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Cerebrum, liver, and muscle 
regulatory networks uncover 
maternal nutrition effects 
in developmental programming 
of beef cattle during early 
pregnancy
Wellison J. S. Diniz1*, Matthew S. Crouse2, Robert A. Cushman2, Kyle J. McLean3, 
Joel S. Caton1, Carl R. Dahlen1, Lawrence P. Reynolds1 & Alison K. Ward1

The molecular basis underlying fetal programming in response to maternal nutrition remains unclear. 
Herein, we investigated the regulatory relationships between genes in fetal cerebrum, liver, and 
muscle tissues to shed light on the putative mechanisms that underlie the effects of early maternal 
nutrient restriction on bovine developmental programming. To this end, cerebrum, liver, and muscle 
gene expression were measured with RNA-Seq in 14 fetuses collected on day 50 of gestation from 
dams fed a diet initiated at breeding to either achieve 60% (RES, n = 7) or 100% (CON, n = 7) of 
energy requirements. To build a tissue-to-tissue gene network, we prioritized tissue-specific genes, 
transcription factors, and differentially expressed genes. Furthermore, we built condition-specific 
networks to identify differentially co-expressed or connected genes. Nutrient restriction led to 
differential tissue regulation between the treatments. Myogenic factors differentially regulated by 
ZBTB33 and ZNF131 may negatively affect myogenesis. Additionally, nutrient-sensing pathways, such 
as mTOR and PI3K/Akt, were affected by gene expression changes in response to nutrient restriction. 
By unveiling the network properties, we identified major regulators driving gene expression. However, 
further research is still needed to determine the impact of early maternal nutrition and strategic 
supplementation on pre- and post-natal performance.

The relevance of optimal maternal nutrient supply in the periconception period and during pregnancy has 
received close attention due to growing evidence showing its impact on offspring development1–3. Imbalance 
in the availability of uterine-derived histotroph4 as well as placental nutrient supply, either by overfeeding or 
underfeeding, leads the fetus to physiological and metabolic changes with long-term consequences5–7. Nutritional 
insults affect energy partitioning among metabolically active target tissues, such as the liver and muscle8, affecting 
economic traits such as lactation, reproduction, meat quality, body composition, and carcass weight5,9,10. These 
adverse long-term consequences could decrease the livestock industry’s profitability as the negative performance 
may be epigenetically inherited across generations11.

The brain, liver, and muscle tissues have different priorities in nutrient partitioning when limited resources are 
available, affecting their development and functionality8,12. The liver plays a key role in body energy metabolism13, 
whereas the brain, by regulating liver metabolism, prioritizes its own glucose needs over those of other tissues14. 
Thus, with restricted energy availability, more glucose is allocated for the functioning of the central nervous 
system14, potentially impairing muscle development and reducing muscle mass12. Reduced number of myofib-
ers and liver sizes have been reported in nutrient restricted sheep fetuses and adults, respectively15,16. Further-
more, intrauterine growth restricted bovine fetuses showed increased brain weight as a percentage of fetal body 
weight in response to early maternal undernutrition6. Altogether, the nutritional regulation of fetal programming 
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underlies a complex genomic regulatory network that modulates gene expression and leads to changes in tissue 
structure and function2,3,8. Differences in gene expression patterns and regulation of epigenetic mechanisms 
were reported as underlying the tissue-specific metabolic changes observed in nutrient restricted offspring1,15–17.

Previously, our group showed that the exposure of pregnant cows to a nutritional insult in early pregnancy 
changed fetal liver, cerebrum, and muscle gene expression profiles, suggesting a possible compensatory growth 
in response to reduced nutrient availability17. Likewise, candidate genes involved with myogenesis, muscle dif-
ferentiation, and hepatic metabolism were reported as differentially expressed as a consequence of maternal 
nutrition1,15,18. Despite the knowledge provided by differential expression analysis, this approach does not con-
sider the multiple interactions involved with gene expression regulation19 that are central to phenotype deter-
mination. To overcome this limitation, gene networks can be used successfully as a complementary framework 
to untangle the mechanisms and unravel the effects of maternal nutrition on fetal programming8. By measuring 
gene co-expression similarity, we can capture the relationship among genes across experimental conditions or 
tissue types and decipher the biologically-related gene functions19–21. Furthermore, we can assess the network 
‘rewiring’ and the differences in gene–gene interactions driving changes in gene expression in response to exter-
nal stimuli20,22.

Although we have a growing understanding of the molecular and physiological basis of fetal programming, 
it is still unclear to the extent these differences can be attributed to the coordinated function of genes and the 
regulation of specific pathways. Therefore, we hypothesized that maternal nutrient restriction from breeding to 
day 50 of gestation would negatively affect fetal cerebrum, liver, and muscle development and function through 
differential gene regulation. Herein, by measuring the gene–gene interactions, we uncovered the regulatory 
interplay between genes and showed that these fetal tissues were differentially regulated in response to maternal 
nutrition.

Results
We applied tissue-to-tissue and tissue condition-specific co-expression network approaches to infer the regula-
tory relationships between genes and to shed light on the putative mechanisms underlying the effects of early 
maternal nutrient restriction on bovine developmental programming (Fig. 1). Previously, Crouse et al.17 reported 
373 differentially expressed genes (DEG) from fetal liver (n = 201), muscle (n = 144), and cerebrum (n = 28) by 
contrasting control (CON, n = 7) and nutrient restricted (RES, n = 7) groups. Herein, we report significant differ-
entially connected and differentially co-expressed genes in 50-day fetuses. Likewise, we identified putative regula-
tors driving the differential gene expression between the groups and the over-represented biological pathways.
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Figure 1.   Bioinformatics workflow of the multi-tissue RNA-Seq-based gene co-expression network. TS—
tissue-specific genes; *DEGs—differentially expressed genes17; TFs—transcription factors; CON—control; 
RES—restricted.
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RNA sequencing data analysis.  After quality control, on average, 92.8%, 89.9%, and 93.0% of unique 
reads from the cerebrum, liver, and muscle tissues, respectively, were mapped to the reference genome. A sum-
mary of sequencing throughput and mapping rates per sample and tissue is reported in Tables S1, S2, and S3. 
Mapped reads saturation plot showed that, on average, 92% of the genes were identified, supporting an adequate 
read-depth per tissue in the current study (Figure S1). The multi-tissue normalization approach (see Methods) 
identified 17,164 genes out of 27,607 reported on the Ensembl annotation file that were clustered by tissue, as 
shown in Figure S2.

