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ABSTRACT Providing access to quantitative genomic data is key to ensure large-scale data validation
and promote new discoveries. TheCellMap.org serves as a central repository for storing and an-
alyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array
(SGA) experiments with the budding yeast Saccharomyces cerevisiae. In particular, TheCellMap.org
allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or
to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive
manner.
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The majority of the �6000 yeast genes are individually dispensable
under standard growth conditions, with only a relatively small subset
(�20%) of genes required for viability (Winzeler et al. 1999; Giaever
et al. 2002). This large fraction of nonessential genes likely reflects the
evolution of extensive buffering against genetic and environmental
perturbations (Hartman et al. 2001). Genome-scale screens for genetic
interactions provide ameans to explore this buffering capacity andmap
a functional wiring diagram of a cell (Costanzo et al. 2010, 2016;
Vizeacoumar et al. 2013). In addition to functional information about
genes and their biological pathways, genetic interaction networks
may also provide fundamental insights into the genetic architecture

underlying the genotype-to-phenotype relationship (Zuk et al. 2012;
Bloom et al. 2013, 2015).

SGA analysis is an automated form of yeast genetics that combines
arrays of eithernonessential genedeletionmutants, or conditional alleles
of essential genes, through a series of robotic manipulations to enable
high throughput construction of haploid yeast double mutants and
quantitative analysis of genetic interactions (Tong et al. 2001;
Baryshnikova et al. 2010). Genetic interactions identified through
SGA analysis can be grouped into two general categories, negative
and positive (Costanzo et al. 2011). Negative genetic interactions de-
scribe double mutants that exhibit a more severe phenotype than
expected based on the phenotypes of the corresponding single mutants
(Mani et al. 2008). Synthetic lethality is an extreme example of a neg-
ative interaction where two mutations, each causing little fitness defect
on their own, result in an inviable or cell death phenotype when com-
bined as double mutants (Novick and Botstein 1985). Negative inter-
actions are of particular interest because they tend to connect
functionally related genes that impinge on the same essential biological
process (Costanzo et al. 2010, 2016). Conversely, positive genetic in-
teractions describe double mutants exhibiting a less severe phenotype
than expected based on the product of the two single mutant pheno-
types (Mani et al. 2008). Genes encoding members of the same non-
essential protein complex are often connected by positive genetic
interactions because once the function of the complex is compromised
by mutation of the first component, the phenotype cannot be made
worse by removal of additional components (Costanzo et al. 2011).
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However, the vast majority of positive interactions do not connect
genes within the same nonessential pathway or even functionally re-
lated genes, but instead tend to map more general regulatory connec-
tions associated with defects in cell cycle progression or cellular
proteostasis (Costanzo et al. 2016). Despite their mechanistic differ-
ences, both negative and positive genetic interactions tend to be highly
organized and genes belonging to the same protein complex or pathway
often share a similar pattern of genetic interactions (Costanzo et al.
2011). Moreover, the set of negative and positive genetic interactions
for a given gene, termed the genetic interaction profile of a gene, pro-
vides a quantitative measure of gene function, and subsets of genes with
highly similar genetic interaction profiles often belong to the same
biological process, pathway, and/or protein complex (Costanzo et al.
2010, 2016).

In a recent study, we described the construction of a global genetic
interaction network for Saccharomyces cerevisiae that consists of nearly
one million genetic interactions (Costanzo et al. 2016). This study not
only identified general properties of negative and positive interactions,
but it also showed that the global network of genetic interaction profile
similarities groups genes into a hierarchical model of a cellular function.
For example, at the highest resolution of the profile similarity network,
genes are grouped into modules corresponding to protein complexes
and pathways. At an intermediate level of network resolution, these
groups combine together to define specific biological processes. Finally,
at the most general level of network resolution, gene clusters represent-
ing biological processes are grouped together into larger modules cor-
responding to specific cellular compartments (Costanzo et al. 2016).
This biologically-intuitive organization of genes provides a powerful
resource for predicting the function of previously uncharacterized
genes. Here, we describe TheCellMap.org, a web-accessible database
and visualization tool, designed to facilitate data access and navigation
of the global yeast genetic interaction network.

MATERIALS AND METHODS

Genetic interaction screens and analysis
SGA genetic interaction screens and analyses were conducted as de-
scribed elsewhere (Baryshnikova et al. 2010; Kuzmin et al. 2014;
Costanzo et al. 2016).

