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Simple Summary: Germline loss of the CDH1 gene is the primary genetic basis for hereditary diffuse
gastric cancer, a disease resulting in elevated risk of both diffuse gastric cancer and lobular breast
cancer. Current preventative treatment consists of prophylactic total gastrectomy, a therapy with
several associated long-term morbidities. To address the lack of targeted molecular therapies for
hereditary diffuse gastric cancer, we have utilized a synthetic lethal approach to identify candidate
compounds that can specifically kill CDH1-null cells. Inhibitors of sphingolipid metabolism and
vesicle trafficking pathways were identified as promising candidate compounds in a cell line model
of CDH1 loss, then further validated in murine-derived organoid models of hereditary diffuse gastric
cancer. With further research, these findings may lead to the development of novel chemoprevention
strategies for the treatment of hereditary diffuse gastric cancer.

Abstract: Germline inactivating variants of CDH1 are causative of hereditary diffuse gastric cancer
(HDGC), a cancer syndrome characterized by an increased risk of both diffuse gastric cancer and
lobular breast cancer. Because loss of function mutations are difficult to target therapeutically, we have
taken a synthetic lethal approach to identify targetable vulnerabilities in CDH1-null cells. We have
previously observed that CDH1-null MCF10A cells exhibit a reduced rate of endocytosis relative to
wildtype MCF10A cells. To determine whether this deficiency is associated with wider vulnerabilities
in vesicle trafficking, we screened isogenic MCF10A cell lines with known inhibitors of autophagy,
endocytosis, and sphingolipid metabolism. Relative to wildtype MCF10A cells, CDH1−/− MCF10A
cells showed significantly greater sensitivity to several drugs targeting these processes, including
the autophagy inhibitor chloroquine, the endocytosis inhibitors chlorpromazine and PP1, and the
sphingosine kinase 1 inhibitor PF-543. Synthetic lethality was confirmed in both gastric and mammary
organoid models of CDH1 loss, derived from CD44-Cre/Cdh1fl/fl/tdTomato mice. Collectively,
these results suggest that both sphingolipid metabolism and vesicle trafficking represent previously
unrecognised druggable vulnerabilities in CDH1-null cells and may lead to the development of new
therapies for HDGC.

Keywords: hereditary diffuse gastric cancer; E-cadherin; synthetic lethality; chemoprevention; endo-
cytosis; autophagy; sphingolipid metabolism

1. Introduction

Hereditary diffuse gastric cancer (HDGC) is an autosomal dominant syndrome, pri-
marily characterized by extremely elevated risks of both diffuse-type gastric cancer (DGC)
and lobular breast cancer. Men and women have an approximate lifetime gastric cancer
risk of 42–70% and 33–56%, respectively, and women have a lifetime lobular breast cancer
risk of 39–55% [1]. Pathogenic germline variants in CDH1 are the primary genetic cause
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of HDGC [2]. However, pathogenic CTNNA1 variants have been recently accepted as
causative of HDGC in a minority of families [1]. Early-stage DGC is usually asymptomatic,
and although regular endoscopic screening reduces the risk of progressive disease, surveil-
lance is not without risk [1]. Following the invasion of the muscularis propria, disease
progression is rapid, greatly limiting treatment options [3]. The only available preventative
treatment for HDGC is prophylactic total gastrectomy, which is recommended for individ-
uals harboring pathogenic CDH1 mutations that are at least 20 years old [1]. The risk of
gastric cancer is eliminated if surgery is performed at an early age. However, there are
several long-term co-morbidities associated with treatment, most commonly consisting of
diarrhea, weight loss and dumping syndrome [1]. The high penetrance of HDGC, combined
with the high morbidity of current preventative treatments, necessitates the development
of chemoprevention approaches that can exploit vulnerabilities in CDH1-null cells.

