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Abstract

Objective: We aim to investigate radiomic imaging features extracted in computed tomography (CT) images to

differentiate invasive pulmonary adenocarcinomas (IPAs) from non-IPAs appearing as part-solid ground-glass

nodules (GGNs), and to incorporate significant radiomic features with other clinically-assessed features to develop

a diagnostic nomogram model for IPAs.

Methods: This retrospective study was performed, with Institutional Review Board approval, on 88 patients with

a total of 100 part-solid nodules (56 IPAs and 44 non-IPAs) that were surgically confirmed between February 2014

and November 2016 in the First Affiliated Hospital of China Medical University. Quantitative radiomic features

were computed automatically on 3D nodule volume segmented from arterial-phase contrast-enhanced CT images.

A set of regular risk factors and visually-assessed qualitative CT imaging features were compared with the radiomic

features using logistic regression analysis. Three diagnostic models, i.e., a basis model using the clinical factors and

qualitative CT features, a radiomics model using significant radiomic features, and a nomogram model combining

all  significant features,  were built  and compared in terms of receiver operating characteristic (ROC) curves.

Decision curve analysis was performed for the nomogram model to explore its potential clinical benefit.

Results: In addition to three visually-assessed qualitative imaging features, another three quantitative features

selected from hundreds of radiomic features were found to be significantly (all P<0.05) associated with IPAs. The

diagnostic nomogram model showed a significantly higher performance [area under the ROC curve (AUC) =0.903]

in differentiating IPAs from non-IPAs than either the basis model (AUC=0.853, P=0.0009) or the radiomics model

(AUC=0.769, P<0.0001). Decision curve analysis indicates a potential benefit of using such a nomogram model in

clinical diagnosis.

Conclusions: Quantitative radiomic features provide additional information over clinically-assessed qualitative

features for differentiating IPAs from non-IPAs appearing as GGNs, and a diagnostic nomogram model including

all these significant features may be clinically useful in preoperative strategy planning.
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Introduction

In  the  multidisciplinary  classification  of  lung  adeno-
carcinomas  in  2011  (1),  adenocarcinoma  in  situ  and
minimally invasive adenocarcinoma were considered for
sublobar resection due to their good prognosis, with a very
high  5-year  disease-free  survival  (DFS).  However,
lobectomy  is  still  the  standard  surgical  treatment  for
invasive pulmonary adenocarcinomas (IPAs) with worse
prognosis  (5-year DFS is  74.6%, even in stage IA).  For
precise surgery, an accurate diagnosis between IPAs and
non-IPAs before surgery is becoming increasingly crucial
(2,3). A number of studies have demonstrated correlations
between computed tomography (CT) findings of part-solid
ground-glass  nodules  (GGNs)  with  histopathology  (4).
While visual nodule evaluation on morphological signs in
CT images is clinically useful, it is subject to variations in
imaging interpretation, and visual assessment may only be
able to identify limited imaging discriminators of nodules
(5,6).

Radiomics was introduced as the extraction and analysis
of large amounts of advanced quantitative imaging features
with high throughput from medical images obtained with
CT, positron emission tomography (PET) or  magnetic
resonance imaging (MRI) (7). Recent radiomics studies on
investigating pulmonary nodules have shown promising
performance for histological subtyping (8), gene expression
(9), malignancy prediction (10), posttreatment prognosis
(11)  and  so  on.  Little  work  however  was  reported  on
studying  GGNs  using  radomics-based  methods  for
outcome prediction (10).

In this study, we investigated radiomics imaging features,
clinical  risk factors and visually-assessed qualitative CT
imaging features in differentiating IPAs from non-IPAs
appearing as GGNs and developed a diagnostic nomogram
model based on statistically significant features identified
from these different sources of features.