Database development
TheCellMap.org is a Rich Internet Application (RIA) that enables
efficient querying of large interaction datasets. The back-end of
TheCellMap.org iswritten in Pythonusing theDjangoweb framework
connected to a PostgresSQL object-relational database for storage and
querying. The web interface is developed using a combination of
HyperText Markup Language (HTML5), Cascading Style Sheets
(CSS3) and JavaScript for an interactive user experience. An nginx
web server links the client and server sides by serving static files and
passing Hypertext Transfer Protocol (HTTP) requests through aWeb
Server Gateway Interface (uWSGI). All labor-intensive requests are
processed in python using numpy for fast numerical analysis of the
queried data which further decreases the load on a user’s browser.

Analysis of neighboring gene effect
Ifmutation of a particular gene results in disruption of an adjacent gene,
then the two genes should share many genetic interactions in common
and exhibit similar genetic interaction profiles. To explore the impact of
neighboring gene effects on genetic interaction profile similarity, we
computed the physical distance separating all unique pairs of genes
located on the same chromosome.Nonoverlappinggenepairswere then

assigned to 100 bp interval bins based on the chromosome distance
separating them (e.g., 0–100 bp, . . ., 4900–5000 bp). Gene pairs with
overlapping coding sequences were assigned to 500 bp bins (e.g.,22000
to 21500 bp, . . ., 2500 to 0 bp). The mean and SD of genetic in-
teraction profile similarity was then measured for all gene pairs in the
same chromosome distance bin. Finally, the mean profile similarity of
all gene pairs within the same chromosome distance bin was compared
to the average profile similarity of previously defined “cocomplex” gene
pairs (Costanzo et al. 2016).

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS AND DISCUSSION

Data acquisition, processing, and analysis
A genetic interaction between two genes can be quantified based on
measurement and comparison of the single mutant phenotypes, an
estimate of the expected double mutant phenotype, and the observed
double mutant phenotype. In the case of yeast fitness, the expected
double mutant phenotype is typically modeled as a multiplicative
combination of single mutant phenotypes, and genetic interactions
are measured by the extent to which double mutants deviate from this
multiplicative expectation (Phillips et al. 2000; Mani et al. 2008). In a
typical SGA screen, a haploidMATa query mutant strain is crossed to
an input array of haploidMATa yeast mutants to generate an array of
heterozygous diploid double mutants. Ultimately, an output array of
haploid double mutants is generated through mating, meiosis, and the
subsequent selection of haploid double mutantMATameiotic progeny
(Kuzmin et al. 2014). Computational methods have been developed to
correct sources of systematic variability associated with high-density
yeast colony arrays, providing accurate haploid single and double mu-
tant colony size measurements that serve as a proxy for cell fitness and
the basis for quantitative genetic interaction analysis (Baryshnikova
et al. 2010).

Combining SGA and an automated colony scoring method enabled
the construction and analysis of �23 million yeast double mutant
strains (Costanzo et al. 2016). The global genetic interaction network
derived from this analysis includes �550,000 negative and �350,000
positive genetic interactions, and represents�90% of all yeast genes as
either array and/or query mutants (Costanzo et al. 2016). Genetic in-
teraction profile similarities were also measured by computing Pearson
correlation coefficients (PCC) between all pairs of yeast mutant strains
screened in this study (Costanzo et al. 2016). The complete unfiltered
dataset, including negative and positive interactions as well as genetic
interaction profile similarities, is available for download in various
formats from the menu bar on TheCellMap.org home page (Figure 1,
“Download Dataset”). In addition to providing access to the dataset,
TheCellMap.org also allows users to explore and visualize genetic in-
teraction data in two different formats: (1) a global network based on
genetic interaction profile similarities and; (2) networks comprised di-
rectly of negative and positive genetic interactions for mutant alleles of
selected genes. The mutant alleles largely consist of deletion alleles of
nonessential genes and temperature-sensitive (TS) alleles of essential
genes, a number of which have multiple different alleles.