Tissue‑specific genes.  Based on the Tau index23, we identified 553 tissue-specific (TS) genes (τ ≥ 0.8). The 
liver (n = 363) and cerebrum (n = 111) expressed the greatest number of TS genes, followed by muscle (n = 79) 
(Fig. 2A). The NEUROD6, PFKFB, and MYOG genes were amongst the TS genes with the greatest τ values for 
the cerebrum, liver, and muscle, respectively. Furthermore, 19 and 15 TS genes were reported as differentially 
expressed for the liver and muscle. To support our approach, we carried out a tissue over-representation analy-
sis. As expected, the genes were indeed over-represented for the tissues where they are preferentially expressed 
[prefrontal cortex, adjusted p-value (adj.pvalue) = 4.59 E−10; liver, adj.pvalue = 4.58E−05; and skeletal muscle, 
adj.pvalue = 2.11 E−05]. Additionally, gene ontology (GO) terms highlighted biological processes such as fore-
brain development (adj.pvalue = 2.26E−21), hemostasis (adj.pvalue = 1.68E−16), and muscle organ development 
(adj.pvalue = 1.55E−21). The over-represented Uberon ontology terms, the directed acyclic graphic, and the GO 
terms are reported in Tables S1, S2, and S3.

Key regulatory genes (transcription factors, TFs).  Regulatory impact factors, RIF1 and RIF224, were 
used to identify TFs potentially modulating the expression of DEG and TS genes. Based on those metrics, we 
identified 129, 119, and 90 TFs for liver, muscle, and cerebrum tissues, respectively, grouped into 52 families 

Figure 2.   Tissue-to-tissue co-expression network of the bovine fetal organ transcriptome. (A) Heat map 
of 553 tissue-specific genes from the liver, muscle, and cerebrum tissues. (B) Co-expression network of 992 
significantly co-expressed genes. Only nodes with a correlation greater than |0.9| are shown. Overlapped genes 
between analysis were colored based on the tissue with its maximum expression. Transcription factors are 
represented by a diamond shape. Nodes with few connections not linked to the main network are not showed. 
Heat map was constructed using pheatmap v.1.010.93 on R79, whereas gene network was created on Cytoscape 
v.3.789.
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(p ≤ 0.01). Shared TFs were identified between cerebrum and muscle (n = 10), muscle and liver (n = 8), and liver 
and cerebrum (n = 7). The HOXA4 (z-score =  − 6.88), ZBTB33 (z-score =  − 4.37), and GATA1 (z-score =  − 3.85) 
genes showed the most extreme value for RIF1 in liver, muscle, and cerebrum, respectively. A list of all RIF1 
and RIF2 significant TFs is presented in Tables S1, S2, and S3. Herein, those genes encoding TFs and identified 
as key regulators will be called TFs throughout the text. The over-represented BP and pathways in which the 
TFs are involved with DEGs and TS genes are reported in the Tab8 of the Supplementary Tables S1 (muscle), S2 
(cerebrum), and S3 (liver).

Tissue‑to‑tissue co‑expression network.  To build a network across tissues based on the PCIT frame-
work, we prioritized 1,160 unique informative genes considering the following criteria: (1) DEG between RES 
and CON groups; (2) tissue-specific; and (3) key TFs based on RIF1 or RIF2. Based on that, a significant network 
with 992 nodes and 105,449 interactions (r >|0.9|) was retrieved (Table S4, Fig. S3). The network had a high 
clustering coefficient (0.8) and was clustered by tissue (Fig. 2B), mainly driven by TS genes, followed by DEGs 
and TFs. Genes from the liver showed higher average connectivity (284.5) compared to the cerebrum (144.7) or 
muscle (100.06). The GATA1, HSF2, and PLEK TFs showed the greatest connectivity within liver, muscle, and 
cerebrum tissues, respectively. Furthermore, these genes shared all the first neighbors of one another, creating a 
sub-network with 427 nodes and 81,308 connections (Fig. S4).

Differential gene co‑expression network analysis.  To uncover the functional relationship between 
gene pairs across conditions, we applied a differential gene co-expression analysis for each tissue separately. 
From muscle, we identified 17,282 differentially co-expressed (DC) gene pairs (corresponding to 7,479 unique 
genes out of 11,439 tested; q ≤ 0.05; Table S1). Among them, 101 and 91 genes were identified as DEGs and TFs, 
respectively. Figure 3 shows the network of DC genes filtered by those gene pairs assigned either DEG or TF for 
muscle. We used the connectivity as a measure of centrality to select the genes topologically important in the 
network (“hubs”). Accordingly, 225 DC genes were identified as hubs (p < 0.05). The top five hub genes included 
IGSF10, ZBTB33, CD2AP, PLEKHG1, and ZBTB1, and were associated with more than 120 genes in muscle. 
The DEGs were mainly differentially co-expressed with the genes ZBTB33 (n = 24), IGSF10 (n = 24), HACD3 
(n = 16), and ZNF131 (n = 8). Interestingly, the co-expression of ZBTB33 and ZNF131 with the DEGs were clas-

Figure 3.   Muscle regulatory network of differentially co-expressed genes from the bovine transcriptome. Nodes 
are genes with significant changes in the correlation between control and nutrient restricted fetus (q ≤ 0.05). The 
node size and color (from light to dark) are proportional to the number of connections for each gene. Nodes 
with few connections not linked to the main network are not shown. Transcription factors are represented by 
a diamond shape. Differentially expressed genes are labeled in blue. Edges are colored based on the differential 
correlation class (+/− , red; +/0, salmon; − /+ , green; − /0, green-yellow; 0/+ , magenta; 0/− , brown). Gene 
network was created on Cytoscape v.3.789.
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sified as inversely correlated between the maternal diet groups based on the correlation classes proposed by the 
R-package DGCA​22 (Figs. 3, S5).