Materials and methods

Study cohort

A radiologist retrospectively searched for individuals with
GGNs  identified  on  chest  CT  from  February  2014  to
November 2016, using the electronic medical records and
the radiology informatics system of the hospital with the
following steps: first, among inpatients in the Department
of  Thoracic Surgery,  we selected all  CT scans with the

keywords “GGO”, “GGN”, “part-solid nodule”, “non-solid
nodule”, “ground-glass opacity” and “ground-glass nodule”
in the reports with the surgically confirmed pathological
results  available.  A  total  of  660 patients  with  keywords
“GGO”, “GGN”, “part-solid nodule”, “non-solid nodule”,
“ground-glass  opacity”,  “ground-glass  nodule”  in  CT
reports and pathologically proven lesions were selected.
Then,  331  patients  with  CT scans  acquired  by  a  Dual
Source  CT  scanner  were  selected.  To  keep  uniform
acquisition  protocol  and  parameters,  121  patients  with
thin-section images (section thickness = 2 mm) were left.
Then, two expert radiologists reviewed all the CT scans
and excluded GGNs of lesions larger than 3 cm, leaving a
total  of 88 patients with 100 GGNs for further analysis
(Figure 1).  Discrepancies in interpretation between two
observers were resolved by a third radiologist for consensus
reading. Finally, 88 patients with 100 part-solid nodules
(33−78  years  old;  mean  age:  56.45±8.60  years)  were
enrolled in this study. There were 22 males (35−78 years
old; mean age: 53.46±9.81 years) and 66 females (33−77
years old; mean age: 56.56±10.02 years). Note that we used
a subset of 69 randomly selected nodules, out of the 100,
for model development (training cohort), while the rest 31
unseen cases were used as an independent cohort for model
testing (testing cohort). The Institutional Review Board
(IRB) of  the First  Affiliated Hospital  of  China Medical

 

Figure 1 Flowchart of study population. Numbers in parentheses
are the number of patients. CT, computed tomography.
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University approved this retrospective study.

CT imaging protocol

All patients received contrast-enhanced chest CT using the
same Dual Source CT scanner (Somatom Definition Flash,
Siemens Medical Solutions, Forchheim, Germany). The
acquisition parameters were as follows: 100 and 140 kV;
CARE  Dose  4D;  0.5  or  0.28  s  rotation  time;  detector
collimation, 128×0.5 mm; field of view, 350 mm × 350 mm;
and  matrix:  512×512.  After  routine  non-enhanced  CT,
arterial-phase contrast-enhanced CT was performed after
10−15 s  of  intravenous  administration  of  70−90 mL of
iodinated contrast material at a rate of 2.5−3.0 mL/s with a
pump injector (Tennessee-XD2003, Ulrich Medical, Ulm,
Germany). Contrast-enhanced CT was reconstructed with
a construction thickness of 2 mm, a reconstruction interval
of 2 mm, and a reconstruction kernel of D33f med smooth.
CT  scans  were  obtained  for  all  patients  in  the  supine
position at full inspiration.

Clinical risk factors and visually-assessed qualitative CT
imaging features

The first set of features is typical risk factors including age,
gender, family history and smoking history. The second set
of features is those visually-assessed qualitative CT imaging
features  that  are  used  in  current  clinical  diagnosis,
including  shape,  margin,  location,  lesion  size,  pleural
indentation,  dilated bronchioles,  vessel  dilatation,  solid
component size and solid component proportion. All those
risk factors and qualitative features were retrospectively

extracted from clinical reports.

Quantitative radiomic features and a radiomics model

The  third  set  of  features  is  hundreds  of  quantitative
radiomic features extracted from nodules. Nodules were
first  segmented  manually  by  radiologists,  by  drawing  a
region of interest (ROI) along the boundary of each nodule
on the CT images slice by slice until the entire nodule had
been  covered,  yielding  a  three-dimensional  nodule
segmentation. A total of 396 commonly reported radiomic
features (Figure 2),  including morphological and textual
structure descriptors, were computed automatically from
the  three-dimensional  nodule  volume,  using  the  A.K.
software (Analysis-Kinetics, GE Healthcare, USA).