CDH1 is a tumor suppressor gene encoding the transmembrane protein E-cadherin,
which is primarily localized to the epithelial basolateral membrane, and constitutes a critical
component of adherens junctions [4]. E-cadherin undergoes homophilic ligation with
adjacent cells to maintain cell–cell adhesion, plays a role in essential cell signaling pathways
and interacts with the actin cytoskeleton through the cadherin–catenin complex [5,6]. In
addition to their role in HDGC, CDH1 mutations are commonly reported in sporadic DGC
and lobular breast cancer [7,8], and miRNA-mediated suppression of CDH1 has been
reported in intestinal-type gastric cancer [9,10].

Because tumor suppressor proteins, such as E-cadherin, are inactivated or lost in
cancer, they cannot be targeted directly for therapeutic benefit. However, the concept of
synthetic lethality can address this difficulty. Synthetic lethality describes a relationship
between two genes whereby the loss of function in either gene maintains cell viability,
but the simultaneous loss of both genes induces cell death [11]. In the context of HDGC,
synthetic lethal partner genes of CDH1 can become actionable drug targets, thus resulting in
preferential death of the CDH1-null tumor cells. Our laboratory has previously performed
a genome-wide siRNA screen, a large unknown compound screen, and targeted drug
screening to identify synthetic lethal partner genes for CDH1 in an isogenic pair of MCF10A
cell lines, one presenting with abrogated CDH1 expression [12–16]. MCF10A cells are a non-
tumorigenic breast-derived cell line exhibiting few background mutations and a relatively
stable genome [17,18]. In the absence of a suitable non-malignant gastric cell line, MCF10A
was selected for these studies because of the importance of a relatively normal background
genotype for chemoprevention studies. Additionally, the use of a breast-derived cell line
may aid in the development of novel treatment strategies for the CDH1−/− lobular breast
cancer component of HDGC. To complement this isogenic breast cell line, our laboratory
has recently established a CDH1 isogenic NCI-N87 gastric cancer cell line pair [13] and
murine-derived gastric and mammary organoid models of inducible Cdh1 loss.

We have previously shown that the loss of CDH1 results in a disorganized cell cy-
toskeleton [14] and that CDH1−/− cells exhibit a decreased rate of endocytosis [15]. Com-
bined with genome-wide siRNA screening in CDH1+/+ and CDH1−/− cells [16], and analy-
sis of expression patterns correlated with CDH1 levels in TCGA gastric cancer datasets [15],
we predicted that this might reflect wider perturbations to membrane organization and
vesicle trafficking. To test this hypothesis, we assessed inhibitors of endocytosis, autophagy,
intracellular trafficking, and plasma membrane organization in an MCF10A model of
HDGC. Promising compounds capable of preferentially inhibiting CDH1−/− cell growth
were subsequently assessed in isogenic NCI-N87 cell lines and in murine-derived gastric
and breast organoids with inducible Cdh1 loss. These findings represent previously uniden-
tified druggable vulnerabilities in CDH1−/− cells and may lead to the development of a
novel chemopreventative approach for the management of HDGC, or novel therapies for
sporadic E-cadherin-deficient cancers.
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2. Materials and Methods
2.1. Cell Culture

MCF10A and MCF10A CDH1−/− isogenic cell lines were purchased from Sigma-
Aldrich (#CLLS1042, Sigma-Aldrich, St Louis, MO, USA). Cells were cultured in Dulbecco’s
Modified Eagle Medium/Nutrient Mixture F-12 with GlutaMAX (Thermo Fisher Scientific,
Waltham, MA, USA) supplemented with 5% horse serum (Invitrogen, Carlsbad, CA, USA),
20 ng/mL EGF (Peprotech, Rehovot, Israel), 100 ng/mL cholera toxin (Sigma-Aldrich, St
Louis, MO, USA), 0.5 µg/mL hydrocortisone (Sigma-Aldrich, St Louis, MO, USA) and
10 µg/mL insulin (Novo Nordisk Pharmaceuticals Ltd., Bagsværd, Denmark).

