion 
binding [34]. 

The monomer of HP-NAP is composed of a four-helix bundle (helices 1, 2, 3, and 4) with a fifth 
helix (helix 2–3) of seven residues (Leu69–Leu75) oriented almost perpendicular to the bundle.  
The secondary structure of HP-NAP was found to be similar to those of Dps proteins. The monomers 
of Fe-loaded HP-NAPs from strains YS39 and 26695 are almost identical, with the root-mean-square 
difference (r.m.s.d.) of the corresponding Cα atoms being 0.36 Å. 

A total of 12 protein subunits form a dodecamer, like a spherical shell, and this is approximately  
90 Å in diameter (Figure 1). The internal cavity of the dodecamer is approximately 50 Å in diameter. 
The dodecamer adopts 23 symmetry. Hence, the four trimers are placed at the vertices of a tetrahedron, 
shown in red lines in Figure 1a. Three two-fold axes pass through the centers of the tetrahedron edge 
and the center of the structure. Four three-fold axes (Figure 1a,b) pass through the vertices of the 
tetrahedron and the centers of the opposite face. Therefore, there are two nonequivalent environments 
along the three-fold axes arranged as pores: One pore (pore I, described below) is present on the side 
of the vertices of the tetrahedron, and the other pore (pore II, described below) is present on the 
opposite side (Figure 1a). Figure 1c is viewed from pore I on the side of the vertices of the tetrahedron. 
This dodecameric structure was shown to be similar to Dps proteins [23,32] and Listeria innocua 
dodecameric ferritin [24]. The overall structure of HP-NAP YS39 is similar to those of other HP-NAPs 
and Dps proteins. 

2.2. Crystal Packing 

The space group of Fe-loaded HP-NAP from strain YS39 (F432) differs from that of strain 26695 
(P21). The Fe-loaded HP-NAP YS39 structure contains one monomer in the asymmetric unit, and  
the dodecameric structure is formed by a crystallographic symmetry relationship. One dodecamer 
makes crystal contacts with six neighboring dodecamers to give simple cubic packing with  
a crystallographic four-fold axis, as shown in Figure 2a. On the other hand, the Fe-loaded HP-NAP 
26695 structure contains a dodecamer (12 monomers) in the asymmetric unit. One dodecamer makes 
crystal contacts with six neighboring dodecamers in the same plane and six additional neighboring 
dodecamers to give the characteristic pseudo-hexagonal sheet packing (Figure 2b) similar to that  
in the Escherichia coli Dps structure [23]. 

Inter-dodecamer contacts are made in Fe-loaded HP-NAP YS39 through the central regions of 
helices 2–3 of four subunits (Figures 3 and 4a). There are four bridged stacks of Lys74 residues.  
Each Lys74 Nζ atom is hydrogen-bonded to the backbone carbonyl O atoms of Leu73, Lys74, and 
Thr76 of the neighboring dodecamers. The bridged stacks are stabilized by hydrophobic interactions 
with the neighboring alkyl side chains. 
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Figure 1. Overall structure of Fe-loaded HP-NAP YS39 (PDB ID: 3TA8). Each subunit 
with iron ions is shown in a different color. (a) Overall structure with a red tetrahedron to 
show the structure symmetry (stereoview). Green lines indicate two-fold axes, and blue 
lines indicate three-fold axes; (b) The view is from a two-fold axis; (c) The view is from 
one of three-fold axes. 

 

Figure 2. Crystal packing of Fe-loaded HP-NAPs from strains YS39 (PDB ID: 3TA8) (a) 
and 26695 (PDB ID: 1JI4) (b). Each dodecamer is shown in a different color. Green lines 
indicate four-fold axes. Each unit cell is also shown. 
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Figure 3. Stereo-representation of the molecular contacts between two neighboring 
dodecamers in Fe-loaded HP-NAP YS39. The Lys74 Nζ atom is hydrogen-bonded to the 
backbone O atoms of Leu73, Lys74, and Thr76 of the neighboring dodecamers. 

