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ABSTRACT The role of adaptation in the evolutionary process has been contentious for decades. At the heart of the century-old
debate between neutralists and selectionists lies the distribution of fitness effects (DFE)—that is, the selective effect of all mutations.
Attempts to describe the DFE have been varied, occupying theoreticians and experimentalists alike. New high-throughput techniques
stand to make important contributions to empirical efforts to characterize the DFE, but the usefulness of such approaches depends on
the availability of robust statistical methods for their interpretation. We here present and discuss a Bayesian MCMC approach to
estimate fitness from deep sequencing data and use it to assess the DFE for the same 560 point mutations in a coding region of Hsp90
in Saccharomyces cerevisiae across six different environmental conditions. Using these estimates, we compare the differences in the
DFEs resulting from mutations covering one-, two-, and three-nucleotide steps from the wild type—showing that multiple-step
mutations harbor more potential for adaptation in challenging environments, but also tend to be more deleterious in the standard
environment. All observations are discussed in the light of expectations arising from Fisher’s geometric model.

CHARACTERIZING the distribution of fitness effects (DFE)
of new mutations remains a central focus in both theo-

retical and empirical population genetics. Understanding the
underlying DFE speaks to questions of fundamental impor-
tance to all of evolutionary biology: What is the relative role of
drift vs. selection in driving evolution? What is the adaptive
potential of a population upon facing a novel selective pres-
sure? What is the relative importance of new vs. standing
variation in dictating rates of positive selection?

Testable predictions describing the change in selective
effects upon environmental change come from a classical

model proposed by Fisher (1930). Fisher’s geometric model
(FGM) provides an illustrative approach to understand adap-
tation to novel environments. In this model, the effect of a mu-
tation is described by a random vector in an n-dimensional
phenotype space, originating from the position of the current
phenotype in that space (i.e., the wild-type state). Fitness is
evaluated as the Euclidean distance gain toward a fitness op-
timum that the vector confers. Different environments are
characterized by different fitness optima in phenotype space,
which results in theoretical expectations concerning, for
example, the proportion of beneficial mutations and the cor-
relation of fitness effects between different environments.
There are a number of hypotheses concerning the DFE that
can be derived from FGM. For example, the number of ben-
eficial mutations should increase upon environmental change
(i.e., for a population that has become more distant from the
optimum state), the effect sizes of beneficial mutations are
proportional to the distance from the optimum, and the step
size of mutations in adaptive walks should become progres-
sively smaller as the optimum is neared (cf., e.g., Orr 1998,
2003; Martin and Lenormand 2006).
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Efforts to quantify the DFE have come from three types of
approaches: first, statistical inference from natural poly-
morphism and/or divergence data (e.g., Keightley and Eyre-
Walker 2010; Schneider et al. 2011), in which sequence
data of natural populations are used to gain information
on the DFE; second, laboratory selection experiments (e.g.,
Lenski et al. 1991; Rozen et al. 2002; Melnyk and Kassen
2011; Sousa et al. 2012), in which populations of microbes
or viruses are evolved in the laboratory and spontaneously
occurring mutations are tracked; and finally, engineered-
mutation-driven experimental evolution (e.g., Fowler et al.
2010; Hietpas et al. 2011), in which specific mutations are
introduced and evaluated against each other and the wild
type. Each approach has relative merits and weaknesses,
and thus each has provided novel insight into evolutionary
processes.

Within this third category, we have recently proposed
a novel approach termed EMPIRIC (Hietpas et al. 2011),
whereby fitness can be empirically estimated for a large
number of mutations in a given region of a protein. In this
method, mutant libraries are constructed consisting of every
possible single-point mutation in the protein region to be
interrogated, these mutants are competed in bulk culture
for a number of generations, and individual growth rates
are determined by deep sequencing over a number of time
points. The advantages of the EMPIRIC approach compared
with the above-mentioned approaches are the following:

1. By systematically studying all possible mutations in a cho-
sen region, it allows one to infer the complete DFE of all
new mutations (rather than simply the mutations ob-
served in a laboratory selection experiment that is inher-
ently unable to quantify the proportion of strongly
deleterious mutations, for example), including the direct
assessment of the relative proportions of deleterious,
neutral, and beneficial mutations.

2. Due to the design of the experiment, the risk of secondary
mutations in the course of the experiment is minimized—
hence, the estimates are likely to represent the actual
effect of single mutations.

3. As a consequence of the bulk competition, identical con-
ditions for all mutations are certain. In particular, pre-
vious studies have shown that the EMPIRIC bulk
competition produces quantitatively similar selection
estimates to those of a binary competition—no fre-
quency-dependent effects or other complications owing
to the high number of mutants in the culture were ob-
served (Hietpas et al. 2011, Figure S1B; Hietpas et al.
2013, Figure S5; and Roscoe et al. 2013, Figure 2B).
However, this approach is limited in the sense of consid-
ering only the DFE of a single region (as opposed to
laboratory selection experiments that inherently con-
sider the whole genome), and (as with all such experi-
mental approaches) the selective pressures chosen may
not well represent the pressures faced by the organism
in nature.