Intra-  and  inter-reader  reproducibility  in  nodule
delineation

Radiomic features were computed from the nodule ROIs
manually  delineated by radiologists  in CT images.  The
delineation of ROIs may introduce reader variations. The
reader reproducibility of the ROI delineation was analyzed
on 15 randomly selected patients (10 IPA and 5 non-IPA
patients).  First,  two  radiologists  completed  the  ROI
delineation  on  15  patients  independently  without  any
information regarding the patients. Then, one radiologist
(reader 1)  repeated the ROI delineation after  one week
since  the  first  round  delineation,  following  the  same
procedure.  An  independent  samples  t-test  or  Kruskal-
Wallis H test, where appropriate, was used to assess the
differences between the computed radiomic features inside

 

Figure 2 Quantitative radiomic features used in the study.

Chinese Journal of Cancer Research, Vol 31, No 2 April 2019 331

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2019;31(2):329-338



the delineated ROI. The intra-reader (reader 1 twice) and
inter-reader (reader 1 vs.  reader 2) reproducibility were
evaluated by the intra- or inter-class correlation coefficients
(ICCs),  with  a  value  greater  than  0.75  indicating  an
acceptable agreement (12).

Statistical analysis and diagnostic/prediction modeling

We built three diagnostic/prediction models: a basis model,
a radiomics model and a nomogram model, as described in
the following. Area under the ROC curve (AUC) was used
to  assess  the  model  performance.  Z  test  was  used  to
compare the AUC among the three models.

The basis model was based on the clinical risk factors
and  visually-assessed  qualitative  CT  imaging  features.
Differences in each of these features between the IPAs and
the non-IPAs were compared via univariate analysis using
independent samples t-tests or the Kruskal-Wallis test as
appropriate. A multivariate analysis was performed by the
logistic regression model to build the basis model with the
significant  independent  variables  resulting  from  the
univariate analysis.

The radiomics model was based on selected radiomic
features alone. A univariate analysis, including a normality
test, a homogeneity of variance test and a Kruskal-Wallis
test,  was  performed  to  compare  the  differences  in  the
quantitative  radiomic  features  between  the  two  groups
(IPAs vs. non-IPAs) in the training cohort (the 69 patients
for model development). Feature reduction was performed
to remove features that were highly correlated with others
(that is, if |r| is equal to or greater than 0.90). Using the
remaining  features  after  feature  reduction,  logistic
regression analysis was used to build the radiomics model
to predict IPAs vs. non-IPAs. A radiomics score (denoted
by Rad-score) was calculated for each patient by linearly
combining the selected radiomic features weighted by each
respective coefficient of the logistic regression model.

The  nomogram model,  built  by  multivariate  logistic
regression analysis, was based on the combination of the
essential features selected/used in the basis model and the
radiomics  model.  To  evaluate  the  potential  clinical
diagnostic effects of the nomogram model, a decision curve
analysis was performed, which quantified the net benefits of
using such a model at different threshold probabilities (13).

All statistical analyses in this study were performed with
R software  (Version 3.3.3;  R Foundation for  Statistical
Computing, Vienna, Austria, http://www.Rproject.org). A
two-sided  P  value  of  less  than  0.05  was  considered
statistically significant.

Results

Basis model

With regards  to  the  clinical  risk  factors,  there  were  no
significant  differences  (P>0.05)  for  any of  those factors
between the IPAs and non-IPAs (Table 1). For qualitative
CT  imaging  features,  three  significant  features  were
identified:  the univariate  analysis  showed that  the IPAs
were  more  frequently  observed  with  greater  solid
component sizes (P=0.021 for training cohort; P=0.003 for
testing  cohort),  higher  solid  component  proportions
(P=0.029 for training cohort; P=0.003 for testing cohort),
and more pleural indentations (P=0.010 for training cohort;
P=0.011 for testing cohort) than the non-IPAs (Table 2).
The  basis  model  based  on  solely  the  three  significant
features, i.e., pleural indentation, solid component size and
solid  component  proportion,  showed an  AUC of  0.853
[95%  confidence  interval  (95%  CI):  0.698,  1.000]  in
distinguishing IPAs from non-IPAs appearing as GGNs
(Figure 3).