We found 284,738 DC gene pairs by applying the same approach to the cerebrum. To reduce the data dimen-
sionality, these pairs were then filtered by DEG, TS, or TF genes. Based on that, 14,423 DC pairs (4676 unique 
genes) (q ≤ 0.05) remained for further analysis (Table S2). The TS genes ELAV4, PAK5, SLC17A6, GPR12, and 
CLVS2, were the most differentially co-expressed ones (hubs). Among the 61 genes classified as hubs (p < 0.05), 21 
were TFs identified as putative regulators of brain gene expression. From these TFs, ZNF207, ETS2, and the novel 
gene ENSBTAG00000003447 were highlighted as targeting 412, 250, and 248 genes (Fig. 4). Unlike the muscle, 
no clear pattern of correlation was observed for TFs and DEGs differentially co-expressed between conditions.

Regarding the liver, we identified 2,989 DC pairs (2319 unique genes) that included 56 DEGs and 23 TFs 
(q ≤ 0.05) (Table S3). The top five hub genes among the 27 identified included: PGAP3, B3GNT4, MARVELD1, 
BCAM, and NIT1. The PGAP3 gene stood out as the main DC gene with 11 DEGs. These pairs were classified 
as positively correlated in the RES group and negative or not significant in the CON group (−/+ or 0/+) (Fig. 5). 
Additionally, the ZNF175, HSF1, and HSF2 TFs were among the hubs.

Differential connectivity analysis.  To identify condition-specific connections, we inferred networks in 
the CON and RES groups separately for each tissue. Based on the concept of differential connectivity25, we iden-
tified the most rewired genes between the groups (Tables S1, S2, S3). Despite the similar topological behavior, 
overall, we found a gain of connectivity in networks from RES (Fig. 6A,B). These networks followed a scale-free 
model with R-squared ranging from 0.67 to 0.89.

From the liver, the networks filtered for either DEG or TF genes resulted in 8,350 and 8,632 nodes and 261,099 
and 231,270 edges for RES and CON groups, respectively. By contrasting the connectivity between the groups, 
we found 153 differentially connected (DK) genes (p < 0.05). Similarly, we identified 188 DK genes in muscle 
by contrasting 6,925 nodes and 63,105 edges with 8515 nodes and 94,186 edges from CON and RES groups, 
respectively. Regarding the cerebrum, the CON network was composed of 6,390 nodes and 29,531 edges, whereas 
the RES one had 7,555 nodes and 48,662 edges. Accordingly, we identified 72 DK genes (p < 0.05). Several DEGs 
from the liver and muscle tissues were also identified as DK (Fig. 6C).

Figure 4.   Cerebrum regulatory network of differentially co-expressed genes from the bovine transcriptome. 
Nodes are genes with significant changes in the correlation between control and nutrient restricted fetus 
(q ≤ 0.05). The node size and color (from light to dark) are proportional to the number of connections for 
each gene. Nodes with few connections not linked to the main network are not showed. Only those gene pairs 
assigned as DEG, TS, or TF are shown. Transcription factors are represented by a diamond shape. Differentially 
expressed genes are labeled in blue. Edges are colored based on the differential correlation class (+/− , red; + 
/0, salmon; − /+ , green; − /− , deep sky blue; − /0, green-yellow; 0/+ , magenta; 0/− , brown). Gene network was 
created on Cytoscape v.3.789.
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Functional over‑representation analysis.  Functional analysis revealed a total of 374, 212, and 143 sig-
nificant biological process (BP) terms over-represented in the liver, muscle, and cerebrum gene lists, respec-
tively (adj.pvalue ≤ 0.05). In the liver, common BP across DE, TFs, and TS genes included categories such as 
blood coagulation, immune response (defense and inflammatory response), and energy metabolism (fatty acid 
metabolic process and cellular glucose homeostasis). Tissue specific genes highlighted BP related to metabo-
lism, transport, and blood coagulation, whereas TFs underlined regulation of RNA biosynthetic process and 
hormone metabolic process (Table S3). The pathway analysis included complement and coagulation cascade 
(adj.pvalue = 2.9E−13), metabolic pathways (adj.pvalue = 2.64E−02), and maturity onset diabetes of the young 
(adj.pvalue = 2.64E−02) (Table  S3). Moreover, MAPK (adj.pvalue = 3.32E−02), non-alcoholic fatty liver dis-
ease (NAFLD) (adj.pvalue = 3.68E−02), and oxidative phosphorylation (adj.pvalue = 3.32E−02) pathways were 
retrieved from DC genes.

Regarding the muscle, the identified GO terms pointed out the muscle structure development and myotube 
and myoblast differentiation as common BP among the gene lists. Similarly, TS and TF genes included skeletal 
system morphogenesis and regulation of transcription from RNA polymerase II promoter (Table S1). Further-
more, FoxO (adj.pvalue = 8.32E−06), MAPK (adj.pvalue = 3.69E−09), and PI3K/Akt (adj.pvalue = 3.94E−07) 
signaling pathways were among the over-represented pathways from the DC genes.