Due to the growing availability—and decreasing cost—of
such next-generation sequencing (NGS) and other high-
throughput technologies, it is likely that sequencing and/
or molecular genotyping will become the methods of choice
for estimating fitness and for experimentally evaluating the
fit of classic population-genetic models like the FGM. The
estimation of fitness from NGS data presents unique chal-
lenges and sources of error in comparison to traditional
methods, such as the counting of phenotypically marked
genotypes, and computational tools to analyze such data are
largely lacking (but for an example, see Fowler et al. 2011).
Thus, we here introduce a Bayesian Monte Carlo Markov
chain (MCMC) method to obtain statistically meaningful
estimates of selection coefficients from EMPIRIC and related
experiments. We use this method to analyze data sets con-
taining 560 different codon changes from Hsp90 in Saccha-
romyces cerevisiae under six environmental conditions
(including selective challenges of both temperature and sa-
linity). We show that the experimental method results in
highly accurate fitness measurements, even allowing for
the detection of a deleterious synonymous codon, and fur-
ther demonstrate the increased (and predicted) potential for
beneficial mutations as the population is brought farther
from the optimum phenotypic state. When comparing the
DFEs consisting of one- vs. several-nucleotide steps, we ob-
serve a strong correspondence with what is predicted about
the nature of adaptive walks by the FGM—namely, that
there is a higher potential for beneficial mutations compris-
ing multiple-nucleotide steps when the population is far
from the phenotypic optimum, whereas such mutations
are likely to have deleterious effects when the optimum is
close.

Materials and Methods

EMPIRIC experimental procedure and
environmental challenges

Library construction, bulk competitions, and sequencing
were performed as previously described (Hietpas et al.
2013). Briefly, codon substitution libraries for the amino
acid 582–590 region of yeast Hsp90 (Hsp82) were trans-
formed into the DBY288 shutoff strain (can1-100 ade2-1
his3-11,15 leu2-3,12 trp1-1 ura3-1 hsp82::leu2 hsc82::
leu2 ho::pgals-hsp82-his3) of S. cerevisiae by the lithium
acetate method (Gietz and Woods 2002). The yeast library
was amplified in nonselective galactose (Gal) medium with
100 mg/ml ampicillin (1.7 g yeast nitrogen base without
amino acids, 5 g ammonium sulfate, 0.1 g aspartic acid,
0.02 g arginine, 0.03 g valine, 0.1 g glutamic acid, 0.4 g
serine, 0.2 g threonine, 0.03 g isoleucine, 0.05 g phenylal-
anine, 0.03 g tyrosine, 0.04 g adenine hemisulfate, 0.02 g
methionine, 0.1 g leucine, 0.03 g lysine, 0.01 g uracil per
liter with 1% raffinose and 1% galactose) for 12 hr at 30�
and transferred to selective dextrose medium (identical to
Gal medium but raffinose and galactose replaced with 2%
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dextrose) at 30� for 8 hr to begin shutoff of the wild-type
copy of Hsp90 . After 8 hr, the library culture was split into
six distinct environmental conditions (25�, 30�, 36�, 25� +
S, 30� + S, and 36� + S, where S represents the addition of
0.5 M sodium chloride), and the cultures were grown for
12–20 generations with samples taken at distinct time
points and stored at 280�. Wild-type generation time was
calculated by monitoring the increase in OD600 of a mono-
culture of DBY288 cells harboring the wild-type Hsp90 con-
struct under each environmental condition. Yeast lysis, DNA
isolation, and preparation for Illumina sequencing were per-
formed as previously described (Hietpas et al. 2012). Se-
quencing was performed by the University of Massachusetts
deep sequencing core facility and generated �30 million
reads of 99% confidence at each read position as judged by
PHRED scoring (Ewing and Green 1998; Ewing et al. 1998).

Timescaling and outlier detection

To account for the slower growth of S. cerevisiae in stressful
environments, we scaled the data such that sampling times
are specified in hours. In other words, we measure the
growth rate per hour instead of per wild-type generation
(as commonly done), which results in a less intuitive inter-
pretation of the growth rates but at the same time allows for
a more consistent comparison of growth rates across envi-
ronments. Missing data points are replaced with zeros.

Similar to previous studies, 10 of the randomized codons
that result in internal HpaII sites (endonuclease was used in
processing samples) were removed from further analysis.

To correct for sequencing errors at single sampling points
that can, for example, arise from amplification errors during
the sequencing procedure (for some example trajectories,
see Supporting Information, Figure S1), we performed an
outlier-detection step on the basis of an individual mutant’s
trajectory. We acknowledge that some fraction of these re-
moved data points could reflect biologically interesting non-
log-linear effects; however, it is likely that the majority are
errors and so their removal is necessary. In Results and Dis-
cussion, we show that performance is optimized when using
the log ratio of the mutant’s read number to the total num-

ber of reads at each individual time point. These ratios serve
as the basis for an outlier detection using the DFBETA sta-
tistic, using a cutoff of 2 (Belsley et al. 1980).

Model underlying the MCMC and estimation procedure

Each mutant i 2 {1, . . . , K} in the culture has an initial
population size ci at the beginning of the experiment and
is assumed to grow exponentially at a constant rate ri (cf.
Figure S2). The true abundance of an exponentially growing
mutant in the population, Ni(t), follows the equation
NiðtÞ ¼ cierit; where ci is the (true) population size of that
mutant at time 0, ri is the growth rate of a particular mutant
i, t 2 {1, . . . , T} is the sampling time point in hours, and T is
the number of sampling time points.

At each sampling point and for each mutant i, sequencing
reads are drawn from a multinomial distribution with
parameters nt (total number of reads at time t) and {p1,
p2, pk}, where piðtÞ ¼ cierit=

PK
k¼1cke

rkt is the relative amount
of mutant i in the population after t generations of exponential
growth at rate ri. We assume that each sampling point t rep-
resents an independent drawing experiment of ni,t reads for
each mutant i from the total amount of reads

PK
i¼1ni;t ¼ nt:

Hence, the overall likelihood is the product of the individual
likelihoods, Lðc; r  jDataÞ ¼ Q

t2TLðc; r; tjfn1;t; n2;t; . . . ; nK;tgÞ:
For each mutant, we estimate its initial population size ci
and the corresponding growth rate ri. However, since we
measure relative abundance of each mutation, only relative
sizes and growth rates can be estimated, which reduces the
effective number of estimated parameters by 2. Sampling
points that were detected as outliers were excluded from
the analysis for the respective mutant and time point. To
preserve the overall read number for the multinomial sam-
pling (and hence the multinomial probabilities), the sum of
these dropped counts was added in an additional row for
each time point at the end of the data set. This creates a set
of at most T additional parameters that account for all out-
liers of the respective time point.

