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Abstract: Studies of the human microbiome have elucidated an array of complex interactions between
prokaryotes and their hosts. However, precise bacterial pathogen–cancer relationships remain largely
elusive, although several bacteria, particularly those establishing persistent intra-cellular infections,
like mycoplasmas, can alter host cell cycles, affect apoptotic pathways, and stimulate the production
of inflammatory substances linked to DNA damage, thus potentially promoting abnormal cell growth
and transformation. Consistent with this idea, in vivo experiments in several chemically induced or
genetically deficient mouse models showed that germ-free conditions reduce colonic tumor formation.
We demonstrate that mycoplasma DnaK, a chaperone protein belonging to the Heath shock protein
(Hsp)-70 family, binds Poly-(ADP-ribose) Polymerase (PARP)-1, a protein that plays a critical role in
the pathways involved in recognition of DNA damage and repair, and reduces its catalytic activity. It
also binds USP10, a key p53 regulator, reducing p53 stability and anti-cancer functions. Finally, we
showed that bystander, uninfected cells take up exogenous DnaK—suggesting a possible paracrine
function in promoting cellular transformation, over and above direct mycoplasma infection. We
propose that mycoplasmas, and perhaps certain other bacteria with closely related DnaK, may have
oncogenic activity, mediated through the inhibition of DNA repair and p53 functions, and may be
involved in the initiation of some cancers but not necessarily involved nor necessarily even be present
in later stages.
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1. Mycoplasma

Mycoplasmas are the smallest and simplest self-replicating bacteria, ranging from 0.1 to 0.3 µm in
diameter and up to 200 µm in length. The mycoplasma cell contains the essential organelles needed for
growth and replication: plasma membrane, ribosomes, and a genome consisting of a double-stranded
circular DNA molecule. Unlike all other prokaryotes, the mycoplasmas have no cell walls, and they
are consequently placed in the Mollicutes class (mollis= soft; cutis= skin) [1]. The plasma membrane is
composed of approximately two-thirds protein and one-third lipid. Membrane proteins, glycolipids
and lipoglycans exposed on the cell surface are the major antigenic determinants in mycoplasmas [2–5].
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Mycoplasma species are widespread in nature: they are parasites of humans, animals, plants and
arthropods. They usually exhibit organ and tissue specificity, and their primary localizations are the
mucous surface of the respiratory and urogenital tracts, the eyes, the alimentary canal, the mammary
glands and the joints [6]. Besides residing in contact with the cellular membrane, some mycoplasma
species can invade the cells and become intracellular residents [7,8]. Because mycoplasmas lack cell
walls, they can invade the host cells by interacting with the membrane of the host and fuse together the
two membranes. Membrane fusion alters the composition and permeability of the host cell membrane
and enable the introduction of the mycoplasma’s hydrolytic enzymes into the host cell, causing severe
damages [9,10].

Although some mycoplasmas belong to the normal microbiota, many species are pathogens that can
cause various diseases either asymptomatic or chronic. Seven species of mycoplasma (M. pneumoniae,
M. urealyticum, M. genitalium, M. hominis, M. fermentans, M. penetrans and M. pirum) are mainly related
to human pathologies, such as acute respiratory illness, genitourinary tract infections, joint infections
and neurologic disorders [11–16]. In fact, mycoplasmas can elicit strong host immune responses due to
the presence of lipoproteins on their membrane able to trigger a Toll-like receptor-mediated response,
activate macrophages, induce cytokine production and lymphocyte proliferation [17–20]. Furthermore,
because of the presence of antigenic variability systems, mycoplasmas are able to rapidly change the
composition of the major surface protein antigens and consequently escape recognition by the immune
mechanisms of the host [21–23].