Navigating the global genetic interaction profile
similarity network
TheCellMap.org home page shows an interactive version of the global
genetic interaction profile similarity network (Figure 1). Nodes
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represent deletion alleles of nonessential genes or TS alleles of essential
genes. Alleles sharing similar genetic interaction profiles that exceed a
defined PCC threshold (PCC $ 0.2) are connected by an edge in the
network. To visualize the network, an edge-weighted, spring-embedded
layout algorithm was applied to determine the position of all nodes,
such that tightly connected nodes (i.e., genes sharing similar patterns of
genetic interactions) are placed proximal to each other whereas less
connected nodes are placed farther apart in two-dimensional space
(Kobourov 2012). The current genetic interaction profile similarity
network consists of 4909 nodes representing 4418 unique genes con-
nected by 34,468 edges. Densely-connected clusters on the global net-
work are enriched for subsets of functionally related genes that
represent distinct biological processes and, within each bioprocess,
more refined subsets of genes cluster into pathways and complexes
(Costanzo et al. 2016). To identify gene and allele names, a user can
zoom into specific network regions by scrolling on a particular network
region or by hovering over individual nodes. Double clicking on a
specific node directs a user to the Saccharomyces Genome Database
(www.yeastgenome.org) Gene Summary Page for the selected gene.
The camera icon, located in the bottom right corner of the home page,
allows a user to save the network shown on the screen as a Scalable
Vector Graphics (SVG) image (Figure 1).

The global genetic profile similarity network provides a powerful
resource for predicting gene function because the network position of a
given gene can be indicative of its general function (Costanzo et al.
2016). Indeed, by exploring gene position on the network systematically,

we predicted and validated functions for several poorly characterized
genes including essential genes whose functions were not previously
appreciated (Costanzo et al. 2016). The specific location of a gene(s)
can be mapped onto the global profile similarity network by inputting
the systematic or common gene name(s) into the search window
(Figure 1, upper left) or by selecting a region of the network. Follow-
ing a gene search or selection of a network region, the position of a
selected gene on the network is shown by the appearance of a teardrop
icon (Figure 2). Following a gene search, the general biological processes
associated with each cluster, as determined by Spatial Analysis of Func-
tional Enrichment (SAFE) (Baryshnikova 2016), are also highlighted
with different colors (Figure 2). Thus, proximity to an enriched network
cluster should provide insight into the cellular function of a particular
gene. For example, BNI1, a formin protein important for the nucleation
of actin cables that control polarized secretion (Evangelista et al. 2003),
localizes to the “Cell Polarity” cluster (Figure 2A). Interestingly, a pre-
viously uncharacterized gene, FYV8, is located within a cluster enriched
for genes involved in glycosylation, protein folding, and cell wall bio-
synthesis, suggesting that this gene may share a similar role with other
genes involved in these functions (Figure 2B). A new gene search can be
initiated by selecting the “TheCellMap” icon in the menu bar which
resets the network (Figure 1 and Figure 2).

As described above, a threshold was applied on profile similarity in
order tominimize network complexity and facilitate visualization of the
biological process-enriched network clusters (Costanzo et al. 2010,
2016). As a result, a gene with a genetic interaction profile that does

Figure 1 A global genetic interaction profile similarity network. A screenshot of TheCellMap.org home page, which displays the global genetic
interaction profile similarity network.
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not meet a minimum similarity (PCC$ 0.2) with the genetic interac-
tion profile of any other gene will not appear on the global network. A
search for such genes results in a message indicating that the gene of
interest is not represented on the global network. Although this gene

cannot be visualized on the global network, a subnetwork illustrating
the most similar genetic interaction profiles to the gene of interest can
be generated by clicking on the hyperlink shown in the message box
(Figure 3).

Figure 2 Mapping genes on the genetic interaction profile similarity network. Following a gene search, the position of the gene of interest is
shown with a teardrop icon (red). The biological processes represented by each network cluster are also highlighted (colored regions). (A) A gene
search revealed the position of BNI1 on the global genetic interaction network. (B) A gene search revealed the position of a previously
uncharacterized gene, FYV8, on the global genetic interaction network.
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Extracting gene-specific genetic interaction profile
similarity networks
Once a gene’s location is determined, the connections that define its po-
sition on the global network of genetic interaction profiles can be visualized
by extracting a subnetwork for the gene(s) of interest. The “Extract Sub-
network” feature selects the genes that are directly connected to, and thus
share similar profiles to, the gene of interest, whichmeans they havemany
genetic interactions in common (Figure 2). The same edge-weighted,
spring-embedded layout algorithm is applied to reposition nodes using
only the connections present in the subnetwork (Figure 4). Importantly,
the strict threshold on profile similarity applied to the global network is no
longer imposed on smaller subnetworks, although the default setting for
initial production of the subnetwork is the same as for the global network
(PCC = 0.20) (Figure 4A). At this level of resolution, a user can define the
similarity threshold, above which a connection to the gene of interest will
appear on the network, by using the slide bar to manually adjust the PCC
threshold. After adjusting the similarity threshold, the same layout algo-
rithm automatically reorganizes the network based on the presence of new
nodeswhen the similarity threshold is decreased (Figure 4B) or the absence
of nodes lost by increasing the similarity threshold.Note that node position
can be changed manually by clicking on and dragging specific nodes and
individual nodes can also be manually deleted by selecting the “Delete
Node” option from the right click menu.