Radiomics model

The inter-reader ICC of the radiomic features between
reader 1 and reader 2 was 0.922. The intra-reader ICC for
reader 1 was 0.915. Therefore, all analyses were based on
the features extracted by reader 1. Out of the 396 radiomic
features, 107 were significantly different between the IPA
and non-IPA groups in univariate analysis. After feature
reduction,  three  features  (i.e.,  ClusterShade_angle45_

Table 1 Comparison of clinical  risk factors between IPAs and
non-IPAs

Characteristics
n (%)

P
IPAs Non-IPAs

Age (year)
( , range) 58±8 (42−78) 54±9 (33−74) 0.225

Gender 0.379

　Male 15 (28.3) 7 (20.0)

　Female 38 (71.7) 28 (80.0)

Family history 0.815

　Yes 21 (39.6) 13 (37.1)

　No 32 (60.4) 22 (62.9)

Smoking history 0.255

　Yes 11 (20.8) 4 (11.4)

　No 42 (79.2) 31 (88.6)

IPA, invasive pulmonary adenocarcinoma.
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offset7, sumEntropy, and Spherical Disproportion) were
retained and used to build the radiomics model. The Rad-
score, calculated as a single “overall” feature based on the
weighted combination of the three radiomic features and
corresponding  logistic  regression  coefficients,  was
marginally significant (P=0.040) between the IPAs [mean
Rad-score =1.037 (range: 0.326 to 2.587)] and non-IPAs
[mean Rad-score = −0.536 (range: −1.385 to 0.096)]. The
AUC of the radiomics model was 0.769 (95% CI: 0.601,
0.937)  (Figure  3)  in  discriminating  IPAs  and  non-IPAs
appearing as GGNs.

Nomogram model

Multiple logistic regression analysis (Table 3) showed that

the  three  qualitative  CT  imaging  features  [pleural
indentation (P=0.006), solid component size (P=0.045) and
solid  component  proportion  (P=0.020)]  and  the
quantitative Rad-score (P=0.046) were each significantly
associated  with  IPAs.  Their  adjusted  odds  ratios  were
7.189, 0.075, 194.786 and 2.016, respectively (Table 3). The
diagnostic nomogram model (Figure 4) based on these four
features showed an AUC of 0.903 (95% CI: 0.845, 0.975)
(Figure 3).

In the result of Z test, the diagnostic nomogram model
showed a significantly higher performance (AUC=0.903) in
differentiating IPAs from non-IPAs than either the basis
model  (AUC=0.853,  P=0.0009)  or  the  radiomics  model
(AUC=0.769, P<0.0001).

Table 2 Characteristics of visually-assessed qualitative CT imaging features between IPAs and non-IPAs both in training and testing
cohorts

Characteristics
Training cohort Testing cohort

IPAs Non-IPAs P IPAs Non-IPAs P

Lesion size (cm)
[median (25%, 75%)] 1.90 (1.30, 2.30) 1.50 (0.95, 2.13) 0.063 1.70 (1.50, 2.40) 1.05 (0.75, 1.93) 0.019

Solid component size (cm)
[median (25%, 75%)] 0.86 (0.37, 1.16) 0.45 (0, 0.72) 0.021 0.78 (0.47, 0.84) 0 (0, 0.58) 0.003

Solid component proportion
[median (25%, 75%)] 0.46 (0.27, 0.55) 0.29 (0, 0.48) 0.029 0.42 (0.24, 0.60) 0 (0, 0.28) 0.003

Shape [n (%)] 0.129 0.210

　Round 14 (35.90) 18 (60.00) 10 (58.82) 9 (64.29)

　Lobular 10 (25.64) 4 (13.33) 5 (29.41) 1 (7.14)

　Irregular 15 (38.46) 8 (26.67) 2 (11.76) 4 (28.57)

Lesion location [n (%)] 0.329 0.766

　Superior lobe 30 (76.92) 20 (66.67) 8 (47.06) 8 (57.14)

　Middle lobe 4 (10.26) 2 (6.67) 2 (11.76) 2 (14.29)

　Interior lobe 5 (12.82) 8 (26.67) 7 (41.18) 4 (28.57)

Margin [n (%)] 0.133 0.020

　Blurred 9 (23.08) 13 (43.33) 5 (29.41) 2 (14.29)

　Spiculation 13 (33.33) 5 (16.67) 7 (41.18) 1 (7.14)

　Smooth 17 (43.59) 12 (40.00) 5 (29.41) 11 (78.57)