2. Mycoplasma and COPD

Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of death in the United
States, with more than 130,000 deaths annually. Worldwide, more than 3 million people die annually
of COPD, mostly in middle- and low-income regions. Almost 15 million people have been diagnosed
with COPD in the US alone, but millions more may have the disease without even knowing it.
COPD causes serious long-term disability and early death. At this point, there is no cure, and the
number of people dying from COPD is growing. The main cause of COPD in developed countries
is smoking [24], while in developing countries COPD is also frequently seen in patients exposed to
environmental air-polluting agents (for example burning fuel for cooking). COPD is characterized by
chronic inflammation leading to progressive lung damage, which ultimately contributes to irreversible
airflow obstruction [25]. An acute exacerbation of COPD is defined as increased shortness of breath and
sputum production, a change in the color of the sputum from clear to green or yellow, or an increase
in cough. Furthermore, the oxidant burden in the lungs of COPD patients, caused by an imbalance
between the generation of free radicals and the antioxidant defense systems, increases the release of
multiple inflammatory mediators with further reduction in responsiveness during anti-inflammatory
treatments [26]. Dysbiosis is observed in lungs of patients of COPD, in that the composition of lungs
microbiota is less diverse than the one observed in healthy persons, and has a tendency to be restricted
to phyla comprising potentially pathogenic microorganism, including M. pneumoniae [24,27,28], also
associated with acute exacerbation [29,30]. Some of the mechanisms by which M. pneumoniae could
enhance the negative effects of tobacco products in COPD patients is by increasing oxidative stress [31],
inflammation status and hypoxia-related factors, such as HIF-1α [32]. Quitting smoking in combination
with anti-muscarinic bronchodilators resulted in an improvement of lung function and respiratory
symptoms in mild COPD patients and it could be interesting to determine whether this would also
result in a reduction in dysbiosis and the presence of M. pneumoniae [24]. An increased risk of
developing lung cancer was observed in smokers with airflow obstructions, particularly of squamous
histological subtype in patients diagnosed with non-small cell lung carcinoma, compared to smokers
with normal lung functions [33–35], and it has been shown a prognostic effect of hypoxia (measured
through expression of HIF-1α) with COPD and lung cancer [36].
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3. Mycoplasma and Cancer

Mycoplasmas are part of the human microbiota: they are commensals, but they have also
been associated with tumorigenesis. The correlation between mycoplasmas and cancer remains
unclear [37,38], but epidemiological studies, in vitro experiments and genome sequence analysis
indicate a close involvement of mycoplasmas in cellular transformation and cancer progression [39].

Several studies in vitro using bronchial epithelial cells [40], hepatocytes [41], oral tissues [42],
human prostate cells [43,44] and cervical cells [45] indicate that the presence of mycoplasma may
facilitate tumorigenesis by promoting cellular transformation [46,47]. In addition, experimental data
indicates that mycoplasmas infection cause chromosomal changes, instability and cell transformations
in vitro through progressive chromosomal loss and translocations [45,48–50]. It has been demonstrated
that M. fermentans, M. penetrans and M. hyorhinis are able to induce the accumulation of chromosomal
abnormalities and also phenotypic changes of the transformed cells [45,49,50]. In more detail—during
the long-term infection of mouse embryo fibroblasts with M. fermentans or M. penetrans spontaneous
cellular transformation and overexpression of the H-Ras and c-myc proto-oncogenes have been
shown [51]. Infection with M. fermentans, arginini and hominis reduced the activity of p53 and induced
the constitutive activation of the NF-κB transcription factor in mouse 3T3 cells [52]. The incorrect
regulation of NF-κB has been in fact linked to cancer, inflammatory and autoimmune diseases, viral
infection, and improper immune development [17,53–55]. Aberrant DNA methylation has also been
observed in cancer [56]. M. hyorhinis encodes DNA-(cytosine-5)-methyltransferase enzymes that
target CpG dinucleotides, establishing the methylation patterns of the bacterial genomes [57]. When
expressed in human cells, they are able to translocate into the nucleus and create abnormal methylation
patterns of the host cell DNA [57–61]. These epigenetics changes can contribute and lead to cancer
progression by stimulating pro-oncogenic pathways. M. fermentans, M. hominis and M. penetrans
have also been shown to cause the transformation of human lung cells and mouse myeloid cells and
fibroblasts by inducing the bone morphogenetic protein 2 (BMP-2) [62], that is considered a marker for
lung cancer when highly expressed and is also associated with poor patient survival [63].

More recently, it has been shown that M. hyorhinis induces the motility of gastric cancer cells
by activating the Wnt/βcatenin signaling pathway through the membrane protein p37 [64], that has
also been shown to significantly correlate with high vascular invasion and associated with poor
disease-free survival of Hepatocellular carcinoma patients. In vitro studies suggest that M hyorhinis
infection promotes tumor progression in HCC patients, by increasing the migratory capacity of HCC
cells, through the interaction of p37 with epithelial cell adhesion molecule (EpCAM) [65]. The p37
protein alone may be considered sufficient to increase invasiveness and metastases of different cancer
cells [41,66,67].