A subnetwork can also be annotated using different functional
standards available from the “Annotate Network” dropdown menu,

including the SAFE functional standard (Figure 5). As previously described
(Baryshnikova 2016), the SAFE method identifies dense network regions
associated with specific functional attributes. Applying SAFE to the global
genetic interaction profile similarity network identified 569 significantly
enriched Gene Ontology (GO) bioprocess terms (Ashburner et al. 2000)
that mapped to 19 unique network regions and covered 1480 genes. The
SAFE functional standard is composed of 19 general terms that summarize
the GO bioprocesses that map to each network region (Costanzo et al.
2016). After selecting a functional standard, nodes annotated to the same
functional term will be colored similarly (Figure 5). For example, a BNI1
genetic interaction profile similarity subnetwork annotated using the SAFE
functional standard highlighted distinct clusters corresponding to func-
tions that depend on BNI1-mediated actin nucleation (Figure 5)
(Evangelista et al. 2003). Other available functional standards include a
custom set of biological process terms (Costanzo et al. 2010), GO Slim
(Harris et al. 2004), a protein complex standard (Costanzo et al. 2016), and
two different protein localization standards (Huh et al. 2003; Koh et al.
2015). A user can also upload a custom functional standard from the
“Annotate Network” menu as well as change node, and edge attributes
from the “Advanced” settings menu.

Dubious genes and neighboring gene effects
The yeast deletionmutant collection used in our genetic interaction studies
contains strains deleted for ORFs (open reading frames) annotated as
“dubious,” which are unlikely to encode an expressed protein because the

Figure 3 Generating profile similarity networks for genes that do not appear on the global network. A warning message indicates that a gene(s) of
interest is not represented on the global network and a link is provided to view a subnetwork of genes that show the strongest profile similarity to
the gene(s) of interest. PCC, Pearson correlation coefficient.
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ORF is not conserved in other Saccharomyces species and/or there is no
experimental evidence that a gene product is produced from the ORF
(http://www.yeastgenome.org/help/general-help/glossary). Dubious ORFs
tend to be located in very close proximity and often overlap the coding

sequence of a neighboringORF. As a result, deletion of a dubious gene can
result in partial deletion of a characterized neighboring gene. Thus, the
genetic interaction profile associated with a dubious gene often resembles
the profile of the neighboring gene.We chose to include genetic interaction

Figure 4 Genetic interaction profile similarity subnetworks. (A) A BNI1-specific profile similarity subnetwork with standard profile similarity
threshold (PCC . 0.2) applied. Genes that have similar genetic interaction profiles to BNI1 are shown and positioned in an unbiased manner
based on the extent of their similarity to the BNI1 profile. (B) A BNI1-specific profile similarity subnetwork with a more lenient profile similarity
threshold (PCC . 0.17) applied. PCC, Pearson correlation coefficient.
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profiles of dubious genes in the genetic profile similarity network, repre-
sented as open circles on the networks, because these profiles can serve as
controls for screen quality or as a proxy for the genetic interaction profile of
the neighboring, verified gene.

Similar to the effects of deleting dubious genes, the phenotype observed
in a deletion mutant strain can sometimes reflect the combined biological
consequence of inactivating both the gene of interest and the adjacentORF.
Thus, it is possible that the interactions comprising the genetic profile of a

Figure 5 Annotating genetic interaction profile similarity networks. Nodes in the BNI1 subnetwork are annotated using the SAFE (Spatial Analysis
of Functional Enrichment) function standard available from the “Annotate Network” dropdown menu. The sliding bar to the right allows the user
to adjust the stringency requirement for adding genes to the network (see text for details).