 

Figure 4. Ferroxidase center. (a) Two ferroxidase centers are located in the interface of  
the dimer in Fe-loaded HP-NAP YS39. His25 and His37 of one subunit (green) and Asp52 
and Glu56 of the other subunit (yellow) are chelated to iron ions. Fe1 indicates the first 
iron ion. This figure is viewed from the inner side of the dodecamer; (b) A close-up view 
of the FOC in Fe-loaded HP-NAP YS39. Iron and water molecules are shown as cyan and 
red spheres, respectively. Dashed lines indicate coordinate bonds or hydrogen bonds; (c) A 
close-up view of the FOC in Fe-loaded HP-NAP 26695. An unidentified solvent molecule is 
shown as palecyan; (d) A close-up view of the FOC in the HP-NAP YS39 apo (PDB ID: 3T9J). 
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Due to different crystal packing between Fe-loaded HP-NAPs from strains YS39 and 26695, the solvent 
content of Fe-loaded HP-NAP YS39 is 65% (v/v) (and VM value is 3.68 Å3/Da), whereas that of  
Fe-loaded HP-NAP 26695 is 55% (v/v) (and VM value is 2.78 Å3/Da). A heavily solvated crystal lattice 
forming a wide water channel has been identified in Fe-loaded HP-NAP YS39, with the absence of 
masking contact with the adjacent dodecamers at the three-fold axis-related pore. The three-fold-related 
pore may encourage the entry of metal ions into the protein as described below. Crystal packing in  
Fe-loaded HP-NAP YS39 may be useful in metal ion soaking studies. Our group has previously 
determined the crystal structure of Zn-loaded HP-NAP YS39 using the soaking method [34]. 

Our group also determined the crystal structures of the apo form and iron-, zinc-, and cadmium-ion 
bound forms of HP-NAP YS39. All these crystals belong to the same space group, F432. Inter-dodecamer 
contacts have been identified through the bridged stacks of Lys74 in all the structures, and the 
distances between two Lys74 Cα atoms from the adjacent subunits were found to be almost identical: 
the distances between two Lys74 Cα atoms from adjacent subunits were 4.5 Å for the YS39 apo and 
4.4 Å for the Zn-loaded YS39. However, the unit-cell dimension of the YS39 apo (a = 189.47 Å) is 
approximately 4 Å longer than that of Zn-loaded YS39 (a = 185.53 Å). Therefore, the dodecamer of 
the YS39 apo is longer in diameter than that of Zn-loaded YS39. The approximate volume of  
the internal cavity was calculated previously by the CASTp server [35]. The volume of the YS39 apo 
(8.8 × 104 Å3) was found to be 25% larger than that of Zn-loaded YS39 (7.0 × 104 Å3). The volume of 
Salmonella enterica Dps [32] is 5.3 × 104 Å3, which is markedly smaller than that of Zn-loaded YS39; 
however, their subunits are similar to each other. These results indicate that the spherical shell-like 
dodecamers of HP-NAP and Dps proteins can easily change their sizes. Given ionic radii of metal ions, 
these volumes of the internal cavity of HP-NAP are sufficient to bind 500 atoms of iron per dodecamer 
as reported [22]. In the structure of the Fe-loaded YS39, however, only two iron ions per subunit were 
identified as described later [33]. 

3. Ferroxidase Center 

3.1. Fe-Loaded and Apo Structures 

Two ferroxidase centers (FOCs) are located between two subunits related by a two-fold axis (Figure 1b). 
In Fe-loaded HP-NAP YS39, an iron ion at one FOC is 21.7 Å away from the another iron ion at the 
other symmetry-related FOC (Figure 4a). This value is almost similar to that for other Dps proteins [36]. 
The inner side of the dodecameric shell consisting mainly of helices 2 and 4 has a strong negative 
charge, and is suitable for iron storage (Figure 4a). This is also a common feature of Dps proteins [30]. 
His25 and His37 are located on helices 1 and 2 of one subunit, respectively, and both Asp52 and 
Glu56 are located on helix 2 of the other subunit. These residues form a FOC, and an iron ion is 
located near these residues. The Fe-loaded HP-NAPs from strains YS39 and 26695 have similar FOC 
structures (Figure 4b,c). An unidentified solvent atom (perhaps Cl− ion) is located near the iron ion in 
HP-NAP 26695, whereas there is no corresponding atom in HP-NAP YS39. In both structures, the iron 
ions are coordinated in a distorted tetrahedral manner to the side chains of His25, Asp52, Glu56,  
and the solvent atom that is absent in HP-NAP YS39. FOCs commonly contain di-iron sites, with the 