From the cerebrum, central nervous system development (adj.pvalue = 1.68E−13) and brain development (adj.
pvalue = 4.60E−08) were among the over-represented BP underlying the TS genes. The TF gene list retrieved BP 
such as cellular response to steroid hormone stimulus (adj.pvalue = 6.47E−07) and negative regulation of DNA 
binding transcription factor activity (adj.pvalue = 6.47E−07) (Table S2). Moreover, signaling pathways from the 
DC genes highlighted, for example, ribosome (adj.pvalue = 8.86E−21), PI3K-Akt (adj.pvalue = 3.19E−06), insulin 

Figure 5.   Liver regulatory network of differentially co-expressed genes from the bovine transcriptome. Nodes 
are genes with significant changes in the correlation between control and nutrient restricted fetus (q ≤ 0.05). The 
node size and color (from light to dark) are proportional to the number of connections for each gene. Nodes 
with few connections not linked to the main network are not showed. Transcription factors are represented by 
a diamond shape. Differentially expressed genes are labeled in blue. Edges are colored based on the differential 
correlation class (+/− , red; + /0, salmon; − /+ , green; − /0, green-yellow; 0/+ , magenta; 0/− , brown). Gene 
network was created on Cytoscape v.3.789.
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(adj.pvalue = 3.11E−03), mTOR (adj.pvalue = 2.41E−04), and HIF-1 signaling pathways (adj.pvalue = 2.17E−03). 
Tissue-specific and overlapping pathways across tissues are showed in Figure S6.

Discussion
Dietary restriction has a negative effect on the offspring’s development, metabolism and genome function with 
long-term consequences2,3,5,9. Previously, we reported a significant impact on genome-wide expression profiles 
underpinning tissue metabolism, accretion, and function in fetal muscle, liver, and cerebrum from dietary intake-
restricted heifers17. Herein, based on the co-expression network, we uncovered the regulatory interplay between 
genes and shed light on the putative mechanisms underlying the effects of early maternal nutrient restriction 
on bovine developmental programming on day 50 of gestation. We found that these tissues were affected by 
dietary intake restriction leading to differences in transcriptional regulation between CON and RES groups. 
Furthermore, we pointed out TFs potentially modulating the expression of DEGs and TS genes.

Tissue specificity results from a tight regulation of gene expression26 driven by different regulatory mecha-
nisms that include TFs and cross-tissue communication20. The TFs play a significant role in determining dif-
ferential expression in response to nutrient availability7, although they are not themselves usually DEG26. We 
successfully mapped 338 TFs as putative regulators of TS and DEG. It is worth mentioning that these are not 

Figure 6.   Network topology of co-expressed genes between control and nutrient restricted fetuses from the 
liver, muscle, and cerebrum tissues in bovine. (A) Cumulative distribution functions of the gene connectivity. 
(B) Central reference union networks. Only those gene pairs assigned as DEG or TF are shown. Unique nodes 
are shown in green (control) or red (restricted). Shared nodes are shown in white; (C) Overlapping genes 
among the different analyses. TF—transcription factors; DE – differentially expressed gene; DC—differentially 
co-expressed; and DK—differentially connected. Cumulative distribution was created on R v.3.5.179; Gene 
network was created on Cytoscape v.3.789; and Venn diagram was created using Venny v.2.1.94 (https​://rb.gy/
jxxuf​y).

https://rb.gy/jxxufy
https://rb.gy/jxxufy
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the only TFs regulating the tissue development and gene transcription; however, they were consistently most 
differentially co-expressed (RIF1) or could predict (RIF2) the abundance of the TS and DEG24. The regulatory 
role of these TFs on day 50 of gestation was perturbed due to maternal nutrient restriction, as evidenced by their 
identification either as DC or DK. The liver showed the greatest number of TS genes, followed by the cerebrum 
and muscle. Moreover, the greatest number of DEG and TF genes were found in the liver, emphasizing its wide 
range of essential metabolic functions.

To provide an overview of the gene expression relationship across the fetal tissues studied, we prioritized 
informative genes from TS, TF, and DEG analyses. This integrative framework allowed us to dissect the gene–gene 
interactions within and across tissues, uncovering new insights into how these relationships may be rewired due 
to maternal nutrition8,27,28. Our tissue-to-tissue network exhibited a small-world behavior29, mainly driven by 
the TS genes that showed a strong clustering. Based on this guilty-by-association assumption, we pinpointed 
tissue-specific functions related to tissue development, structure, and metabolism.

To have tissue genome-scale information, we identified specific co-expression differences between CON 
and RES groups based on DGCA and DK analyses. We identified hub genes with important biological roles. 
Furthermore, we found a gain of connectivity in the networks from fetuses from the RES dams. The rewiring of 
major regulators likely modulates the expression of gene targets as an adaptive response to nutrient availability, 
impacting tissue development. These findings are supported by the DGCA results that showed TFs differentially 
coordinating gene transcription between the groups. For example, we found transcriptional repressors in muscle, 
such as ZBTB33, REST, and RCOR3, more connected in the RES network. Likewise, we identified ARID2, whose 
protein is involved with chromatin remodeling that is important for metabolic programming2. Herein, we will 
mainly focus our discussion on the TFs considering their topological importance in the network for each tissue, 
the over-represented pathways, and their regulatory role in fetal tissue programming.

The liver plays a pivotal role in energy metabolism13. Energy imbalances affect liver function and trigger a 
cascade of events in insulin sensitive tissues, such as the brain and muscle7,18. As a response to a moderate mater-
nal nutrient restriction, the fetuses from the RES group tended to have a reduced level of glucose in allantoic 
fluid30. In goats, Zhou et al.18 found several glucogenic amino acids (AA) differentially abundant in the liver of 
nutrient-restricted fetuses. Supporting these findings, we identified pathways related to glucogenic AA, such 
as arginine biosynthesis and tryptophan metabolism. Additionally, the liver is the main hematopoietic organ 
during pre-natal development18. We found GATA1 as the most connected TF, and this gene is important for 
early hematopoiesis31. Furthermore, the liver is the primary site of complement component synthesis32. The 
complement system is essential for host defense, and its failure has been associated with adverse pregnancy 
and fetal growth restriction in humans32. The complement and coagulation cascade pathway, as well as several 
hematopoietic genes were pinpointed in our findings.