The NCI-N87 cell line was purchased from ATCC, and the NCI-N87 CDH1−/− cell line
was generated within our laboratory [13]. Cells were grown in Dulbecco’s Modified Eagle
Medium/Nutrient Mixture F-12 with GlutaMAX (Thermo Fisher Scientific, Waltham, MA,
USA) supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA, USA).

All cells were cultured in a 37 ◦C humidified incubator at 5% CO2.

2.2. Drug Screening

For the 3-point drug screen, MCF10A and MCF10A CDH1−/− cells were seeded at
1000 cells per well in 384-well, black-walled, clear-bottom tissue culture plates (Greiner Bio-
One, Frickenhausen, Germany) in 30 µL of complete growth medium. After 24 h of growth,
to confirm sufficient seeding accuracy, outer wells were stained with 1 µg/mL Hoechst
33342 in PBS, incubated for 2 h at room temperature in the dark, then nuclei were counted
using a Cytation 5 Cell Imaging Multi-Mode Reader (Biotek, Winooski, VT, USA). If the
ratio of MCF10A:MCF10A CDH1−/− cells was between 0.65 and 1.3, plates were treated
with 10 µL of compound or respective vehicle control as previously described [19], then
incubated for a further 48 h. Cells were fixed and stained with 0.25% paraformaldehyde,
0.075% saponin and 1 µg/mL of Hoechst 33342 in PBS, incubated overnight at room
temperature in the dark, then nuclei were enumerated using the Cytation 5 Cell Imaging
Multi-Mode Reader (Biotek, Winooski, VT, USA). All automated imaging captured four
fields per well at 4× magnification, with nuclei counts normalized to the respective vehicle
control for each cell line. IC50 values were calculated using CompuSyn software. All
experiments were performed in biological duplicates.

For subsequent 9-point drug screening, identical methodology was utilized, with
the following modifications. MCF10A and NCI-N87 isogenic cell lines were seeded at
4000 and 10,000 cells per well, respectively. MCF10A cells were seeded in 96-well, black-
walled, clear-bottom tissue culture plates (Corning, Corning, NY, USA) in 90 µL of complete
growth medium. NCI-N87 cells were seeded at 2500 cells per well in 384-well, black-walled,
clear-bottom tissue culture plates (Greiner Bio-One, Frickenhausen, Germany). Automated
imaging captured six fields per well at 4×magnification on the Cytation 5 Cell Imaging
Multi-Mode Reader (Biotek, Winooski, VT, USA). A pilot screen of nine drug concentrations
was assessed, with the dilution series adjusted to investigate a range of concentrations
capable of inhibiting cell growth. With the exception of the pilot screen, all experiments
were performed in biological triplicates.

For assessing compound synergy in MCF10A and MCF10A CDH1−/− cells, identical
methodology to the 9-point drug screening was utilized, with the following modifications.
After 24 h of growth, cells were treated with 10 µL of either drug 1 and vehicle control for
drug 2, drug 2 and vehicle control for drug 1, or drugs 1 and 2 in combination. Combination
index values were calculated using CompuSyn software. All combination treatments were
performed as biological triplicates. Single-agent treatment data was generated from a
minimum of 16 biological replicates, with at least two measurements originating from each
plate that included the compound as part of a combination treatment. This pooled data
enabled standardised 9-point MCF10A WT and CDH1−/− viability measurements, thus
enabling accurate determination of combination synergism.

A full list of compounds assessed in this study can be found in Table S1.
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2.3. Autophagy Assay

Cells were seeded into 6-well tissue culture plates (Corning, Corning, NY, USA) in
2 mL of complete growth medium at densities of 0.5 × 105 and 0.65 × 105 for MCF10A and
MCF10A CDH1−/− cells, or 1.5× 105 and 2× 105 cells for NCI-N87 and NCI-N87 CDH1−/−

cells, respectively. After 24 h of growth, cells were treated with 0.2% DMSO. After a further
48 h for MCF10A, or 72 h for NCI-N87, cells were harvested, and the autophagy assay was
performed according to the manufacturer’s instructions (Autophagy Assay Kit, Abcam,
Cambridge, UK). Flow cytometry was performed on a BD Fortessa Flow Cytometer (BD
Biosciences, San Jose, CA, USA).