Many in vitro studies support the ability of some mycoplasmas to induce cancer transformation
and many pro-cancer mechanisms have been investigated in the last years: from the induction of
genetic instability [48,49], to alterations in metabolism [68] and changes in the expression of tumor
suppressor or oncogenes [46,51,52,69]. However, no carcinogenic roles for any mycoplasma have been
demonstrated in vivo. Several specimens from patients (infectious tissues, neoplastic tissues and body
fluids) have been analyzed and mycoplasma has been isolated and detected in those samples without
any formal demonstration of causality. In particular, mycoplasmas have been detected so far in many
tumor tissues (precancerous lesions and malignant tissues) from patients with gastric, esophageal,
colon, lung, breast, glioma, renal, ovarian, cervical and prostate cancers [67,70–73].

4. Bacterial DnaK

To cope with different stressful conditions and maintain the proper proteostasis, eukaryotic
organisms have a redundant system of chaperone proteins [74]. One of these families (Hsp70)
is comprised of slightly different proteins [75], and the over-expression of some members of the
Hsp70 family increases the transformation of several human cell types [76,77]. On the other hand,
suppression of Hsp70 expression by anti-sense Hsp70 cDNA inhibits tumor cell proliferation and
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induces apoptosis [78]. Though with some differences in amino acid sequences among the several
bacteria species, the bacterial chaperone system is mainly organized around the DnaK protein
(corresponding to the eukaryotic Hsp70), thus representing a central hub in prokaryotic protein
interaction networks [79].

Chaperone activity of Hsp70/DnaK is controlled by cycles of ATP binding and hydrolysis [80].
DnaK itself is a weak ATPase, while direct interaction with the co-chaperone DNAJ proteins (members
of the HSP40 family) [81,82] greatly increases ATPase activity, promotes binding with target proteins
and accelerates protein-folding activity of Hsp70/DnaK [83]. There are three types of co-chaperone
proteins comprising the DNAJ family: DNAJA (type I), DNAJB (type II) and DNAJC (type III) based
on the presence or absence of conserved domains defined by the canonical DNAJ of E. coli [84]. It has
been shown that specific DNAJ may play an important role in influencing cancer development and
spread, possibly due to their role as co-chaperones influencing folding of various oncogenes or tumor
suppressors [85–102].

5. Mycoplasma DnaK Interferes with Important Anti-cancer Cellular Pathways and Is Taken up
by Bystander Cells.

We isolated and characterized a strain of human M. fermentans (MF-I) able to induce lymphoma in
a Severe Combined Immuno-Deficient (SCID) mouse model [103–105], similar to a previously described
lymphomagenesis dependent upon reduced p53 activity [106]. Mycoplasma was abundantly detected
early in infected mice, but only low copy numbers of mycoplasma DnaK DNA sequences were found
in primary and secondary tumors, suggesting a “hit and run/hide” mechanism of transformation, in
which the critical events have occurred previous to cancer detection [107]. We demonstrated that this
mycoplasma’s DnaK binds to human USP10 (ubiquitin carboxyl-terminal hydrolase 10, a regulator of
p53 stability), reducing p53 stability and anti-cancer functions, potentially increasing the likelihood of
DNA mutations and consequent malignant transformation [107]. P53 is a major tumor suppressor, often
called “the guardian of the genome” for its multiple anti-oncogenic activities. By tightly coordinating
cell cycle and apoptotic responses, p53 ensures that DNA damage is properly repaired, or that the
damaged cell is removed upon engagement of the apoptotic pathway. P53 is mutated in about 50% of
human cancers [108–110], and a mutated p53 allele can lead to Li-Fraumeni syndrome, characterized
by development of several types of cancers [111]. In animal models, p53-/- mice develop cancers
(mainly lymphomas and sarcomas) with nearly 100% penetrance [112]. Several proteins regulate p53,
of which USP10 (ubiquitin carboxyl-terminal hydrolase protein-10) is one of the most important. By
removing conjugated ubiquitin from target proteins, including p53, USP10 increases p53 stability
in unstressed cells. This process is very important during DNA-damage response, in which USP10
translocates to the nucleus and deubiquitinates p53, stabilizing it and thus regulating its response to
DNA damage [113–115]. It is thus clear that the reduction in USP10 activity caused by mycoplasma
DnaK can have profound negative effects on the anti-cancer functions of p53.