We identified master regulators of energy homeostasis, such as FOXA3, PPARA​, and SREBF2. Among the 
pathways important for energy homeostasis, we found MAPK, which acts as a PPAR regulator33. The PPAR 
protein is suggested to have an adaptive role during tissue development in response to nutrient availability7. The 
transcriptional complex formed by PPARs and nuclear receptors, like RXRG, is the key activator of target genes 
involved with fatty acid oxidation, insulin secretion, and inflammation7,13. The relationship of PPAR-RXRG with 
energy imbalance underlies metabolic abnormalities, such as diabetes and chronic inflammation34. Moreover, 
FOXA3 participates on the pathway maturity onset diabetes as well as carbohydrate and glucose homeostasis. 
In addition, SREBF2 plays a role in energy metabolism and also lipid storage, regulation of sterol and cho-
lesterol transport, lipid and cholesterol homeostasis. The protein coded by this gene regulates the cholesterol 
biosynthesis7. Cholesterol is the precursor of all steroid hormones and it plays a role in early fetal development 
by moderating nuclear receptors35.

Besides the imbalances in energy homeostasis, maternal nutrient restriction has been associated with an 
inflammatory response in the dam and the offspring36. We identified TGFB1 and HDAC8 differentially co-
expressed and positively correlated in RES fetuses. The TGFB1 gene encodes a multifunctional cytokine with 
immunoregulatory and anti-inflammatory properties37. It is also important in pregnancy maintenance37, hepatic 
stellate cell activation, and hepatic fibrosis38. An increased expression of MEF2D in activated hepatic stellate cells 
in liver and the fibrotic response was reported previously38. In the current study, we identified the MEF2D gene 
as a key TF, more connected in RES, and positively correlated with TGFB1 and HDAC8. The TGFB1 and MEFD2 
proteins have been associated with liver fibrosis activation38,39. Likewise, HDAC8 protein inhibition suppresses 
TGFB1-induced genes in pulmonary fibrosis40.

In response to cellular stress, HSF1 and HSF2 TFs activate genes encoding heat shock proteins (HSPs) to 
stabilize nascent proteins41. These TFs in liver showed high connectivity in RES fetuses. Since misfolded pro-
teins are eliminated either by ubiquitination or autophagy41, the over-representation of the ubiquitin-mediated 
proteolysis pathway found here is likely acting in concert with the HSPs. Thus, these evidences suggest that RES 
fetuses may have shown hepatic cellular stress in response to lipid metabolism imbalances.

Maternal nutritional insults may have more dramatic effects on muscle development as it has low priority in 
nutrient partitioning, resulting in greater concern due to the economic importance of muscle tissue12. Offspring 
of nutrient-restricted dams showed a reduced number of muscle fibers and muscle mass, as well as altered muscle 
function and gene regulation1,12,17,42. Among the TS genes, well known upstream regulators of myogenesis, such 
as MYOG, MYOD1, PAX1, and MYF543, were found by our approach. Interestingly, some of these TS regulators 
along with DEGs were negatively correlated with the ZBTB33 and ZNF131 TFs in the RES group. The ZBTB33 
gene encodes a methyl-CpG-binding protein (Kaiso) that recognizes both unmethylated and methylated CpGs, 
acting as a transcriptional repressor44. The role of Kaiso in regulating myogenic genes is still to be examined; 
however, Ruzov et al.45 showed that Kaiso is necessary during early Xenopus laevis development. Moreover, CIBZ, 
a Kaiso-like family member, represses MYOG in a methylation-dependent manner44. Although we do not have the 
methylation profile for these animals, Crouse et al.30 reported reduced methionine and increased homocysteine 
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concentrations in amniotic fluid and serum, respectively, in RES heifers. The imbalance in one-carbon metabo-
lism would likely affect the gene transcription by altering chromatin remodeling and DNA methylation46.

Although ZNF131 acts as a transcriptional activator, Kaiso, a transcriptional regulator, was implicated in 
its repression, and together they fine-tune the transcription of Kaiso targets47. Muscle structure development 
and skeletal muscle tissue growth were among the BP over-represented by the 34 co-regulated genes between 
ZNF131 and ZBTB33. The myogenic regulatory factors MYOD1, MYF5, and MYOG were negatively and dif-
ferentially correlated with ZBTB33 and/or ZNF131 in RES fetuses. The CDKN1A gene was negatively correlated 
with these TFs in the RES group and also DEG17. The protein encoded by the ZNF131 gene has been associated 
with skeletal muscle atrophy48. Moreover, CDKN1A gene expression is synergistically activated by SMAD449 
that was identified here as DK and negatively co-expressed with MYOG and MYOD1. The protein encoded by 
SMAD4 has an inhibitory effect on protein synthesis and muscle growth50. Genes encoding proteins involved in 
muscle contraction, such as those from the troponin and myosin families, were also negatively regulated in the 
RES group. We collected the fetal tissues on day 50 of pregnancy, which coincides with the beginning of primary 
myogenesis12. Therefore, our findings show the potential mechanism by which maternal nutrient restriction 
negatively modulates myogenic developmental programming in cattle.