2.4. Organoid Culture

Gastric organoids were cultured as described elsewhere, with minor modifications [20].
Briefly, antral glands were extracted from the stomachs of 6-8 week old mice and embedded
in 50 µL of Matrigel (Corning, Corning, NY, USA) per well in a 24-well culture plate (Greiner
Bio-One, Frickenhausen, Germany). Cultures were submerged in 500 µL of complete
growth medium consisting of Advanced Dulbecco’s Modified Eagle Medium/Ham’s
F-12 Nutrient Mix (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
10 mM HEPES (Thermo Fisher Scientific, Waltham, MA, USA), 2 mM GlutaMAX (Thermo
Fisher Scientific, Waltham, MA, USA), 100 µg/mL Primocin (Invivogen, San Diego, CA,
USA), 1 mM N-acetyl-L-cysteine (Sigma-Aldrich, St Louis, MO, USA), 10 nM [Leu15]-
Gastrin I (Sigma-Aldrich, St Louis, MO, USA), 50 ng/mL EGF (Peprotech, Rehovot, Israel),
100 ng/mL FGF10 (Thermo Fisher Scientific, Waltham, MA, USA), 10 µM Y-27632 (Sigma-
Aldrich, St Louis, MO, USA), 2 µM A 83-01 (Sapphire North America, Ann Arbor, MI, USA),
1× B-27 supplement (Thermo Fisher Scientific, Waltham, MA, USA), 1× N-2 supplement
(Thermo Fisher Scientific, Waltham, MA, USA), 10% R-spondin 1-conditioned medium,
10% noggin-conditioned medium and 50% Wnt3a-conditioned medium. Primocin was
only utilized following gland isolation from mice, and was replaced in subsequent growth
medium with 1× penicillin-streptomycin (Thermo Fisher Scientific, Waltham, MA, USA).

Culture of mammary organoids was adapted from a method described by Ewlad
et al. [21]. Mammary glands were extracted from virgin female mice and embedded in
80 µL of Matrigel (Corning, Corning, NY, USA) per well in a 24-well culture plate (Greiner
Bio-One, Frickenhausen, Germany). A total of 500 µL of complete growth medium was then
added to cultures, consisting of Advanced Dulbecco’s Modified Eagle Medium/Ham’s
F-12 Nutrient Mix (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
10 mM HEPES (Thermo Fisher Scientific, Waltham, MA, USA), 2 mM GlutaMAX (Thermo
Fisher Scientific, Waltham, MA, USA), 1× penicillin-streptomycin (Thermo Fisher Scientific,
Waltham, MA, USA), 1.25 mM N-acetyl-L-cysteine (Sigma-Aldrich, St Louis, MO, USA),
50 ng/mL EGF (Peprotech, Rehovot, Israel), 10 ng/mL FGF10 (Thermo Fisher Scientific,
Waltham, MA, USA), 5 µM Y-27632 (Sigma-Aldrich, St Louis, MO, USA), 1 µM A 83-01 (Sap-
phire North America, Ann Arbor, MI, USA), 1× B-27 supplement (Thermo Fisher Scientific,
Waltham, MA, USA), 5 µg/mL insulin (Sigma-Aldrich, St Louis, MO, USA), 100 ng/mL
hydrocortisone (Sigma-Aldrich, St Louis, MO, USA), 5 ng/mL FGF2 (Peprotech, Rehovot,
Israel), 0.5% R-spondin 1-conditioned medium, and 2.5% Wnt3a-conditioned medium.