Biomolecules 2014, 4 606 
 
two ions being separated by a distance of approximately 3 Å. However, no second iron ion was 
observed in the FOCs of Fe-loaded HP-NAPs as discussed below. 

Figure 4d shows the FOC in the HP-NAP YS39 apo. Several water molecules form a hydrogen 
bonding network. Based on the comparison between Fe-loaded and apo structures (Figure 4b,d),  
the conformations of Trp26, Asp52, and Glu56 are largely changed. The conformations of His25, 
His37, Glu41, and Tyr44 are very similar to each other in the two structures, although the direction of 
the carboxylate of Glu41 is changed. The superposition of the equivalent Cα atoms of the dimeric  
α-helical bundles between the Fe-loaded and apo structures yields a relatively large r.m.s.d. of 0.92 Å. 
The r.m.s.d.s of helices 1, 2, 3, and 4 are 0.61, 1.29, 0.90, and 0.65 Å, respectively, which indicates 
that the displacement of helix 2 is significantly larger than those of other helices. Iron binding by two 
residues, Asp52 and Glu56, which are located on helix 2, may promote the displacement of helix 2. 
The binding of the iron ion to the FOC in HP-NAP YS39 apo leads to the following conformational 
changes. The Trp26 side chain switches by approximately 180° along with the Cβ−Cγ bond (χ2 angle). 
It rotates the indole ring, and then moves away from the FOC. The carboxyl side chains of Asp52 and 
Glu56 move toward the resultant vacant space in the FOC, and can be chelated by the iron ion. In the 
apo structure, the side chain of Asp52 is stabilized by the formation of a salt bridge to His22, and the 
side chain of Glu56 is also stabilized by hydrogen-bonding to a water molecule. Trp26, in addition to 
His25, His37, Asp52, and Glu56, is well conserved among HP-NAPs and Dps proteins, and may play 
an important role in the conformational changes that occur upon binding of iron ions [33,34]. 

3.2. Zn-Loaded and Cd-Loaded Structures 

Two metal ions are observed in the FOC in the Zn-loaded and Cd-loaded HP-NAP YS39 (Figure 5). 
The first zinc ion, Zn1 is coordinated in a tetrahedral manner to the side chains of His25, Asp52, Glu56, 
and a water molecule that bridges two zinc ions (Figure 5a). The second zinc ion, Zn2 is coordinated in 
a distorted tetrahedral manner to the side chains of His37, Glu56, and two water molecules. On the 
other hand, the first cadmium ion, Cd1 is coordinated in a trigonal-bipyramidal manner, in which the 
triangle is formed by the side chains of His25, Asp52, and a water molecule bridging two cadmium 
ions, and the corner of the pyramid is formed by the side chain of Glu56 and another water molecule 
(Figure 5b). The second cadmium ion, Cd2 is coordinated in a distorted octahedral manner to the side 
chain of His37 and three water molecules, with two sites remaining unoccupied. Zinc ions are more 
likely to coordinate in a tetrahedral arrangement. Cadmium ions are also more likely to coordinate in 
both tetrahedral and octahedral arrangements, but also exhibit a versatile coordination geometry [37]. 
Cadmium ions were found to be coordinated in a trigonal-bipyramidal manner in the structures of 
phosphotriesterase [38], phosphoglucomutase [39], and thermolysin [40]. 