To allow for arbitrary distributions of growth rates and
initial population sizes, we use improper priors for all
estimated parameters that give equal prior probabilities to

Figure 1 Sensitivity (A) and specificity (B) of outlier detection obtained from 100 simulated data sets each for three different percentages of outliers and
six detection methods. Boxes represent the interquartile range (i.e., the 50% C.I.), whiskers extend to the highest/lowest data point within the box61.5
times the interquartile range, and black and gray circles represent close and far outliers, respectively. Clearly, DFBETA-TOT performs best in terms of
sensitivity while maintaining a reasonable specificity. Note the increased amount of outliers when regression is based on mutant-to-wild-type ratio (WT)
compared with mutant-to-total (TOT) regression.
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all attainable values of ri and ci (i.e., ri 2 ℝ+ and ci 2 ℕ), but
the method allows for the implementation of any kind of
prior assumptions. We implemented a Metropolis–Hastings
algorithm in R to compute the stationary distribution of the
MCMC. The variances of the proposal distributions were set
such that the acceptance ratio was kept between 20 and
30%. A burn-in phase of 5,000,000 accepted parameter
combinations and a subsequent estimation phase of
10,000,000 accepted values ensured convergence of the
MCMC for the high number of parameters that are estimated
simultaneously. Subsampling of every 1000th parameter
combination resulted in the data sets used for further anal-
ysis. The R package “coda” was used to confirm convergence
and mixing of the MCMC.

During the estimation phase, the wild-type sequence was
normalized to growth rate r = 1 in every generation and its
population size to 10,000—both values representing an ar-
bitrary choice that does not affect the outcome of the esti-
mation. A corrected mean of the growth rates of all mutations
synonymous to the wild type is later used as a normalization
constant, and all growth rates are rescaled accordingly. This
approach improves the reproducibility of fitness estimates
from full experimental replicates (cf. Results and Discussion).
The original wild-type sequence is excluded from further
analysis. The corrected mean is determined as the mean
growth rate of those mutants that are synonymous to the
wild type (excluding the original wild type itself) and that
are within the mean plus or minus two standard deviations
from the mean of the set of all mutants synonymous to the
wild-type sequence. This accounts for potential outliers of
the distribution of synonyms (cf. Results and Discussion).
After this procedure, 560 single-nucleotide mutations (in
all environments) remain for further analysis.

Test data sets

To evaluate experimental noise, the power of the MCMC,
and the reliability of the outlier detection, we created 800
simulated data sets according to the above-described model

with varying amounts of artificial noise. Distributions of
fitness effects and initial population sizes were drawn from
the empirical distributions of the respective parameters
obtained from the 30� and 30� + S data sets to represent
a fast- and a slow-growing sample data set. A distribution of
artificial wild-type-synonym growth rates was drawn from
a normal distribution with mean 1 and variance obtained
from the empirical distribution of wild-type synonyms. Of
note, we are not able to detect any sequencing errors that lie
within the range of the distribution that arises from multi-
nomial sampling. Therefore, we obtained the expected
mean sampling number at a time point, mt, and its standard
deviation s. We then introduced outliers drawn as random
values from a log-uniform distribution in the interval [1/
10mt, 10mt], excluding the interval of the expected mean
sampling number at a data point plus or minus four times its
standard deviation (i.e., [mt 2 4s, mt + 4s]). We used four
different probabilities of outliers, f = 0, 0.01, 0.05, 0.1. Out-
liers were assigned independently for each data point. We
then performed the outlier detection on all data sets, using
the DFBETA statistic, and ran the MCMC for 50 simulated
data sets for 30�+ S both with and without outlier detection
for f = 0, 0.01, 0.05.

Results and Discussion

Evaluation of the MCMC approach

We evaluated two different methods to perform a linear
regression as a basis for outlier detection, utilizing the
simulated data sets detailed in Materials and Methods. First,
we based the regression on log ratios of mutant to wild-type
reads (in the following, we abbreviate this approach to WT),
which is the commonly used method (e.g., Hietpas et al.
2011)—however, we hypothesized that potential noise in
the wild-type measurement that transfers to all measure-
ments could cause deviations in the estimates. For compar-
ison, we based the regression on log ratios of mutant reads

Figure 2 (A) Improvement of root mean square errors (RMSE) of linear regression estimates upon outlier detection, calculated as RMSE with outlier
detection divided by RMSE without outlier detection. Improvement of up to 20% is possible under moderate amounts of outliers. With regression based
on mutant-to-wild type (WT), outlier detection can be highly disadvantageous. (B) Improvement of RMSE upon normalization to wild-type-synonym
distribution instead of single wild-type sequence, calculated as RMSE based on synonym distribution divided by RMSE based on single wild-type
sequence. All analyses were performed on simulated data sets. Boxes represent the interquartile range, whiskers extend to the highest/lowest data
point within the box 61.5 times the interquartile range, and black and gray circles repesent close and far outliers, respectively.
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to the sum of all reads for that time point (abbreviated by
TOT). Compared with the former procedure, this introduces
an error that is due to the nonexponentiality of a sum of
exponentially growing individuals with different growth
rates. Figure 1 and Figure 2 (as well as Figure S3 and Figure
S4) show that this error is small compared with the poten-
tial noise that sampling variance and mismeasurement of
the wild-type sequence introduce into each measure-
ment—which suggests that for similar next-generation
sequencing data sets containing many mutants with individ-
ually low read numbers, the log ratio of mutant-to-total read
number (or to another, ideally large subset of read numbers)
provides much better estimates than the commonly used
mutant-to-wild-type ratio.