Conditioned growth medium was generated from L Wnt-3a, HA-R-Spondin1-Fc
293T and HEK-293 Noggin-Fc cells as described elsewhere [22]. L Wnt-3a and HEK-293
Noggin-Fc cells were generated by the Clevers laboratory (Utrecht, Netherlands), and were
provided by the Vincan laboratory (Melbourne, Australia). HA-R-Spondin1-Fc 293T cells
were purchased from Trevigen (Trevigen, Gaithersburg, MD, USA).

Gastric organoids were passaged every 6–7 days. Physical disruption of organoid
structure was achieved via aspiration through a 20G needle, followed by incubation in
0.05% trypsin-EDTA solution (Thermo Fisher Scientific, Waltham, MA, USA) for 10 min
at 37 ◦C to generate a single-cell suspension. A total of 1000 gastric organoid cells were
seeded per well and cultured as described above for antral glands. Mammary organoids
were passaged every 7–9 days through incubation in 0.25% trypsin-EDTA solution (Thermo
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Fisher Scientific, Waltham, MA, USA) for 15 min at 37 ◦C to isolate single cells. A total of
3000 cells were seeded per well, and cultured as described above for mammary glands.

Organoids were generated from two transgenic mouse models, both originating from
a C57 Black 6 background: CD44-Cre/Cdh1fl/fl/tdTomato mice and CD44-Cre/tdTomato
mice (engineered by Ozgene, Perth, Australia). All animal procedures were approved by
the University of Otago Animal Welfare and Ethics Committee (DET35/15 and AUP-19-149)
and were performed in accordance with University of Otago guidelines and regulations.

2.5. Fluorescence-Activated Cell Sorting

CD44-Cre/Cdh1fl/fl/tdTomato and CD44-Cre/tdTomato organoids were cultured for
24 h, then Cre recombinase activity was induced with 1 µM endoxifen (Sigma-Aldrich, St
Louis, MO, USA). After an additional four days of culture, organoids were passaged and
resuspended in 1 mL of filter-sterilised fluorescence-activated cell sorting buffer comprising
2 mM EDTA and 1% fetal bovine serum (Scharlau, Barcelona, Spain) in PBS, pH-adjusted
to 7.2. A total of 12.5 µL of Matrigel (Corning, Corning, NY, USA) was dispensed into
each well of a 96-well, black-walled, clear-bottom tissue culture plate (Corning, Corning,
NY, USA) on ice. Fluorescence-activated cell sorting was performed on a BD FACSAria™
Fusion Cell Sorter (BD Biosciences, San Jose, CA, USA) to sort and dispense 20 individual
tdTomato-positive cells into each well of the 96-well plate. Organoids were cultured from
single cells for a period of 11 days and monitored via brightfield microscopy on a Nikon
Eclipse Ti inverted microscope (Nikon, New York City, NY, USA), with images captured by
a DS-QiMc camera (Nikon, New York City, NY, USA).