We found the DC genes from the fetal muscle over-represented in the nutrient-sensing signaling pathways 
PI3K-Akt, MAPK, and FoxO. These pathways along with mTOR, play a major role in muscle development, energy 
metabolism, gene expression, and metabolic epigenetic programming50,51. The Akt-mTOR pathway acts as posi-
tive regulator of protein synthesis, whereas FoxO signaling is required for muscle atrophy50. We found the ELK3 
TF more connected and negatively and differentially correlated with AKT1 in fetuses from RES dams. The ELK3 
protein is a transcriptional repressor whose knockdown induced the activation of the PI3k/Akt/mTOR pathway 
in breast cancer cell line52. In addition, intrauterine growth restriction in rats has been associated with reduced 
activity of this pathway53. We found FoxO6 significantly more connected in the RES group. FoxO induction 
leads to the transcription of atrophy-related genes50. Additionally, SMAD3/SMAD4 heterodimers may repress 
mTOR50. We identified the SMAD4 gene negatively co-expressed with EIF4EBP1 that acts as protein synthesis 
inhibitor50. Altogether, it seems that the TFs were acting redundantly and coordinately to repress muscle forma-
tion and differentiation in response to nutrient restriction.

Like the muscle, our findings evidenced a severe impact of a moderate maternal nutrient restriction in the 
day 50 fetal brain genes involved with development and metabolism. First, we found a large number of DC 
genes between CON and RES, and several DK TFs. Second, pathways such as PI3K/AKT and mTOR seem to 
be differentially regulated between the CON and RES groups. The brain plays a central role in the body’s energy 
homeostasis by integrating metabolic signals from other tissues and coordinating adaptive changes under nutri-
ent deficiency54. These signals are integrated by the mTOR pathway that together with the PI3K/Akt signaling 
pathway governs neuronal fate by regulating protein synthesis and energy homeostasis55,56. Furthermore, insulin 
signaling plays a role in neuronal differentiation by activating mTOR55. Nutrient restriction has been associated 
with reduced transcription rate modulated by mTOR57. We found the ribosome pathway over-represented by the 
DC genes encoding ribosomal proteins, and intriguingly these genes were mainly negatively correlated in the 
RES group. Impaired ribosome biogenesis has been associated with neurodevelopmental disorders and reduced 
protein synthesis57,58. The PAK5, ELAVL4, and ZNF207 genes were DC with the ribosomal genes identified in the 
current study. The ELAVL4 gene encodes an RNA-binding protein (HuD) important for neuronal development 
and plasticity, acting on mRNA stability, translation, and alternative polyadenylation of target genes59. The PAK5 
gene encodes a brain-specific protein involved with neurite development60. Furthermore, the PAK family mem-
bers are regulators of PI3K and via the PI3K/Akt pathway modulate HuD abundance post-transcriptionally59. 
The ZNF207 TF plays a role in cell pluripotency by regulating neuronal TFs61.

Metabolic stress resulting from energy restriction can activate the transcription of inflammatory genes57. The 
TGF-β family is pivotal for organogenesis, and it was shown to negatively affect brain development by inhibiting 
neurite elongation62. We identified TGFB1 and TGFB3 DC and negatively correlated with NKX2-1, ELAVL4, and 
SLC17A6 in the RES group. The SLC17A6 gene encodes a glutamate transporter protein63, while NKX2-1 encodes 
a TF that regulates target genes involved with the development of interneurons64. In response to inflammatory 
processes, hypoxia-inducible factors (HIFs) modulate metabolic homeostasis by activating hypoxia-induced 
genes65. Additionally, these genes underlie cell differentiation and vascular development in the fetal brain65. We 
identified the HIF pathway over-represented from the DC genes. Among them, the ZNF395 TF was positively 
correlated with most of the gene pairs DC in the RES fetuses. ZNF395 is targeted by the HIF-1α TF activating 
hypoxia-induced pro-inflammatory genes66. On the other hand, the ETS2 and NFKB2 TFs that were both DC 
and DK showed mainly negative correlations in the RES group. The ETS2 protein has been associated with 
neuronal apoptosis and neurodegeneration in neurons of Down syndrome67. However, in macrophages, it had 
a negative effect on the inflammatory response67. Regarding the NFKB2 protein, it has a pleiotropic effect and 
acts in processes such as synaptic plasticity under normal physiology; however, in disease, it is involved with 
neuroinflammation as well as neuronal cell death68. Considering the findings, the moderate maternal dietary 
restriction induced changes in gene wiring and expression in the brain may have altered BP related to neuronal 
development and energy homeostasis. Although the effects of these changes in animal health and performance 
are still unknown, they could affect animal reactivity, stress responses, and feeding behavior17.

Our findings reinforce that fetal metabolic programming is affected by maternal nutritional imbalances even 
in early pregnancy. Energy metabolism-related pathways were over-represented in the cerebrum, liver, and mus-
cle, suggesting a multi-tissue coordinated adaptive response mediated by differential gene expression. Likewise, 
pathways related to myogenesis seems to be negatively regulated in nutrient restricted fetuses. Factors affecting 
fetal muscle development can reduce animal performance, muscle growth, and consequently, meat production 
and quality12. Furthermore, fetal adaptive response by affecting insulin metabolism may adversely affect animal 
feed efficiency. It’s worth mentioning that due to the similarities underlying embryonic development in humans 
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and cattle and the conserved genetic architecture of complex traits in both species69, our findings can help 
understanding the effects of maternal nutrition on human fetal development. Obesity, molecular disorders, and 
cardiovascular diseases later in life have been associated with pre-natal maternal stressors8,70. Pathways related 
to human diseases, such as maturity onset diabetes of the young and non-alcoholic fatty liver disease, were over-
represented among the differentially regulated genes in our study. These findings reinforce the potential adverse 
effects of early maternal nutrient restriction on offspring health. Additionally, it suggests that pathways affected 
by maternal nutrition in cows are likely to be regulated similarly in humans.