Figure 6 Neighbor gene effects. Graph showing the average genetic interaction profile similarity and SD of gene pairs located on the same
chromosome (y axis) and separated by a defined distance (x axis). Negative values indicate gene pairs with physically overlapping coding
sequences. The average genetic interaction profile similarity of gene pairs annotated to the same protein complex (i.e., cocomplexed gene pairs)
is indicated (dashed blue line).
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gene may, in some cases, reflect both its own interactions as well as the
interactions of its neighbor (Ben-Shitrit et al.2012).A recent study explored
the extent of neighboring gene effects in a previous version of the genetic

interaction network and suggested that a fraction of negative genetic in-
teractions could be explained by this effect (Atias et al. 2016). To explore
the neighbor gene effect in the global genetic network, we examined the

Figure 7 Negative and positive genetic interaction subnetworks. (A) A genetic interaction network illustrating negative (blue) and positive (yellow)
genetic interactions for BNI1. NUM1 and YDR149C are also indicated. Nodes are colored based on the SAFE annotation standard. Open circles
represent dubious ORFs. (B) A BNI1 and BIM1 genetic interaction network. Negative and positive interactions are depicted as in (A). Nodes are
colored based on the SAFE annotation standard. Open circles represent dubious ORFs. ORF, open reading frame; SAFE, Spatial Analysis of
Functional Enrichment.
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relationship between genetic interaction profile similarity and the phys-
ical distance separating pairs of genes on the same chromosome (Figure
6). If mutation of a particular gene also compromises the function of an
adjacent gene, then the two genes should sharemany genetic interactions
in common and exhibit similar genetic interaction profiles. Unsurpris-
ingly, ORFs whose coding sequence physically overlapped one another
exhibited strong profile similarity (Figure 6). However, nonoverlapping
gene pairs separated by as little as 200 bp shared significantly less profile
similarity than the average pair of genes annotated to the same protein
complex (Figure 6). Thus, while individual genetic interactions can be
affected by neighboring gene effects (Atias et al. 2016), our analysis
suggests that the strongest genetic interactions, which drive profile sim-
ilarity, are mostly unaffected by disruption of a neighboring gene. Based
on our analysis, we estimate that only a small fraction of gene pairs
exhibit a neighboring gene effect with the potential to impact profile
similarity. Applying relatively conservative criteria (neighboring gene
pairs with a genetic interaction profile similarity of PCC . 0.1 and
separated by,400 bp), we identified 392 genes (,7% of all genes tested)
with genetic interaction profiles that may be susceptible to a potential
neighboring gene effect. These genes are represented as gray nodes in the
profile similarity network (Supplemental Material, Table S1).

Exploring negative and positive genetic
interaction networks
Due to the largenumberof interactions, a global networkofnegative and
positive interactions is complex and difficult to visualize. However,

visualization of direct negative and positive genetic interactions is
possible after extracting a genetic profile similarity subnetwork for an
individual gene or small subsets of genes. Transitioning from profile
similarity to direct genetic interaction networks is achieved by selecting
the “Genetic Interaction Network” button (Figure 4). A user can switch
back to the profile similarity subnetwork at any time by selecting the
“Profile Similarity Network” button (Figure 4). In the case of a single
gene (e.g., BNI1 specific network; Figure 7A), two separate genetic in-
teraction networks are generated, one illustrating negative interactions
and a second showing positive interactions. Genetic interaction part-
ners are organized in a circular arrangement and are connected to the
gene of interest by negative (blue) or positive (yellow) edges (Figure
7A). As a default, only those negative and positive interactions that
satisfy a previously defined confidence threshold (P-value , 0.05 and
|SGA score| . 0.08) (Costanzo et al. 2010, 2016) are plotted on the
network. The default confidence threshold was determined based on
several evaluation metrics including reproducibility of genetic interac-
tions measured from independent replicate experiments, reproducibil-
ity of interactions identified among available reciprocal gene pairs (i.e.,
query A-array B vs. query B-array A), and the extent to which enrich-
ment for GO coannotated gene pairs was correlated with the signifi-
cance and magnitude of genetic interaction scores (Baryshnikova et al.
2010; Costanzo et al. 2010, 2016). As with the profile similarity thresh-
olds (Figure 4), a slide bar enables manual adjustment of thresholds
applied to the negative and positive genetic interaction scores (Figure
7). Nodes will disappear when more stringent interaction score