2.6. Immunofluorescence

CD44-Cre/Cdh1fl/fl/tdTomato and CD44-Cre/tdTomato organoid cells were seeded
on cover slips (Menzel-Glaser, Bad Wildungen, Germany) in a 24-well culture plate (Greiner
Bio-One, Frickenhausen, Germany) in 12.5 µL of Matrigel (Corning, Corning, NY, USA).
Organoids were cultured for 24 h, then Cre recombinase activity was induced with 1 µM
endoxifen (Sigma-Aldrich, St Louis, MO, USA). After four days of growth, organoids were
washed with PBS three times, then fixed with 4% paraformaldehyde for 30 min at room
temperature. Organoids were washed with PBS three times, then incubated in 500 µL of
blocking buffer, consisting of 10% horse serum (Invitrogen, Carlsbad, CA, USA) and 0.5%
Triton™ X-100 (Sigma-Aldrich, St Louis, MO, USA) in PBS for 1 h at room temperature, in
the dark. Organoids were washed with PBS, then incubated in PBS supplemented with
10% horse serum (Invitrogen, Carlsbad, CA, USA), 2% fetal bovine serum (Invitrogen,
Carlsbad, CA, USA), 0.1% Triton™ X-100 (Sigma-Aldrich, St Louis, MO, USA) and 1:100
anti-E-cadherin antibody (goat origin, #AF748, R&D Systems, Minneapolis, MN, USA)
for 2 h at room temperature, in the dark. Organoids were washed with PBS three times,
then incubated in PBS supplemented with 10% horse serum (Invitrogen, Carlsbad, CA,
USA), 2% fetal bovine serum (Invitrogen, Carlsbad, CA, USA), and 1:1000 anti-goat Alexa
Fluor 488 antibody (donkey origin, #A11055, Invitrogen, Carlsbad, CA, USA) for 2 h
at room temperature, in the dark. Organoids were washed with PBS five times, then
bridge-mounted on Fisherbrand™ Superfrost™ Plus microscope slides (Thermo Fisher
Scientific, Waltham, MA, USA). Two 22× 22 mm coverslips (Menzel-Glaser, Bad Wildungen,
Germany) were attached to either end of the slide using transparent nail varnish, then two
drops of ProLong™ Gold Antifade Mountant with DAPI (Invitrogen, Carlsbad, CA, USA)
was added between the two cover slips. Cover slips containing organoids were transferred
to the microscope slide and placed Matrigel side-down. Samples were incubated for 30 min
at room temperature to enable ProLong™ Gold Antifade Mountant with DAPI (Invitrogen,
Carlsbad, CA, USA) to dry. Transparent nail varnish was applied around the edges of all
three cover slips to ensure an air-tight seal. The resulting microscope slide consisted of two
supporting coverslips at either end to elevate the coverslip containing organoids, alleviating
downward pressure on the organoid sample and enabling maintenance of 3-dimensional
structure. Confocal microscopy was performed on an Olympus Fluoview FV1000 Confocal
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Microscope (Olympus, Auckland, New Zealand), with 43–98 images captured per organoid,
dependent on size.

2.7. Organoid Drug Screening

Gastric organoids were seeded at 1000 cells per well in 96-well, black-walled, clear-
bottom tissue culture plates (Corning, Corning, NY, USA) in 50 µL of Matrigel (Corning,
Corning, NY, USA) and 100 µL of complete growth medium. Mammary organoids were
seeded at 300 cells per well in 384-well, black-walled, clear-bottom tissue culture plates
(Corning, Corning, NY, USA) in 12.5 µL of Matrigel (Corning, Corning, NY, USA) and
20 µL of complete growth medium. Gastric organoids were cultured for 24 h, then Cre
recombinase activity was induced with 1 µM endoxifen (Sigma-Aldrich, St Louis, MO,
USA). Mammary organoids were cultured for 72 h, then treated with 0.5 µM endoxifen
(Sigma-Aldrich, St Louis, MO, USA). After a further 24 h of culture, gastric organoids were
treated with 100 µL of compound across a 3-point dilution series or respective vehicle
controls. Mammary organoids were instead treated after an additional 48 h of culture with
40 µL of compound or respective vehicle control. After 48 h of drug treatment, brightfield
microscopy was performed on a Nikon Eclipse Ti inverted microscope (Nikon, New York
City, NY, USA), with images of gastric organoids captured across the entire surface area of
each well, and across multiple focal planes, by a DS-QiMc camera (Nikon, New York City,
NY, USA). A single focal plane that passed through the approximate centre of each organoid
was utilized for measuring organoid area in ImageJ software [23]. Typical images obtained
using this approach are depicted in Figure S1. An average of 32 gastric organoids were
imaged per well. Mammary organoids were instead imaged on the Cytation 5 imaging
reader (Biotek, Winooski, VT, USA), using the RFP channels. Four regions were captured
per well, with 11 Z-stacks per image. Images were stitched together, and Z-stacks were
combined to generate a single merged image per well. Mammary organoid area was
calculated from RFP images using the Cytation 5 software (Biotek, Winooski, VT, USA). For
both gastric and mammary cultures, average organoid size was calculated from triplicate
wells for each condition and normalized to the respective vehicle control for each organoid
line. All experiments were performed in biological triplicates.