Pleural indentation [n (%)] 0.010 0.011

　Yes 21 (53.85) 25 (83.33) 7 (41.18) 12 (85.71)

　No 18 (46.15) 5 (16.67) 10 (58.82) 2 (14.29)

Dilated bronchioles [n (%)] 0.217 0.409

　Yes 9 (23.08) 11 (36.67) 6 (35.29) 7 (50.00)

　No 30 (76.92) 19 (63.33) 11 (64.71) 7 (50.00)

Vessel dilatation [n (%)] 0.067 0.087

　Yes 3 (7.69) 7 (23.33) 1 (5.88) 4 (28.57)

　No 36 (92.31) 23 (76.67) 16 (94.12) 10 (71.43)

CT, computer tomography; IPA, invasive pulmonary adenocarcinoma.
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The decision curve analysis (Figure 5) indicated that the
nomogram model would be more diagnostically beneficial
in discriminating IPAs from non-IPAs, when the threshold
probability falls in the range of 30%−90%.

Discussion

In this study, we investigated regular clinical risk factors,
visually-assessed qualitative imaging features, and a large
set of quantitative radiomic features in differentiating IPAs
from non-IPAs using three models (basis model, radiomics
model and nomogram model). Our results showed that the
basis model outperforms the radiomics model and when
their  features  are  combined,  the  nomogram  model
performs better than either the basis or radiomics model.
This finding indicates that radiomic features may provide
additional information over the visually-assessed qualitative

features  for  IPA  diagnosis.  Similar  findings  about  the
complementary  effects  of  radiomic  features  were  also
reported in previous work (10).  Based on the improved
AUC performance, the nomogram model we built in this
work may facilitate preoperative CT imaging interpretation
for identifying IPAs from non-IPAs appearing as GGNs,
and  ultimately  help  better  inform  clinical  treatment
management of the disease.

The application of radiomic feature analysis has gained
increased attention in recent years, as it may be suitable for
assessing phenotypic heterogeneity of pulmonary nodules
(14-17).  Genomic heterogeneity within the volume of a
pulmonary nodule is expected to be captured by phenotypic
radiomics  data  such  as  the  texture  imaging  features,
enabling statistical  evaluation of imaging data to obtain
diagnostic,  predicative  or  prognostic  value  (4,18).
Reproducibility of quantitative radiomic features is critical
for  clinical/translational  applications.  While  the
calculations of all our radiomic features are automated, the
segmentation of nodules was done manually by radiologists,
which may introduce reader variations. Realizing that, we
performed  reproducibility  experiments  where  both  the
intra-  and  inter-reader  reproducibility  of  the  ROI
delineation is acceptable, providing additional robustness to
the automated quantification of the radiomic features.

The significance of the three qualitative features, pleural
indentations, solid component sizes and solid component
proportions, is associated with clinical evaluations (19). The
invasive components of the tumor, fibrotic proliferation or
collapsed  alveolar  space  often  appear  as  the  solid
components of GGNs in CT images (20,21). There is a
strong  association  between  the  diameter  of  the  solid
component on CT images and the invasive component as
revealed by pathology (22). Moreover, the solid component
size is a significant factor for prognosis (23) and DFS (24).
In addition, the solid component proportion was also found
to be a significant independent differentiator of IPAs from
non-IPAs.  A  solid  component  proportion  of  ≥50%  is

Table 3 Multivariate logistic regression analysis of four significant features

Intercept and variable β OR (95% CI) Ρ
Intercept −0.729 0.482 (0.191, 1.220) 0.125

Rad-score 0.701 2.016 (1.012, 4.020) 0.046

Pleural indentation 1.973 7.189 (1.750, 29.500) 0.006

Solid component size −2.590 0.075 (0.006, 0.941) 0.045

Solid component proportion 5.272 194.786 (2.290, 1,660.000) 0.020

OR, odds ratio; 95% CI, 95% confidence interval.