In addition, we show that mycoplasma DnaK reduced PARylation activity of PARP1 following
DNA damage (Figure 1). PARP 1 is one of the most studied members of the family of PARP proteins [116].
PARP1 is involved in the recognition and subsequent repair of single and double-strand breaks in
DNA [117–119]. Following interaction with forms of damaged DNA, PARP1 activity is increased
dramatically, resulting in PARylation of several proteins, including itself, histones, topoisomerase 1
(TOP1), DNA-dependent protein kinase (DNA-PK) and others [120], and in recruitment of single-strand
break repair (SSBR)/base-excision repair (BER) factors to the damaged site [121]. Failure to properly
repair DNA damage usually results in apoptosis, thus avoiding accumulation of DNA damage that
could ultimately lead to cellular transformation. Mice lacking PARP1 exhibit high levels of sister
chromatid exchange [122,123], increased chromosomal aberrations, including fusions, breaks, and
telomere shortening [124], and double-mutant DNA-PK/PARP1-deficient mice develop a high frequency
of T-cell lymphomas [125]. Following transfection with an expression vector carrying MF-I1 DnaK
under the CMV promoter (see also [107], cells were treated at different time-points with H2O2, which
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causes DNA damage and promotes an increase in PARP activity. Protein PARylation appears as a
smear of variable intensity, which in turn depends on the activity of PARP. We measured PARylation
of proteins >150 KDa molecular weight (MW), and between 100 and 150 KDa and we observed two
distinct patterns of PARylation in transfected cells. As represented in Fig 1B (left), PARylation of
proteins >150 KDa in the control, the not-transfected cells reached a peak at 20 min post-treatment,
and then rapidly decreased. This peak was high and delayed in cells transfected with the empty
vector, indicating an effect of the transfection procedure, of the vector, or both. However, in the
presence of the vector expressing MF-DnaK, PARylation of proteins >150 KDa MW was effectively
abrogated (Figure 1B left). We observed a less pronounced difference in the PARylation of proteins
between 100-150 KDa in cells transfected with the empty vector compared with the vector expressing
MF-I1 DnaK (Figure 1B, right). Our data would indicate that the presence of DnaK greatly reduces
the PARylation of certain proteins of very high MW (>150 KDa), while it seems to only marginally
affect the PARylation of proteins between 100–150 KDa. This WB-based assay did not allow us to
measure the PARylation of proteins <100 KDa, even though we previously demonstrated a reduction in
histones PARylation in an in vitro assay [107]. We are currently investigating the underlying molecular
mechanisms of this reduction and its relevance in vivo.

Int. J. Mol. Sci. 2019, 20, x  5 of 16 

 

KDa and we observed two distinct patterns of PARylation in transfected cells. As represented in Fig 

1B (left), PARylation of proteins >150 KDa in the control, the not‐transfected cells reached a peak at 

20  min  post‐treatment,  and  then  rapidly  decreased.  This  peak  was  high  and  delayed  in  cells 

transfected with the empty vector, indicating an effect of the transfection procedure, of the vector, or 

both. However, in the presence of the vector expressing MF‐DnaK, PARylation of proteins >150 KDa 

MW was effectively abrogated  (Figure 1B  left). We observed a  less pronounced difference  in  the 

PARylation of proteins between 100‐150 KDa in cells transfected with the empty vector compared 

with the vector expressing MF‐I1 DnaK (Figure 1B, right). Our data would indicate that the presence 

of DnaK greatly reduces the PARylation of certain proteins of very high MW (>150 KDa), while it 

seems to only marginally affect the PARylation of proteins between 100–150 KDa. This WB‐based 

assay did not allow us to measure the PARylation of proteins <100 KDa, even though we previously 

demonstrated  a  reduction  in  histones  PARylation  in  an  in  vitro  assay  [107]. We  are  currently 

investigating the underlying molecular mechanisms of this reduction and its relevance in vivo. 

(A) 

(B) 

Figure  1. DnaK  reduces PARylation  in HCT116  cells.  Following  transfection, HCT116  cells were 

treated with H2O2 and collected at the indicated time points. Cells lysates were then subjected to SDS‐

PAGE 6% and protein parylation was detected by Western blot, using a specific anti‐PAR antibody. 

MW  are  indicated.  (A). Western blot  analysis of HCT‐116  cells.  (B). Quantification of PARylated 

proteins. 