3. Results
3.1. Identification of Novel Synthetic Lethal Pathways for CDH1

To assess potential vulnerabilities in CDH1−/− cells, we screened MCF10A and MCF10A
CDH1−/− cells with 26 inhibitors targeting endocytosis, autophagy, intracellular vesicle
trafficking and plasma membrane organization (Table 1). Initial drug screening consisted
of a 3-point serial dilution of each compound in a higher-throughput screening format
(data not shown). Subsequent validation was performed across a 9-point serial dilution
to both validate the initial screening results and optimize dosage. Utilizing equivalent
thresholding to our laboratory’s previous genome-wide siRNA screen [16], compounds
were classified as synthetic lethal if any assessed concentration resulted in a ≥15% re-
duction in MCF10A CDH1−/− cell numbers relative to MCF10A cells, with MCF10A cells
maintaining at least 50% viability. A total of 8 of the 26 assessed compounds were classified
as synthetic lethal, with targets enriched across sphingolipid metabolism, clathrin- and
flotillin-mediated endocytosis, and autophagy (Figure 1, Tables S2 and S3). To further refine
the underlying mechanisms of synthetic lethality and potentially lead to more specific
inhibition of CDH1−/− cells, additional drug screening was performed to explore each
pathway of interest in greater detail, as described below.
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Table 1. Summary of 26 compounds assessed during the initial drug screen. Compounds are
separated by process, and the underlying specific biological pathways.

Process Pathway of Interest Compound

Endocytosis

Clathrin-mediated
endocytosis

Concanavilin A [24]

Phenylarsine oxide [25]

Chlorpromazine [25]

Flotillin-mediated endocytosis

PP1 [26]

PP2 [26]

SU6656 [27]

Vesicle formation

DBeQ [28,29]

NMS-873 [29,30]

3,4-methylenedioxy-β-nitrostyrene
(MNS) [28,29]

Sialic acid-mediated
endocytosis

N-Acetyl-2,3-dehydro-2-
deoxyneuraminic

acid [31]

Oseltamivir [31]

Caveolae-mediated
endocytosis Genistein [32]

Autophagy Endosome acidification
Chloroquine [33]

Hydroxy-chloroquine [34]

Intracellular vesicle
trafficking

Golgi apparatus vesicle
transport

Golgicide A [35]

Brefeldin A [36]

Endoplasmic reticulum vesicle
transport Cyclosporin [37]

Nuclear export Leptomycin B [38]

Gap junction vesicle transport
18α-glycyrrhetinic acid [39]

Carbenoxolone [40]

Plasma membrane
organisation

Sphingolipid metabolism

Myriocin [41]

Fumonisin B1 [42]

ABC294640 [43]

SKI-11 [44]

Ponesimod [45]

PF-543 [46]