Furthermore, we tested three commonly used outlier
detection methods, based on the residuals of a linear re-
gression of the above-described log ratios: a modified z-score,
the DFBETA statistic, and Cook’s distances. These were chosen
to represent different levels of complexity and differently con-
servative statistics. Whereas the modified z-score (MODZ)
is solely based on the residuals of a simple linear regression,
both DFBETA and Cook’s distances (COOK) are based on the
change in parameters upon rejecting individual data points.
Hereby, DFBETA calculates the effect on the estimated param-
eters (i.e., slope and intercept of the linear regression) sepa-
rately, whereas COOK computes an aggregate measure of
influence of a data point. As suggested in the literature (Belsley
et al. 1980), we chose cutoffs of 3.5 for MODZ, 2 (as a conser-
vative cutoff for small data sets) for DFBETA, and 4/n (where
n is the number of sampling points) for COOK.

We classified the fraction of true positives (TP) (i.e., sam-
pling points correctly classified as outliers), false positives
(FP) (i.e., sampling points wrongly classified as outliers),
true negatives (TN) (i.e., sampling points correctly classified
as not being an outlier), and false negatives (FN) (i.e., true
outliers that were not identified as such), as well as the
sensitivity and the specificity for each of the regression
methods combined with each of the detection methods.
The results are shown in Figure 1 and Figure S3.

Next, we evaluated the root mean square error (RMSE)
of growth rate estimates based on a linear regression with

different outlier detection methods and under different
normalization (cf. Figure 2 and Figure S4). Figure 2A shows
that even if no outliers are present in the data, the outlier
detection methods DFBETA and COOK improve the esti-
mates. This owes to the fact that they filter a part of the
sampling noise from the multinomial sampling. However,
because not many real data points are discarded using
DFBETA (cf. fraction of false positives in Figure S3), we
consider this effect unproblematic. Regardless, the regres-
sion based on TOT demonstrates much better results than
WT, likely owing to the inability to detect outliers in the
wild-type sequence reliably. For the same reason, it is favor-
able to use a normalization of growth rates to the distribu-
tion of synonyms instead of a normalization to the wild-type
sequence, as is shown in Figure 2B. Although the median
improvement in the RMSE stays close to 0, the quality of
estimates can, in some cases, increase by up to 80% if the
normalization is based on the distribution of synonyms. Nat-
urally, and apart from the above-described filtering of sam-
pling noise, the knowledge of the true outliers is favorable in
the case of many outliers (cf. Figure S4B).

We also evaluated the fraction of mutations for which the
95% credibility interval of the MCMC estimate includes the
true growth rate (Figure 3), comparing no outlier detection
with the DFBETA detection method and the knowledge of
the true outliers (notably a case that is unachievable for real
data). Whereas the performance is similar if no outliers are
present in the data set, there is a steep decline in the pro-
portion of well-estimated growth rates if 1 or 5% of outliers
are present and no outlier detection is conducted. At the
same time, the performance with outlier detection is almost
as good as if true outliers are known. However, we note that,
even if the estimation of growth rates from EMPIRIC bulk

Figure 3 Performance of MCMC on 50
simulated data sets for each percentage
of outliers and each mode of outlier de-
tection/knowledge. Boxes represent the
interquartile range, whiskers extend to
the highest/lowest data point within
the box 61.5 times the interquartile
range, and gray circles represent out-
liers. (A) Proportion of mutations for
which the 95% credibility interval of
the MCMC estimate includes the true
growth rate. Outliers are mostly due to
cases of wrong normalization that yield

systematic displacement of all posteriors, where the correlation between true and estimated values is not affected (see B). (B) Pearson’s R2 measure of
correlation between the estimated median growth rates for each mutant in the data set and its true value. Correlation and 95% overlap are much
improved for 1 and 5% outliers if outlier detection is performed.

Table 1 Relative growth rates of the standard wild type in the six
environments

Temperature Standard salinity Elevated salinity

25� 0.63 0.3
30� 1 0.45
36� 0.83 0.33
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competition experiments is on average very accurate, state-
ments about single mutations should ideally be reinforced
by experimental replicates or separate competition assays.

In conclusion, all obtained results point toward DFBETA
in combination with the regression approach TOT for outlier
detection and a normalization based on the distribution of
synonyms instead of the wild-type sequence only being the
most reliable data processing steps that should be un-
dertaken to filter sequencing errors.

Evaluation of the DFE in six environments

We next applied our novel MCMC approach to characterize
changes in the DFE across six environmental conditions.
Following Hietpas et al. (2011), deep sequencing of system-
atic mutant libraries was used to evaluate the fitness of 560
point mutants in a nine-amino-acid window of Hsp90. Hietpas
et al. (2013) evaluated four environmental conditions and
performed analyses only at the amino acid level based on
log-linear regressions. Thus, we here add two additional
environmental conditions, perform analyses based on the

nucleotide level, and implement a Bayesian MCMC ap-
proach to incorporate uncertainty into our estimates based
on an exponential growth model.

Hsp90 is a well-studied chaperone that aids in protein
folding, especially at high temperatures (Borkovich et al.
1989). As such, the experimental treatments included three
different temperatures (25�, 30�, and 36�), with the expected
importance of Hsp90 increasing with temperature. Three
additional treatments consisted of the addition of 0.5 M
sodium chloride (NaCl) at each temperature (hereafter re-
ferred to as the 25S, 30S, and 36S treatments). Elevated
NaCl does not induce increased Hsp90 levels (Gasch et al.
2000; Causton et al. 2001; Berry and Gasch 2008), although
its basal activity is required for activation of the high-osmo-
larity glycerol pathway that provides for efficient growth in
elevated salinity environments (Hohmann 2002; Yang et al.
2006, 2007; Hawle et al. 2007). Based on these observations
and the absolute growth rates of wild-type yeast in the six
environments (Table 1), we state the following (cf. also
Hietpas et al. 2013):

Figure 4 Histograms of the DFEs in all six environments,
where the estimated median growth rate of each mutant
relative to wild type (on the x-axis) is used as a proxy for
the selection coefficient. All DFEs but the 25S environment
show a bimodal shape. Subsets of wild-type synonyms and
stop codons are depicted in blue and red, respectively.