It should be noted that there are about 106 PARP1 molecules [126–128] and about 104 molecules 

of p53 per eukaryotic cell (http://book.bionumbers.org/what‐are‐the‐concentrations‐of‐cytoskeletal‐

molecules/). On  the  other  hand,  the  number  of DnaK molecules measured  in  a  single  bacterial 

Figure 1. DnaK reduces PARylation in HCT116 cells. Following transfection, HCT116 cells were treated
with H2O2 and collected at the indicated time points. Cells lysates were then subjected to SDS-PAGE
6% and protein parylation was detected by Western blot, using a specific anti-PAR antibody. MW are
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It should be noted that there are about 106 PARP1 molecules [126–128] and about 104 molecules
of p53 per eukaryotic cell (http://book.bionumbers.org/what-are-the-concentrations-of-cytoskeletal-
molecules/). On the other hand, the number of DnaK molecules measured in a single bacterial
microorganism varies from 4x104 to 1x105, relative to its stress-induced status [129]. It thus appears
that, under the proper stress-induced conditions, a single bacterium is able to produce enough DnaK
molecules to severely affect the number of PARP1 and p53 molecules available to properly perform
their DNA-repair and anti-cancer functions. For this reason, we believe that our data obtained by
transfection experiments recapitulate what may be happening in vivo, i.e., that in cells where the DnaK
is present, PARP1 and p53 activities will be reduced, increasing the likelihood of DNA instability and
consequent malignant transformation.

Bacteria can translocate proteins into eukaryotic cells either by attaching to the outside of
the cellular membrane or by invading the cell [130,131]. In addition, prokaryotic and eukaryotic
membrane-localized Hsp70 proteins may be released into the surrounding microenvironment and
then translocate into the cytoplasm of nearby cells [132–136]. Using confocal microscopy, we were able
to visualize and demonstrate that bystander, uninfected cells take up exogenous DnaK, suggesting a
possible paracrine function in promoting cellular transformation, over and above direct mycoplasma
infection (Figure 2A, B). Insets present a 3D assembly of the exogenous DnaK uptake by PC3 and
HeLa cells (Figure 2A,B). Through immunoprecipitation studies, we previously demonstrated that
mycoplasma DnaK is able to bind human DNAJ1A1 [107]. This could indeed indicate that, once in the
intracellular compartments—either because released by invading bacteria or taken up by uninfected
cells—some bacterial DnaKs may become functionally active by binding to the cellular co-chaperone
DNAJA1. It is not clear at the moment what may be the extent of this exploitation, i.e., whether other
DnaKs have the same ability, or whether other co-chaperones may be involved.

Phylogenetic analysis showed that certain mycoplasmas, H. pylori and F. nucleatum have closely
related DnaKs [107]. Definitive establishment of the causal correlation between H. pylori and
gastric cancer provided the first demonstration that bacteria can cause cancer [137], and recent
examples of studies in human patients highlighted an association between F. nucleatum and colorectal
cancer [138–144]. Based on our data, it is tempting to speculate that a potential common mechanism
could be involved in cellular transformation, where the DnaK of certain bacteria would interfere with
pathways responsible for DNA repair and programmed cell death, with the consequent accumulation
of mutations and a greatly increased chance of cellular transformation (Figure 3). However, additional
experiments are still needed to support this hypothesis.

http://book.bionumbers.org/what-are-the-concentrations-of-cytoskeletal-molecules/
http://book.bionumbers.org/what-are-the-concentrations-of-cytoskeletal-molecules/
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Figure 2. Intracellular uptake of exogenous DnaK-V5 by mycoplasma-free in PC-3 (A) and in HeLa
cells (B). Confocal images of exogenous DnaK-V5 protein of M. fermentans in cells treated or not
treated with DnaK-V5 protein. The figures show the collected Z-stacks of the corresponding gallery of
images, each presenting a 0.5-µm-thick slide. A mouse monoclonal antibody, anti-V5, was used for
primary labeling, and a FITC fluoresce-labeled polyclonal rabbit anti-mouse antibody was used for
secondary labeling. Arrows indicates protein localization. Negative control cells, treated with primary
and secondary antibodies alone without DnaK-V5 protein, are represented at the bottom of each figure.
Insets in the upper right corners of A and B show a corresponding constructed 3D presentation of
the protein uptake. Materials and Method for Figure 2, we followed the protocol described in [66] to
perform the experiments described. Cell lines were obtained from the ATCC.
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6. Conclusions