Altogether, our data suggest that nutrient restricted animals will later in life be metabolically compromised, 
leading to long-term consequences probably across generations. Although the genetic basis of fetal program-
ming is still under investigation, our results point to the key role of epigenetic mechanisms driving the genome 
regulation. We hypothesize that RES fetuses have impaired one-carbon metabolism, as demonstrated by the 
reduced availability of methionine in allantoic fluid30. Further research is warranted to investigate the role of 
non-coding RNAs and histone modifications in addition to DNA methylation as the mechanisms underlying 
fetal programming and the transmission of intergenerational effects.

Conclusions
Our approach identified the complex gene network on day 50 of gestation that underlies cross-tissue commu-
nication in response to maternal nutritional restriction. We identified major regulators driving gene expression 
and found differences in the regulatory mechanisms involved with developmental programming between fetuses 
gestated in nutrient restricted and control dams. In particular, moderate dam nutrient restriction led to differ-
ential regulation of myogenic factors by the ZBTB33 and ZNF131 TFs that may negatively affect myogenesis. 
In addition to tissue-specific pathways, the over-representation of nutrient-sensing signaling pathways across 
tissues, such as mTOR, PI3K/Akt, and insulin, shed light on their role in fetal programming. Further research 
is still needed to determine the role of epigenetics and chromatin remodeling in developmental programming, 
their interplay with nutrition, and their impact on animal health and performance.

Methods
Animals, tissue collection, library preparation, and sequencing.  All experiments and methods 
were performed in accordance with relevant guidelines and regulations. The experimental design, animal man-
agement, and tissue collection were approved by the North Dakota State University Institutional Animal Care 
and Use Committee and previously reported by Crouse et al.17. In brief, 14 Angus-cross heifers with average 
initial body weight = 313 ± 24.9 kg were randomly assigned at breeding to receive dietary intake of either 100% 
of energy requirement71 for 0.45 kg/day of body weight gain (control; CON, n = 7) or were fed a diet to delivery 
60% of CON intake (restricted; RES, n = 7). The diet was delivered via total mixed ration (TMR), and consisted 
of grass hay, corn silage, alfalfa haylage, grain, and mineral mix. Dried distillers grains with solubles (53.4% NDF, 
31.3% CP) were supplemented in addition to the TMR and fed to achieve the target nutrient content of the CON 
and RES diets17. The two nutritional levels supplied to the heifers were chosen to represent two nutritional states 
(weight gain versus maintenance) as well as conditions applicable to beef production systems.

On day 50 of gestation, cerebrum (n = 7/group), liver (n = 7/group), and muscle (n = 7/group) were collected 
from fetuses through ovariohysterectomy72. Tissue collection was performed at this time because fetal organo-
genesis have already finished and it is in the peak primary myogenesis12. The tissues were snap-frozen in liquid 
nitrogen, stored at − 80 °C, and later on, RNA isolation and sequencing were performed by the University of 
Minnesota Genomics Center (Minneapolis-St. Paul, MN), as reported elsewhere17. After RNA quality control, 
strand-specific RNA libraries were prepared, and sequencing was carried out on the Illumina HiSeq 2500 plat-
form. Sequencing was pair-end (50-bp reads) at a depth of 2 × 10.4 M reads/sample in both forward and reverse 
directions17. Fetal sex was determined by PCR based on the hind limb DNA amplification of the DDX3X and 
DDX3Y genes located on the X and Y chromosomes. The PCR product was analyzed on agarose gel electropho-
resis, where males showed two bands, and females resulted in only one. This analysis was based on the primers, 
and PCR parameters reported elsewhere73. Thus, were evaluated 6 males and 1 female in the CON group and 5 
males and 2 females in the RES group.

RNA‑Seq data analyses and differentially expressed genes.  Data quality control was performed 
with FastQC v.0.11.874 (https​://rb.gy/lxqcw​a) and MultiQC v.1.875 (https​://multi​qc.info/) software. Filtered reads 
were mapped to the bovine reference genome (ARS-UCD 1.2)76 and gene annotation file (release 100) from the 
Ensembl database. The STAR aligner version 2.7.3a77 (https​://rb.gy/dlgdv​a) using the –quantMode GeneCounts 
flag was used to obtain the raw counts per gene.

The RStudio78 v. 1.1.442 environment for R79 v.3.5.1. was used for data analyses as described below. Post-
mapping quality control was performed using MultiQC, NOISeq v.2.26.080 (10.18129/B9.bioc.NOISeq), and 
edgeR v.3.24.081 (10.18129/B9.bioc.edgeR). Read counts were transformed to counts per million (CPM), and 
lowly expressed genes (CPM < 1 in 80% of the samples) were filtered out. Gene expression normalization was 
performed under two approaches: (1) across all samples and the three tissues together and (2) across all samples 
but individually for each tissue. Both procedures were performed using the VST function from DESeq2 v.1.22.182 
(10.18129/B9.bioc.DESeq2). To control gene expression for sex effect, fetal sex was included in the DESeq2 model 
as a factor. Hierarchical clustering and Principal Component Analysis on normalized data were performed by 
using NOISeq v.2.26.080 and DESeq2 v.1.22.182. Normalized gene expression (n = 17,164) from the first approach 
was used to predict TS genes, to predict the key regulators (TFs), and to build the tissue-to-tissue network. On 
the second approach, besides removing genes with low expression based on the CPM criterion, genes with low 
dispersion after normalization were filtered out when the quantile dispersion measure was < 0.2. Further, the 

https://rb.gy/lxqcwa
https://multiqc.info/
https://rb.gy/dlgdva
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normalized data were used for tissue condition-specific networks construction, differential connectivity, and 
differential gene co-expression analyses. A summary of the workflow is shown in Fig. 1.

Differential expression analysis for the tissues and animals used here were reported elsewhere17. In brief, by 
using the Tuxedo Suite pipeline, the authors identified 373 DEGs between the CON and RES groups for fetal 
liver (n = 201), muscle (n = 144), and cerebrum (n = 28). Herein, these DEGs were used for further analyses.