Figure 5 Proportions of beneficial, wt-like, deleterious,
and strongly deleterious mutations distinguished by muta-
tional step size (1-, 2-, or 3-nt changes, as indicated on the
x-axes of the bar charts) in the six environments. In gen-
eral, the proportion of deleterious mutations decreases
with the number of nt steps. In those environments that
present a greater environmental challenge (B–D and F) the
number of beneficial mutations increases with the muta-
tional step size, whereas it tends to decrease for the stan-
dard environment and the high-temperature environment
(A and E). An alternative representation of the mutational
categories, based on the overlap of the posterior distribu-
tion with 1, can be found in Figure S5.
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1. Thirty degrees corresponds to the standard condition.
Therefore, this environment represents the one that yeast
is best adapted to. Every other environment represents
some kind of “adaptive challenge”, which is reflected in
lower absolute growth rates.

2. The constraint on the protein function of Hsp90 grows
with increasing temperature. However, absolute growth
rates imply that wild-type yeast is better able to cope
with increased than with decreased temperature.

3. Absolute growth rates indicate that elevated salinity rep-
resents a greater environmental challenge than a change
in temperature. However, elevated salinity does not re-
sult in higher constraint on Hsp90 protein function.

A description of our findings concerning the shape of the
DFE in these six environments and the implications for the
potential of adaptation to challenging environments follow.

The shape of the full DFE

Figure 4 shows the histograms of the full DFEs obtained for
all six environments. All DFEs but that for the 25S environ-

ment are bimodal, with one mode centered at wild-type-like
fitness and the other mode centered at stop-codon-like fit-
ness. It is likely that the bimodal shape is not seen for 25S
because the absolute growth rate of the wild type is the
lowest (cf. Table 1). Therefore, the difference between
wild-type-like and stop-codon-like fitnesses is smaller. Sec-
ond, we find the largest beneficials in the 25S environment,
resulting in many low read numbers at later time points of
the experiment that frequently induce overestimation of del-
eterious selection coefficients (cf. Figure S2). However, Fig-
ure 4 shows that we can clearly distinguish wild-type-like
and strongly deleterious mutants although the relative loca-
tion of the deleterious mode differs between environments
dependent on the relative growth of the wild type between
environments (generally slower growth at high salinity) and
on the duration of the experiment.

The strong mutational constraint on the protein in the
high-temperature environment (36�) in conjunction with
a relatively high relative growth rate of the wild type results
in the most clearly different DFE among the six environ-
ments, with a huge number of deleterious mutants, and
almost no mutants better than wild-type average. In con-
trast, the 25�, 25S, and 30S environments, which present
challenging environments, but wherein Hsp90 is potentially
under less constraint, harbor adaptive potential reflected in
many mutations that have higher growth rates than the
wild-type average.

To compare the absolute numbers of beneficial and
deleterious mutations, we chose a global cutoff of jrj ,
0.004 that we define as the wild-type-like (“wt-like”) growth
rate. This is a conservative cutoff based on the largest mean
95% credibility interval of wild-type-synonymous mutations
across all six environments. Of note, the wt-like category is
not necessarily the same as a neutral class of mutations.
How many of our observed mutations are effectively neutral
is highly dependent on the effective population size, which
is probably very high in the bulk competition experiment
(cf., e.g., Skelly et al. 2009, who estimate Ne � 2.6 3
107). Since neutral mutations are expected to be those with
s # 1/Ne, the threshold for effective neutrality is probably
very low and unlikely to be captured by any existing exper-
imental method. In the following, we characterize and com-
pare the DFEs in more detail, based on the above-described
categorization.

Evaluating changes in selective pressure on the
DFE—one-, two-, and three-step mutations

Because every possible codon was tested at every amino acid
position, we can split the full data set into subsets containing
mutations that are one-, two-, and three-nucleotide (nt)
changes away from the wild-type sequence. These can be
interpreted as representing different step numbers in a po-
tential adaptive walk. Of note, only the one-step subset
comprises all 81 possible single-nt mutations, whereas the
other categories contain subsets of all possible two- and
three-step walks in sequence space.

Figure 6 Variance of the DFE for all mutants and the subset of single-nt
mutants. Variance is substantially higher for the whole data compared
with the single-step mutants. Median variance (solid circles) and 95%
credibility intervals based on 10,000 samples from the posterior are
shown.
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Figure 5 shows bar charts of the proportions of beneficial,
wt-like, deleterious, and strongly deleterious mutants for
each of the mutational step classes. We observe the following:

1. The proportion of wt-like mutations decreases with the
number of nt changes, whereas the number of deleteri-
ous and strongly deleterious mutations increases. This is
always true for the difference between one- and two-step
mutations. This is consistent with a generally lower effect
size of single-nt mutations compared with multiple-nt
steps—but also with the population residing in a position
in the sequence space that confers high mutational ro-
bustness (see also Figure 3D in Hietpas et al. 2011). This
observation is consistent between all environments.

2. The proportion of beneficial mutations consistently
increases with the number of nt steps in the 25�, 25S,
30S, and 36S environments (i.e., environments imposing
a selective challenge that does not require higher Hsp90
expression). Conversely, the number of beneficials tends
to decrease in the standard environment and the 36C
environment. These observations show a stunning corre-
spondence with predictions of the FGM, if one takes into
account that we cannot categorize mutations of small
fitness effect. In the standard environment, the optimum
is close to the current phenotype, and each successive
mutational step is likely to overshoot or move away from
the optimum, resulting in fewer beneficial and wt-like
mutations. On the other hand, if the optimum is shifted
away from the current phenotype by presenting a new
environmental challenge, there is more potential for
mutations to have a beneficial effect, because they are
more likely to leave the wt-like area. Hence more steps
(or, alternatively, larger arrows) may more likely result in
advantageous mutants.