 

Figure 3 Receiver operating characteristic (ROC) curves of the
basis model [area under the ROC curve (AUC)=0.853], radiomics
model (AUC=0.769), and nomogram model (AUC=0.903). The
nomogram model showed a significantly higher performance in
differentiating invasive pulmonary adenocarcinomas (IPAs) from
non-IPAs than either the basis model (P=0.0009) or the radiomics
model (P<0.0001).
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considered the cutoff  value for invasiveness potential  in
pathology (3) and in lesions smaller than 3 cm with solid
component  proportions  >50%,  the  rate  of  lymph node
metastasis  ranges  from  21%  to  26%  (25-27).  Pleural
indentation on pulmonary CT images, representing fibrotic
strands around the tumor as a result of central fibrosis and
surrounding tissue contraction, is often found in malignant
lesions (58%−93%) (28-30). In addition, the frequency of
pleural  indentation  is  significantly  higher  in  malignant
GGNs  than  in  benign  GGNs  (70.5%  vs .  4.8%,
respectively),  as  reported by  Fan et  al  (31).  It  has  been

inferred  that  this  feature  may be  associated  with  intra-
tumoral  desmoplastic  reactions  (32).  Nambu et  al.  also
hypothesized  that  this  may  be  attributed  to  the  strong
contraction of the solid component (33). It should be noted
that in our study, the ROIs were delineated carefully on the
nodule boundary without involving the pleural condition.
Therefore,  effective  information  characterized  by  the
pleural conditions may not be completely captured by the
radiomic features and thus the radiomics model. This may
partly  explain the complementary nature of  the finally-
selected  significant  qualitative  CT  features  (pleural
retractions,  solid component sizes and solid component
proportions) and quantitative radiomic features (i.e., Rad-
scores) in the nomogram model. It therefore makes sense
for us to integrate these four significant features to develop
the nomogram model and the model showed an enhanced
performance.

This  study  had  several  limitations.  First,  this  is  a
retrospective single-institutional  study with a  moderate
sample size of study cohort. We had to exclude a larger
number of ineligible patients in order to largely reduce the
potential confounding effects caused by difference in CT
scanner, imaging protocol and lesion size. In the previous
study, Mackin et al. found that the inter-scanner differences
should  be  considered  in  assessing  radiomic  feature
variability (34). Therefore, all the CT images included in
our study were generated by the same CT scanner and the
same acquisition protocol. Our study therefore represents a
high scientific rigor in data analysis. We acknowledge that
future larger studies are warranted to examine the findings

 

Figure 4 Diagnostic nomogram model based on the four significant features, Rad-score, pleural indentation, solid component size and solid
component proportion.

 

Figure 5 Decision curve analysis of diagnostic nomogram model.
The gray line represents the assumption that all  patients have
invasive  pulmonary  adenocarcinomas  (IPAs).  The  black  line
represents the assumption that no patient has an IPA. The red line
represents  the  net  benefit  of  using  the  nomogram  model  to
diagnose/predict IPAs.

Chinese Journal of Cancer Research, Vol 31, No 2 April 2019 335

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2019;31(2):329-338



of  our  study  in  other  similar  patient  cohorts.  Second,
nodule segmentation was done manually by radiologists,
which  is  time-consuming  and  may  introduce  reader
variations. Accurate and robust fully-automated computer
algorithms  for  nodule  segmentation  are  desired  but
currently  not  available  to  us.  We  believe  that  further
development of such algorithms is needed in future work.
Finally, the three qualitative imaging features included in
the nomogram model are still subject to reader variations
because they are assessed visually by radiologists. If more
descriptive  quantitative  radiomic  features  can  be
designed/implemented to capture the essential information
underlying those qualitative features, it may be possible to
build an updated nomogram model using all quantitative
radiomic features. This is one of the future works that we
are going to explore.

Conclusions

We investigated quantitative radiomic imaging features in
differentiating IPAs from non-IPAs appearing as GGNs in
CT images. In our study cohort, we showed that radiomic
features provide additional information over three visually-
assessed  qualitative  CT  imaging  features.  We  built  a
diagnostic  nomogram model  by integrating all  of  these
significant  features  and the model  yielded an improved
AUC than models using radiomics or qualitative features
alone. While such diagnosis model may facilitate clinical
applications  in  preoperative  strategy  planning,  further
evaluation of our findings and the models is required in
future work.
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