3.3. Comparison of Metal Coordination 

The first metal binding sites (Fe1, Zn1, and Cd1) are very similar to each other in the two structures 
among the Fe-loaded, Zn-loaded, and Cd-loaded structures (Figures 4b,c and 5a,b). However, the 
second metal binding sites are different. No second iron has been reported in the FOC of Fe-loaded 
HP-NAP YS39. An unidentified solvent atom is located near the second metal binding site in Fe-loaded 
HP-NAP 26695, and the Fe−X distance is 3.1 Å. The Zn1−Zn2 distance has shown to be 3.3 Å, which 
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is similar to the di-zinc distance in the FOC of the Dps proteins, Streptococcus pyogenes Dpr (3.5 Å) [41] 
and S. suis Dpr (3.3 Å) [42]. The Cd1–Cd2 distance is 4.2 Å, which is longer than the di-zinc distance. 
The mean first metal-ligand bond distances of HP-NAP YS39 structures were reported to be 2.33 Å for 
Fe1, 2.13 Å for Zn1, and 2.38 Å for Cd1 [34]. The mean metal-ligand bond distances in metalloproteins 
in the case of His, Asp, and Glu were 2.14 Å for Zn2+ and 2.39 Å for Cd2+ [37], which were 
comparable to the values of HP-NAP YS39. The longer metal-ligand bond distances for Cd1 than Zn1 
may result in a Cd1−Cd2 distance that is longer than the Zn1–Zn2 distance. The mean second  
metal-ligand bond distances of HP-NAP YS39 structures were shown to be 2.41 Å for Zn2 and 2.62 Å 
for Cd2 [34], both of which are longer than the first metal-ligand bond distances. Furthermore,  
the B-factor for Zn1 is 48.8 Å2, which is lower than that for Zn2, 51.2 Å2. The B-factor for Cd1 is 20.6 Å2, 
which is lower than that for Cd2, 42.1 Å2. These results indicate that the second metal coordination is 
weaker than the first one. Zinc ions have been used as an oxidation stable replacement for iron ions [41]. 
Di-zinc binding to FOC in HP-NAP YS39 indicates that di-iron FOC can be formed. To obtain crystals 
of Fe-loaded HP-NAP YS39, 10 mM iron (II) sulfate was used. However, Fe2+ ions are thought to be 
oxidized to Fe3+, due to long exposure to oxygen during crystallization [33,34]. As described in Dps 
proteins [28,36,41], di-iron sites are only occupied by Fe2+, which is rapidly oxidized to Fe3+.  
The second iron ion is loosely coordinated, and released from the FOC just after Fe2+ is oxidized to 
Fe3+. Based on these findings, there appears to be no second iron in the FOCs of Fe-loaded HP-NAPs 
from strains YS39 and 26695 (Figure 4b,c). 

Figure 5. Close-up views of the ferroxidase center. (a) Zn-loaded HP-NAP YS39  
(PDB ID: 4EVB). Zinc and water molecules are shown as orange and red spheres, 
respectively. Dashed lines indicate coordinate bonds or hydrogen bonds; (b) Cd-loaded 
HP-NAP YS39 (PDB ID: 4EVC). Cadmium and water molecules are shown as green and 
red spheres, respectively. 

 

4. Metal Ion Entry through the Three-Fold Pore 

4.1. Pore I 

The HP-NAP dodecamer contains two types of three-fold axis-related pores. One pore (pore I) is 
strongly hydrophilic and has a negatively charged environment that may guide metal ions toward the 
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internal cavity (Figures 1c and 6). Three layers of negatively charged residues, Glu114, Asp126, and 
Asp127, are located along with the pore from the outside to the inside (Figure 6b,d). These residues are 
conserved among HP-NAPs. Such a funnel-like pore along with the three-fold axis is filled with  
a network of solvent molecules, and this is suitable for metal ion entry by electrostatic interactions. 
This type of pore has been reported in Dps proteins [32,43–46] and L. innocua dodecameric ferritin [24]. 