3. The variance of the DFE is higher at 30� and 36� than it is
at 25�, as might be expected if Hsp90 is less important for
fitness in the 25� environment. Variance is substantially
lower for the one-step mutants in comparison to all mutants,
again suggesting that the wild-type sequence is fairly robust
to nearby changes in sequence space (Figure 6).

We used a Kolmogorov–Smirnov (KS) test to evaluate
whether the distributions of one-, two-, and three-step
mutations are significantly different from each other and
from the complete DFE. The resulting P-values are summa-
rized in Table 2. We observe that the single-step DFE is
significantly different from the other distributions, in partic-

ular for the 30� and 36� data sets, which are those that are
suggestive of being fairly well adapted and close to the phe-
notypic optimum (cf. the following subsection). Hence, the
difference in the distributions likely results not from differ-
ences in the beneficial tails of the distributions, but rather
from a difference in the proportions of deleterious vs. wt-like
mutations (cf. Figure 5). This implies that during adaptation,
populations move not only to a local fitness peak but also to
a location in the sequence space that confers mutational ro-
bustness, such that single-nt mutations are less likely to result
in unfit progeny. This is in accordance with a recent study of
an RNA virus, showing that mutational robustness evolves
even on the level of codon usage (Lauring et al. 2012).

The distance to the optimum according to the FGM

Martin and Lenormand (2006) proposed that the distance to
the phenotypic optimum according to the FGM can be esti-
mated by fitting a so-called displaced-gamma distribution to
the distribution of fitness effects. A displaced-gamma distri-
bution has the shape of a negative gamma distribution,
shifted by a parameter m to accommodate beneficial muta-
tions. To determine the respective distances to the pheno-
typic optimum in each environment, which is given by m, we
used a maximum-likelihood approach to fit displaced-
gamma distributions to the wild-type-like mode of our DFEs
for all six environments [the wild-type-like mode of the DFE
for each environment was defined based on the cutoff de-
termined during the initial data preparation (cf. Materials
and Methods)]. The resulting distances to the optimum are
summarized in Table 3 and a graphical representation of the
fitted curves can be found in Figure S6. Largely consistent
with what we have reported on the basis of amino acids
(Hietpas et al. 2013), the distance to the optimum is lowest
for the 36S and 36� environments that are under the highest
Hsp constraint. The largest distances to the optimum are
estimated for the 25S and 25� environments.

To test whether the displaced-gamma estimates from the
single-nt subset differ significantly from those obtained from

Table 3 Estimated distances [95% C.I.] to the optimum under the
assumption of a displaced-gamma distribution, obtained from 100
samples from the posteriors

Standard salinity Elevated salinity

25� 0.0173 [0.0128, 0.0246] 0.0235 [0.0219, 0.0249]
30� 0.0083 [0.0061, 0.0117] 0.0106 [0.0090, 0.0114]
36� 0.0075 [0.0063, 0.0096] 0.0064 [0.0051, 0.0085]

Table 2 Comparison of the one- (1), two- (2), and three (3)-step subsets with the full DFE, using a K-S test

Data set 1 – all 2 – all 3 – all

30� 0.008 [0.001, 0.042] 0.758 [0.479, 0.946] 0.071 [0.022, 0.152]
30S 0.385 [0.141, 0.617] 0.992 [0.830, 1.000] 0.976 [0.801,0.998]
25� 0.268 [0.083, 0.393] 0.983 [0.882, 0.999] 0.510 [0.382, 0.637]
25S 0.104 [0.019, 0.280] 0.851 [0.479, 0.996] 0.887 [0.694, 0.986]
36� 0.013 [0.006, 0.022] 0.994 [0.963, 0.999] 0.150 [0.100, 0.202]
36S 0.034 [0.005, 0.112] 0.999 [0.925, 1.000] 0.549 [0.247, 0.843]

Significant P-values are shown in boldface type. P-values are obtained as the median [95% C.I.] of 1000 samples from the posterior.
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the full data set, we compared the posterior estimates of the
distance to the optimum between data sets. To take into
account the effect of the smaller single-step data sets, we
repeated the fitting exercise with random subsets of the full
data set of the same length as the single-step data. The
results are summarized in Figure 7.

Clearly, the estimated distances to the optimum between
the full and the single-step data set differ dramatically when
the distance to the optimum is large (i.e., particularly in the
25� and 25S environments). Even though the estimation from
subsets of the full data naturally results in a higher variance
of estimates, this cannot account for the observed differences
in the estimates. This has a number of implications:

1. The estimate of the distance to the optimum seems to be
primarily determined by the maximum growth rate in the
data set. Therefore, the estimates from the subsets of the
full data are on average lower than those from the com-
plete data. This implies that the estimate of m is critically
dependent on the successful sampling of beneficial
mutants. This can be ensured only in large data sets or
lengthy laboratory selection experiments.

2. In those environments that provide potential for adaptation
(as suggested by a high number of beneficials), m is generally
underestimated when only the single-nt subset of the data is
used—in fact, the maximum observed effect lies frequently
above the proposed distance to the optimum estimated from
the single-step data set. Hence, single-nt mutations are not
sufficient to explore the adaptive landscape well enough to
make a statement about the distance to the optimum. This
corresponds well to the above observations of larger potential
for adaptation to challenging environments in multiple-step
mutations (cf. Figure 5 and discussion thereof).