Identification of tissue‑specific genes (TS).  The normalized expression was used to calculate a mean 
value for each gene from each tissue separately. To summarize the gene specificity among tissues, the Tau index 
(τ) was computed using the R-package tispec v.0.99.083 (https​://rb.gy/ch0h4​w) considering the following Eq. 23:

in which n is the number of tissues and xi is the gene expression in tissue i. Tau values range from zero (genes 
ubiquitously expressed) to one (TS genes)84. Accordingly, we defined the TS genes with τ ≥ 0.884.

To support the gene tissue specificity analysis, we performed a TS over-representation analysis using TopAnat 
(https​://rb.gy/6qvwl​a). This tool allowed us to identify where genes from a set are preferentially expressed85, 
considering the anatomical structures and the Uberon ontology annotations86. Thus, for each TS gene list, we 
used TopAnat based on bovine as the target species and the Begee database for B. taurus as background85.

Identification of key transcription factors (TFs).  To identify TFs differentially regulating gene expres-
sion in CON and RES groups for each tissue, we used the regulatory impact factor (RIF) algorithms, RIF1 and 
RIF224. These metrics assume that master regulators in a network change their behavior in different biological 
conditions contributing to differential gene expression19,26. RIF algorithm was implemented in FORTRAN 90 
based on the source code available from the RIF’s main author24. The RIF1 score highlights regulators differen-
tially connected to the targets, whereas RIF2 measures those TFs with the potential to act as predictors of target 
abundance24,26. To identify the regulators, we first downloaded 1396 TFs from the Animal Transcription Factor 
Database (Animal TFDB v3.0)87. After filtering out those TFs not expressed in our dataset, 1164 TFs were con-
trasted to a unique list of DEG and TS genes. The RIF comparisons were performed separately for each tissue, 
comparing CON versus RES groups.

Gene networks.  To determine the co-expression profile of gene pairs across tissues and experimen-
tal groups, we used the partial correlation and information theory (PCIT) algorithm28. FORTRAN 90 source 
code to perform the PCIT algorithm is available as Supplementary File 1 at https​://rb.gy/vyfqr​v. This approach 
compares all possible triplets of genes by exploring the concepts of partial correlation and mutual information 
reporting the significantly correlated pairs after accounting for all the other genes in the network19,28,88. For the 
tissue-to-tissue network inference, all the genes (n = 1,160) selected as DEG, TS genes, or TFs from the previous 
analyses were used considering all animals and tissues together. Significant co-expressed pairs were determined 
based on partial correlation values greater than |0.9| (p < 0.01).

To shed light on the coordinated gene expression and identify the conditional regulatory relationships 
underlying the differences between RES and CON groups, a differential gene co-expression network analysis 
was performed by using the R-package DGCA v.1.0.222 (https​://rb.gy/qadgb​y). To this end, all the genes kept 
after filtering and normalization (cerebrum, n = 11,432; liver, n = 10,146; and muscle, n = 11,439) were used. Sig-
nificantly correlated gene pairs were determined based on the adjusted p-values (q ≤ 0.05). The DC gene pairs 
were grouped in one of the eight differential correlation classes proposed by McKenzie et al.22. These classes 
(+/+ ; +/− ; +/0; − /− ; −/+ ; −/0; 0/+ ; 0/−) show the correlation signal [positive, negative, or not significant (0)] 
for each gene and condition when contrasting the groups (CON versus RES).

To identify changes in the gene network topology between conditions, we used PCIT to build CON and RES 
networks separately for each tissue from the same dataset used for DGCA analysis. Significantly correlated pairs 
were selected when DEGs or TFs were present and showed a partial correlation greater than |0.9| (p < 0.01). To 
explore the DK genes between the maternal dietary intake conditions, we first standardized the connectivity (K) 
measures for each network by dividing each gene connectivity by the maximum connectivity25. Next, the DK 
measure was defined as DKi = KCON (i)− KRES(i) . To assign a significance level, each score was transformed 
into a Z-score, and values located ± 1.96 from the standard deviation (SD) were considered significant (p < 0.05). 
The DyNet27 Cytoscape plugin v.1.0 (https​://rb.gy/9vp9j​s) was used to visualize the most rewiring nodes between 
the conditions considering the Dn-score. This score ranks the variability of connections and highlights the most 
rewired nodes based on a central reference network27 constructed from the union of RES and CON networks. 
Networks were visualized in Cytoscape (v.3.7)89 (https​://cytos​cape.org/). Highly connected genes or “hubs” were 
defined considering the degree measure (2 SD, p < 0.05) retrieved from the Cytoscape Network Analyzer tool 
v.2.790 (https​://rb.gy/twoss​l).

Functional over‑representation analyses.  We carried out functional over-representation analyses to 
identify the biological process and pathways underpinning relevant functions related to fetal programming. The 
gene lists from DEG, TS, and TF analyses were queried by using ClueGO v. 2.5.7 (https​://rb.gy/x5cb7​q), con-
sidering a cluster analysis framework91. This approach allowed us to underline specific and common biological 
functions within and among gene lists for each tissue. To reduce the redundancy of the GO terms, we applied the 
fusion of similar biological processes. Likewise, the terms were grouped based on the kappa score = 0.4. Signifi-
cant results were taken considering the group p-value after Bonferroni step down correction (adj.pvalue ≤ 0.05). 

τ =

∑

n
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)
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Pathway analysis was performed for DC genes by using the ShinyGO v0.6192 (https​://rb.gy/o97ax​c). This 
analysis was performed separately for each tissue considering the B. taurus annotation as background and adj.
pvalue ≤ 0.05 as significant.

Data availability
All relevant data are within the paper and its Supplementary Information files. All sequencing data is publicly 
available on NCBI’s Gene Expression Omnibus through GEO Series accession number GSE154299 (Biopro-
ject PRJNA645822). All additional datasets generated and analyzed during this study are available from the 
corresponding author.
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