Figure 6. Pore I along the three-fold axis. Three-fold-axis-related trimers (cyan, magenta, 
and green) in Fe-loaded HP-NAP YS39 (a, b) and Zn-loaded HP-NAP YS39 (c, d).  
Iron, zinc, and water molecules are shown as cyan, orange, and red spheres, respectively. 
The key residues forming pore I are shown in sticks. Dashed lines indicate coordinate 
bonds or hydrogen bonds. Fe2 indicates the second iron ion of Fe-loaded HP-NAP YS39. 
Zn3 indicates the third zinc ion of Zn-loaded HP-NAP YS39. The view is from outside of 
the spherical shell (a, c) and is from the side (b, d). One polypeptide chain (green) is 
omitted for clarity in (b, d). 
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Fe and Zn atoms are located inside the pore in Fe-loaded and Zn-loaded HP-NAP YS39 structures, 
and the location of the two ions are almost the same. No ordered cadmium ion has been observed in 
Cd-loaded HP-NAP YS39. The Zn atom is coordinated to three symmetrically-related water molecules 
(Wat304), each of which is hydrogen-bonded to the side chain of Asp127. Although no water 
molecules are observed around Fe2, the Fe atom may be chelated to disordered water molecules that 
connect to the side chain of Asp127 by hydrogen-bond networks. Such a flexible rearrangement may 
be suitable for trapping and transferring metal ions into the internal FOC. 

The positively-charged residues, Lys107, Lys115, and Lys119, around the negatively-charged pore 
are positioned outside the entrance to the pore, and may function as an effective electrostatic guide for 
metal-ion transfer. The side chain of Lys119 is hydrogen-bonded to the side chain of Asn111 of the 
adjacent subunit in Fe-loaded HP-NAP YS39 (Figure 6a), which is the same in the Cd-loaded one. 
However, the side chain of Lys119 is hydrogen-bonded to a water molecule (Wat344) in the Zn-loaded 
HP-NAP YS39, and this is hydrogen-bonded to the side chain of Glu114 (Figure 6c). In Zn-loaded 
HP-NAP YS39, the distance between Wat344 and Wat304 is 12.6 Å, which corresponds to the length 
of the pore. The intersubunit distances between two corresponding atoms of the three subunits are as 
follows; Glu114 Oε2 (5.4 Å), Lys119 Nζ (4.5 Å), Asp126 Oδ2 (8.1 Å), and Asp127 Oδ1 (6.9 Å).  
The flexible side-chain of Lys119, which forms the narrow pore, may function as a filter bulb to help 
to drive metal ions inside the pore [34]. 

4.2. Pore II 

The other pore (pore II) is located just opposite of pore I, as described in Section 2.1, and is composed 
of Thr31, Asp32, and Asn35. According to the intersubunit distances between two corresponding 
atoms of the three subunits, the narrowest distance is Asn35 Nδ2 (3.0 Å) in Fe-loaded HP-NAP YS39, 
and Asn35 Nδ2 (3.1 Å) in Zn-loaded HP-NAP YS39. Therefore, the size of pore II is smaller than that 
of pore I. No metal ions were observed in pore II in the HP-NAP structures determined previously. 

By comparing the average B-factors of main-chain atoms, the regions around pore I have higher  
B-factors than those of the other regions in Fe-loaded, Zn-loaded, and Cd-loaded structures. The regions 
around pore I in the apo structure have been shown to have lower B-factors than the other regions [34]. 
According to these findings, ions and water molecules may frequently enter into and exit from pore I, 
which is suitable for the passage of metal ions. 

5. Other Metal-Binding Sites 

This review focused on metal bindings to the ferroxidase center and the three-fold axis related pore. 
However, other metal-binding sites have also been observed inside the dodecamer. 

In the Fe-loaded HP-NAP YS39, two iron ions per subunit are identified in the FOC and inside  
the pore I as described [33]. In the Zn-loaded HP-NAP YS39, four zinc ions per subunit are identified: 
two zinc ions are in the FOC, a zinc ion is inside the pore I, and another one zinc ion is inside the 
protein shell, coordinating to Glu41 and Glu45. In the Cd-loaded HP-NAP YS39, four cadmium ions 
per subunit are identified: two cadmium ions are in the FOC, and another two cadmium ions are inside 
the protein shell. One cadmium ion is located at almost the same site as the zinc ion, and is coordinated 
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to Glu42 and Glu45. Additionally, the other cadmium ion is coordinated to Asp49 and Asp53 [34]. 
These metal-binding sites other than the FOC and pore I are also involved in the metal-binding function. 