Several different bacteria have been recently associated with the origin of some human cancers,
particularly those capable of establishing persistent intracellular infection, affecting host cell cycles
and apoptotic pathways, and stimulating the production of inflammatory substances linked to
DNA damage, thus potentially promoting DNA mutations and abnormal cell growth. The specific
mechanism(s) whereby bacteria transform host cells are poorly understood and precise pathogen-cancer
relationships remain largely elusive, except in the case of H. pylori, where a direct causal link has
been demonstrated and a p53-related molecular mechanism implicated in cellular transformation
has been described [137,145,146]. Based on our data, we propose that mycoplasmas—and perhaps
certain other bacteria with closely related DnaK sequences and structure—have oncogenic potential
mediated through the DnaK-dependent inhibition of DNA repair mechanisms and p53 function. DnaK
could act in concert with some external factors—like smoking—previously shown to hamper the
p53-p21 axis-dependent pathways [147]. The presence of some DnaKs would thus prevent the proper
coordinated response that the cell engages to repair the DNA lesion following damage. This failure
would allow the mutation to be fixed and transmitted along the cellular progeny. After a number of
mutations occur, the cell would then transform. Mycoplasmas and certain other bacteria with similar
DnaK may then be involved in the initiation of some cancers but not necessarily involved nor necessarily
even be present in later stages. It is clearly of biological interest and potential therapeutic relevance
to verify these findings in broader studies to understand the physical basis and the mechanism(s)
responsible for reduced activities and levels of these critical cellular pathways. These studies may
ultimately provide new preventive, diagnostic and therapeutic opportunities.

7. Materials and Methods

7.1. Cloning of M. fermentans MF-I1 DnaK.

The DnaK gene was synthesized at a commercial facility (Blue Heron Biotech, Bothell, WA).
The nucleotide sequence was deduced from the genome sequence of M. fermentans. (MF-I1 strain)
(ATFG00000000). Two tryptophan codons in the Mycoplasma sequence that are read as stop codon in
eukaryotic cells were replaced by two tryptophan-codifying codons (G->A in positions 613 and 634).
The TAG stop codon of the DnaK gene was deleted to make a fusion protein with the V5-(His)5 tag in
the vector and cloned into the pcDNA 3.1 Directional/V5-His TOPO vector. After selection, clones were
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screened for the presence of the DnaK insert and the insert was sequenced to verify proper nucleotide
composition [107]. DnaK is under the CMV promoter and it is expressed in HCT116 cells [107].

7.2. Expression and Purification of M. fermentans MF-I1 DnaK

Recombinant DnaK-V5 was obtained as previously described [107] briefly, MF-I1 DnaK sequence
was inserted into a cloning vector, followed by the transformation and expression of the protein,
subculture into TB/LB with Kanamycin, fractionation and purification (Biomatik USA, Wilmington, DE).
After purification, the protein was extensively dialyzed against PBS1X, pH 7.4. Coomassie blue-stained
SDS-PAGE (>85%) was used to determine purity. Aliquots of the protein were kept at −80 ◦C after
reconstitution. Particular care was taken to avoid frequent freeze-thaws.

7.3. Transfection Assay

HCT116 cells (ATCC) were plated in 6-well plates at concentrations of 150,000 cells/well. After 24
h, cells were transfected with an expression vector containing M. fermentans MF-I1 DnaK. After about
32 h, cells were treated with H2O2 (750 µM) for the indicated time. Cells were then harvested, lysed in
cell lysis buffer in the presence of protease inhibitors, subjected to SDS-PAGE 6%, and analyzed by
Western blot. Anti-PAR monoclonal antibody (10H) was from Millipore Sigma. MW are indicated.

7.4. Quantification of Protein PARylation

Following developing with BioRad (ChemiDoc Imaging System), digital images were analyzed
with ImageJ for pixel quantitation representing the PARylation of proteins >150 KDa or between
100–150 KDa. The data are expressed as percentage of control, not transfected cells treated for 20 min.

7.5. Confocal Microscopy Assay

Cells (PC3 or HeLA) were treated with DnaK-V5 protein. A mouse monoclonal antibody, anti-V5,
was used for primary labeling, and a FITC fluoresce-labeled antibody was used for secondary labeling.
Control samples have been stained with the same conditions described above in the absence of DnaK-V5.
Confocal images of cell-associated fluorescence were acquired on Zeiss LSM800 confocal system (Carl
Zeiss Microscopy, Germany). Zen Blue software was used to generate original images and Z-stacking
option (1-micron size of sample slices) was utilized in order to achieve better information about
mapping the protein areas of interest in three dimensions. All the parameters used in fluorescence
microscopy were consistent in each experiment, including the laser excitation power, detector and
offset gain.
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