Figure 8 Gene-specific genetic interaction data. A screenshot illustrating genetic interaction data organized in a tabular format. ORF, open
reading frame; PCC, Pearson correlation coefficient.
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thresholds are set whereas additional nodes will appear in the network
at more lenient score thresholds. Node position in an unannotated
network is determined by genetic interaction strength. Genes with
more extreme interactions are positioned closer to the gene of interest
near the center of the network, while genes with weaker interactions are
located further away and closer to the network periphery (Figure 7A).
Negative and positive genetic interaction networks can also be anno-
tated using the same functional standards described above, and node
position within the networks will be reorganized in an annotation-
dependent manner such that genes annotated to the same functional
term will be grouped together (Figure 7A). As with the profile simi-
larity network, open circles represent dubious ORFs. For example,
BNI1 shows a negative interaction with the dubious ORF YDR149C,
which partially overlaps its neighboring gene NUM1. Thus, the ob-
served negative interaction with BNI1 likely reflects the fact that de-
letion ofYDR149C also disrupts the function of theNUM1 gene, which
also shows a negative interaction with BNI1 (Figure 7A).

Unlike the “spoke” layout used to visualize genetic interactions for a
single gene (Figure 7A), selecting multiple genes requires a different
network layout (Figure 7B). For example, when two genes are selected,
negative and positive interactions unique to each gene of interest are
positioned on the periphery of the network whereas shared interactions
are located between the selected genes and grouped according to in-
teraction type, such that negative and positive interactions are clearly
separated (Figure 7B). Node position and attributes, such as color and
size, can also be changed manually as described for profile similarity
subnetworks (Figure 4).

Generating and downloading gene-specific
interaction lists
Inadditiontovisualizingtheyeastgenetic interactiondataset in the formof
profile similarity or direct genetic interaction networks, data for a specific
gene or subset of genes can also be viewed in a tabular format (Figure 8).
The table format can be accessed by clicking the “View as Table” button
available from the global network page (Figure 2A), the subnetwork
profile similarity pages (Figure 4), or the genetic interaction network page
(Figure 7). The table view contains two menus: “Selected Genes” and
“Data Types” (Figure 8). The SelectedGenesmenu lists the genes selected
as part of the search and the list expands as more genes are added to a
search. Only data corresponding to the highlighted gene in the Selected
Genes menu will be shown in the table. The second menu indicates the
type of data, either profile similarities, negative genetic interactions, or
positive genetic interactions, which is shown in the table for a highlighted
gene (Figure 8). As a default, profile similarities and interactions that
satisfy standard confidence thresholds, described above, are listed in the
table. However, a complete list of interactions can be viewed by selecting
the “LoadAll” button at the bottom of the table. Finally, data for any gene
of interest can be downloaded directly from the Table View page (Figure
8) or by selecting the “Download” button available from the global net-
work page (Figure 2A), subnetwork profile similarity pages (Figure 4), or
the genetic interaction network page (Figure 7). Data for a selected
gene(s) will be downloaded as aMicrosoft Excel (.xls) file and includes
all three data types: profile similarities and negative and positive in-
teractions corresponding to the gene(s) of interest.

Conclusions
A global genetic interaction network has been mapped for a model
eukaryotic cell, the budding yeast S. cerevisiae. TheCellMap.org pro-
vides a single platform to facilitate access, visualization, and analysis of
the global yeast genetic interaction network. Note that we continue to

map genetic interactions for remaining gene pairs and new data will be
deposited in the database as it is generated.We also continue to develop
new functionality, including tools to integrate profile similarities and
direct genetic interactions into a single network, similar to networks
shown in our previous study [see Figure 9 in Costanzo et al. (2016)]. In
addition, we will also expand TheCellMap.org to allow users the ability
to upload and integrate their own phenotypic data with the genetic
interaction network as previously shown with chemical genetic inter-
action data (Costanzo et al. 2010). We anticipate that the tools devel-
oped as part of this web-accessible database will provide valuable
insights into phenotypic and functional connections between different
genes, as well as a powerful resource for gene function discovery and the
analysis of the general principles of genetic interaction networks.
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