6. Neutrophil Activation 

HP-NAP is capable of activating human neutrophils [8,9]. Major differences were found when 
electrostatic surface potentials were compared between HP-NAP and Dps proteins. The number of 
charged residues was found to be fewer in E. coli Dps [23] than in HP-NAP (Figure 7a,b). The number 
of positively charged residues was higher in HP-NAP than in L. innocua dodecameric ferritin [24] 
(Figure 7a,c). The HP-NAP surface is characterized by the large presence of positively charged 
residues, which are not shared by the other Dps protein members (Figure 7a) [30]. The positively-charged 
residues of several proteins, including some chemokines, appear to play a role in the activation of 
neutrophils [30,47,48]. Thus, a large number of positively-charged residues on the surface of HP-NAP 
may be responsible for its neutrophil-activating properties [30]. The C-terminal region containing  
helix 2–3 (residues 69–75) and helix 3 (residues 89–114) of HP-NAP may be critical in stimulating 
neutrophil activation [49]. Helix 2–3 and helix 3 are exposed to the outer surface of the dodecamer. 
Additional mutational studies with site-directed mutagenesis are required to identify the amino acids 
involved in stimulating neutrophil activation [49]. 

Figure 7. Molecular surface respresentations of HP-NAP and Dps proteins. Negatively 
charged residues (Asp and Glu) are colored red and positively charged residues (Lys, Arg, 
and His) blue. (a) The Fe-loaded HP-NAP YS39 dodecamer; (b) E. coli Dps dodecamer 
(PDB ID: 1DPS); (c) L. innocua ferritin dodecamer (PDB ID: 1QGH). 

 

NapA from Borrelia burgdorferi is a Dps-like protein with specific immunomodularoty properties 
via Toll-like receptor (TLR) 2 [50]. Both NapA from B. burgdorferi and HP-NAP from H. pylori have 
been demonstrated to be TLR2 agonists [16,51]. TLR2 plays a crucial role in innate immunity by 
recognizing several kinds of different microbial molecules [52]. The external surface of the extracellular 
region of TLR2 possesses both positively and negatively charged residues spread all around the 
surface. NapA and HP-NAP also possess exposed surfaces with positive and negative charges. It is 
hypothesized that NapA and HP-NAP directly interact with the extracellular region of TLR2 [50]. 



Biomolecules 2014, 4 611 
 
7. Conclusions 

H. pylori neutrophil-activating protein (HP-NAP) is an iron storage protein that promotes the adhesion 
of neutrophils to endothelial cells [8,9,22]. The crystal structures of the apo form and metal-ion bound 
forms such as iron, zinc, and cadmium of HP-NAP have been determined [30,33,34]. A total of  
12 protein subunits, composed of four-helix bundles, form a spherical shell-like dodecamer with  
23 symmetry. These structures are similar to those of Dps proteins. The inner side of the dodecameric 
shell has a strong negative charge, and is suitable for iron storage. Metal ions bind at the di-nuclear 
ferroxidase center by different coordinating patterns. In comparison with the apo structure, metal 
loading causes a series of conformational changes in conserved residues among HP-NAP and Dps proteins 
(Trp26, Asp52, and Glu56) at the FOC [33]. The Zn-loaded and Cd-loaded HP-NAP structures have 
revealed the di-nuclear binding mode in which the second ion is more weakly coordinated than the  
first at the FOC, whereas the Fe-loaded HP-NAP structure revealed the mono-nuclear mode [34].  
The second iron ion is loosely coordinated, and may be released from the FOC just after Fe2+ is 
oxidized to Fe3+. Zinc and cadmium ions bind to the FOC, which indicates that HP-NAP can store zinc 
and cadmium ions in addition to iron ions. Metal ions are found around one of the pores; therefore,  
the negatively-charged three-fold-related pore is suitable for the passage of metal ions. 
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