The shape of the beneficial tail of the DFE

The shape of the beneficial tail of the DFE harbors important
information about the course and the predictability of
evolution. The FGM predicts bounded fitness tails if the
optimum is close and an exponential distribution of bene-

ficial fitness effects when the optimum is far away (Martin
and Lenormand 2008). However, given that the distribution
of beneficial effects indeed represents a tail distribution, all
possible tail shapes can be summarized in the generalized
Pareto distribution (GPD), and its shape parameter k yields
information about the domain of attraction of the underly-
ing DFE (Beisel et al. 2007; Joyce et al. 2008). So far, most
experimental studies have reported exponential tail distri-
butions (e.g., Kassen and Bataillon 2006; MacLean and
Buckling 2009), but there exist also reports of bounded ben-
eficial tails (Rokyta et al. 2008; Bataillon et al. 2011), and
a recent example of a potentially heavy-tailed distribution of
beneficial effects that would not be accounted for by the
FGM (Foll et al. 2014).

We fitted the GPD to the beneficial part of our data to
compare the tail shapes across environments. The resulting
shape parameter estimates are shown in Figure 8. For all but
the 25S environment, the negative shape parameter esti-
mates indicate that the DFE most likely belongs to the Weibull
domain, i.e., that the DFE is bounded to the right. This
would indicate that there is indeed a close optimum and
that mutational effects cannot exceed a certain value. How-
ever, for the 25S environment, the shape estimates indicate
that the DFE might belong to the Frechet domain, i.e., that it
has a heavier-than-exponential tail. If the beneficial DFE is
heavy-tailed, the size of beneficial fitness effects can be very
large and the step size of adaptive evolution will be highly
unpredictable.

Effects of synonymous mutations

Many population-genetic statistics rely on the assumption
that synonymous mutations in coding regions (i.e., muta-
tions that do not change the amino acid and hence the protein
sequence) have equal fitness [e.g., the McDonald–Kreitman
test (McDonald and Kreitman 1991) and the HKA test (Hudson
et al. 1987)]. However, an increasing number of studies have
reported fitness differences between synonymous mutations
(e.g., Singh et al. 2007). It is still unclear, however, how these
fitness differences arise, although one common hypothesis

Figure 7 Estimates of the distance to the op-
timum from full data sets, single-step data sets,
and subsets of the full data with the same
length as the single-step data set and maxi-
mum selection coefficients. The larger the esti-
mated distance to the optimum from the full
data set, the greater is the difference from the
single-nt subset. Further, the estimated dis-
tance from the optimum appears largely deter-
mined by the maximum selection coefficient
(equivalent to the estimated growth rate minus
1) identified in the data set. Estimates were
obtained from 100 samples from the posterior
for each data set and category. Boxes represent
the interquartile range, whiskers extend to the
highest/lowest data point within the box 61.5
times the interquartile range, and gray circles
represent outliers.
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suggests that, e.g., codon composition can affect RNA pack-
aging (Sauna and Kimchi-Sarfaty 2011). The high precision
of the EMPIRIC estimates enables us to explicitly study the
distribution of synonymous fitness effects. Each of our data
sets comprises 15 mutations that are synonymous to the
wild-type sequence, and even within this small selection,
we identify a deleterious outlier that persists across repli-
cates and in three of the six different environments (cf. Fig-
ure 9 and Figure S7). The identified mutation 588aac
represents an unpreferred change coding for asparagine.

Genotype 3 environment interactions

While the overall shape of the DFE is similar between
environments (Figure 4), different individual mutations may
nonetheless have very different effects, depending on the
environment. Such a scenario is referred to as a genotype 3
environment (G 3 E) interaction, wherein the fitness effect
of a mutation depends on its environment. The consistency
of evolutionary responses of populations to different envi-
ronments will depend in large part on the extent of G 3 E,

which can be captured as the covariance of fitness effects
between environments. If covariance is high, then we expect
populations to follow very similar trajectories, since the
same mutations are beneficial or deleterious in each envi-
ronment. By contrast, if covariance is low or negative, then
different mutations would be expected to accumulate be-
tween populations. The extent and magnitude of G 3 E is
of substantial current interest (e.g., Lazzaro et al. 2008;
Gerke et al. 2010) and is typically inferred from studies of
standing variation in natural populations. Thus, the current
data set represents a unique opportunity to examine the
extent to which fitness varies with environment for new
mutations.

We find strong between-environment correlations for all
mutants (cf. Table 4) and for the 81 single-step mutants
(data not shown), with correlation coefficients ranging from
0.76 to 0.97 (all mutants) or from 0.80 to 0.97 (single-step
mutants). This result suggests that, on the whole, the sign
and magnitude of selection coefficients are consistent be-
tween environments. Further consideration, however, sug-
gests that there is substantial variation in fitness effects
between environments for particular classes of mutation.
For example, among the 76 mutants that are beneficial in
at least one environment, correlation coefficients range from

Figure 9 Box–whisker plot of the growth rates of the 15 mutations
synonymous to the wild-type sequence in the standard environment
(30�), based on 1000 samples from the posterior distribution. Boxes rep-
resent the interquartile range, whiskers extend to the highest/lowest data
point within the box 61.5 times the interquartile range, and black circles
repesent outliers.

Figure 8 Estimated k parameter under the generalized Pareto distribu-
tion (GPD) from 1000 samples from the posterior, taking into account all
mutations with r . 1 in the sample. Negative k estimates indicate
a bounded beneficial DFE (i.e., Weibull domain of the DFE tail) for all
but the 25S environment, suggesting a heavy-tailed distribution (i.e., DFE
belonging to the Frechet domain of attraction). Because of the low num-
ber of beneficial mutations in the 36� environment, there is little power to
estimate its tail shape.

Table 4 Correlations and covariances between fitnesses in different environments for all mutants (n = 560)

Environment 25� 25S 30� 30S 36� 36S

25� 0.0012 0.76 0.97 0.91 0.85 0.93
(0.75–0.77) (0.97–0.98) (0.90–0.92) (0.85–0.86) (0.92–0.93)

25S 0.00029 0.00012 0.82 0.86 0.77 0.85
(0.00029–0.00031) (0.81–0.83) (0.84–0.88) (0.76–0.78) (0.83–0.86)

30� 0.0017 0.00047 0.0026 0.95 0.89 0.97
(0.00029–0.00031) (0.00045–0.00048) (0.94–0.96) (0.88–0.89) (0.96–0.97)

30S 0.00055 0.00017 0.00083 0.0003 0.84 0.95
(0.00054–0.00056) (0.00016–0.00017) (0.00082–0.00085) (0.83–0.84) (0.95–0.96)

36� 0.0018 0.000528 0.0027 0.00088 0.0037 0.91
(0.0018–0.0018) (0.00051–0.00054) (0.0027–0.0028) (0.00086–0.00090) (0.91–0.92)

36S 0.00070 0.00021 0.0011 0.00036 0.00128 0.00047
(0.00069–0.00072) (0.00020–0.00021) (0.0010–0.0011) (0.00035–0.00037) (0.0012–0.0012)

Correlation coefficients are given above the diagonal, covariances are below the diagonal, and within-environment variances are on the diagonal (boldface type). Values
given are median and 95% credibility intervals from 10,000 samples of the posterior.
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2078 to 0.87 (cf. Table S1). Correlations between high salt
and normal salt environments tend to be negative, indicat-
ing that mutations that are neutral or beneficial in salt tend
to be deleterious in normal salinity and vice versa. Muta-
tions that are deleterious in at least one environment (cf.
Table S2) also have heterogeneous effects, albeit to a lesser
extent than beneficial mutations, with correlation coeffi-
cients ranging from 20.12 to 0.86.

Conclusions

With a rich population-genetic framework that has been
a century in the making describing the adaptive and stochastic
forces governing the evolutionary process, and an impressively
growing body of data sets from experimental evolution, the
most important remaining piece for assembling this evolution-
ary puzzle is the development of a robust statistical framework
for characterizing the underlying DFE. We here present
a Bayesian MCMC approach shown to have a number of
advantages over existing methodology. Using this developed
framework, and utilizing a novel NGS experimental data set,
we validate a number of predictions of Fisher’s geometric
model: the DFE is dispersed as the population is brought
farther from the optimum state, resulting in an increased
number and magnitude of beneficial mutations; multiple-
step mutations are beneficial only when the optimum is
distant; and there is a strong genotype 3 environment interac-
tion. Further, the precision of this estimation procedure has
additionally provided insight into the nonneutrality of particular
synonymous mutations. While these results are in themselves
interesting within the context of furthering our understanding
of the adaptive process, the statistical approach presented here
additionally represents a robust methodology for characterizing
the DFE in future NGS experimental data sets.
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Table S1: Correlations and covariances between fitness in di↵erent environments for

mutants deleterious in all environments (n = 40). Correlation coe�cients are given

above the diagonal, covariances below the diagonal, and within-environment variances

are on the diagonal (bold face). Values given are median and 95% credibility intervals

from 10000 samples of the posterior.
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Table S2: Correlations and covariances between fitness in di↵erent environments for

mutants beneficial in at least one environment (n = 92). Correlation coe�cients are

given above the diagonal, covariances below the diagonal, and within-environment vari-

ances are on the diagonal (bold face). Values given are median and 95% credibility

intervals from 10000 samples of the posterior.
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Figure S1: Examples of two trajectories with likely single sequencing outliers in the

30S environment, corresponding to mutants 583cat (upper) and 588gac (lower). Dots

represent data points, dashed lines represent the linear regression estimate before outlier

detection, solid lines the estimate after outlier detection.
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Figure S2: Visualization of the log-linear growth of the mutants in all six environt-

ments. The slope of the slope of regressions of every two consecutive timepoints is

plotted against the overall estimated selection coe�cients from linear regression (left

panels), the root mean sqare of the residuals of a regression using all time points (mid-

dle panels) and the normalized minimum read number of the respective mutant. Colors

identify wild-type synonyms (green), stop codons (red) and mutants with estimated

selection coe�cient smaller than the middle between the mean synonym and the mean

stop codon selection coe�cient (blue). On average, growth is clearly exponential (i.e.

slope of slopes is close to 0), especially for mutants belonging to the wild-type-like mode

of the DFE. For deleterious mutants, we frequently observe deviations from log-linear

behavior that could likely result from sequencing noise e↵ects due to low read numbers

(right panels).
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Figure S3: Performance of outlier detection obtained from simulated data sets. Boxes

represent the interquartile range, whiskers extend to the highest/lowest data point

within the box ±1.5 times the interquartile range, black and gray dots repesent close

and far outliers, respectively.

Figure S4: Improvement of root mean square errors of linear regression estimates upon

outlier detection (A) and upon normalization to wild-type synonym distribution instead

of single wild-type sequence (B). Boxes represent the interquartile range, whiskers ex-

tend to the highest/lowest data point within the box ±1.5 times the interquartile range,

black and gray dots repesent close and far outliers, respectively.
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Figure S5: Proportions of beneficial, wt-like, and deleterious mutations distinguished

by mutational step size (1, 2 or 3 nt changes, as indicated on the x-axes of the bar

charts) in the six environments, where categorization is based on overlap of the posterior

distribution with 1.

C.Bank et al. 7 SI



Figure S6: Graphical representation of the fit of the displaced-gamma distribution to

the wild-type-like mode of the DFE, represented as the fit of a gamma to the reversed

and shifted histograms of the DFEs.
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Figure S7: Box-Whisker plot of 1000 samples from the posterior distribution of the

15 synonyms in all environments.Boxes represent the interquartile range (i.e. the 50%

CI), whiskers extend to the highest/lowest data point within the box ±1.5 times the

interquartile range, black and gray dots repesent close and far outliers, respectively.
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