3.2. MCF10A CDH1−/− Cells are Vulnerable to the Inhibition of Sphingolipid Metabolism
and Signaling

MCF10A CDH1−/− cells were more sensitive to treatment with PF-543, a potent
sphingosine kinase 1 inhibitor, than MCF10A cells. In contrast, neither cell line was
significantly more sensitive to ABC294640, a sphingosine kinase 2 inhibitor. Sphingosine
kinases are enzymes responsible for phosphorylating sphingosine into sphingosine-1-
phosphate [46]. Because potential redundancy between the function of sphingosine kinase
1 and sphingosine kinase 2 has been proposed in the literature [47], we assessed three
pan-sphingosine kinase inhibitors (SKI 178, MP A08 and SLC5111312) [48] to determine
if greater synthetic lethality would be observed. However, SKI 178 and MP A08 induced
indiscriminate growth inhibition, and SLC5111312 was only more potent against MCF10A
CDH1−/− cells at a single concentration (Tables S4 and S5). In NCI-N87 cells, a gastric
cancer cell line with a highly dysregulated genome, synthetic lethality between SPHK1 and
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CDH1 was abrogated, demonstrating the importance of genetic background to SPHK1′s
synthetic lethality (Figure S2A, Tables S12 and S13).
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enzymes responsible for phosphorylating sphingosine into sphingosine-1-phosphate [46]. 
Because potential redundancy between the function of sphingosine kinase 1 and sphingo-
sine kinase 2 has been proposed in the literature [47], we assessed three pan-sphingosine 
kinase inhibitors (SKI 178, MP A08 and SLC5111312) [48] to determine if greater synthetic 
lethality would be observed. However, SKI 178 and MP A08 induced indiscriminate 

Figure 1. Compounds classified as synthetic lethal from the initial drug screen. MCF10A and
MCF10A CDH1−/− cells were drugged, then viability was quantified through nuclei counting,
and normalization to vehicle controls. Although a nine-point serial dilution was assessed, only
the three consecutive compound concentrations that exhibited the greatest difference in viability
between CDH1+/+ and CDH1−/− cells are depicted. MCF10A CDH1−/− cells were more sensitive
to inhibitors of sphingolipid metabolism (PF-543), clathrin-mediated endocytosis (chlorpromazine),
flotillin-mediated endocytosis (PP1, PP2 and SU6656), vesicle formation (MNS) and autophagy
(chloroquine and hydroxy-chloroquine). Average values were calculated from three biological
replicates, with +/− 1 standard error of the mean depicted by error bars. P-values were calculated
using Student’s t-test; * p ≤ 0.05, ** p ≤ 0.01. MNS: 3,4-Methylenedioxy-β-nitrostyrene.

To further explore this potential vulnerability, two additional inhibitors of sphingolipid
metabolism were assessed in MCF10A cells: L-cycloserine and GW4869. L-cycloserine
inhibits 3-ketodhihydrosphingosine synthetase, the enzyme responsible for initiating sph-
ingolipid synthesis [49]. Only minimal toxicity was observed following treatment, with no
differential between the isogenic cell lines (Figure 2A, Tables S4 and S5). GW4869 inhibits
neutral sphingomyelinase, which converts sphingomyelin into ceramide, the precursor for
sphingosine [50]. GW4869 treatment inhibited the growth of MCF10A CDH1−/− cells across
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a range of concentrations but caused no growth inhibition of CDH1+/+ cells (Figure 2A,
Tables S4 and S5).
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Figure 2. Efficacy of compounds inhibiting sphingolipid metabolism and signaling. MCF10A and
MCF10A CDH1−/− cells were drugged, then viability was quantified through nuclei counting, and
normalization to vehicle controls. Although a nine-point serial dilution was assessed, only the three
consecutive compound concentrations that exhibited the greatest difference in viability between
CDH1+/+ and CDH1−/− cells are depicted. Where no toxicity was observed, the maximum assessed
concentrations are depicted. (A) Cell viability following treatment with inhibitors of sphingolipid
metabolism. (B) Cell viability following treatment with inhibitors of S1PRs. Average values were
calculated from three biological replicates, with +/− 1 standard error of the mean depicted by error
bars. P-values were calculated using Student’s t-test; * p ≤ 0.05.
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Sphingosine-1-phosphate can be secreted from the cell for subsequent binding to any
of the five G protein-coupled receptors, sphingosine-1-phosphate receptors 1–5 (S1PR1–5),
on the surface of either the secreting cell or surrounding cells, with downstream function
dependent on the bound receptor [51,52]. To determine if the underlying synthetic lethality
with sphingosine kinase 1 was due to decreased S1PR agonism, we assessed several
inhibitors of these receptors in MCF10A cells. W123 inhibits S1PR1, JTE-013 inhibits S1PR2,
VPC 23019 inhibits S1PR1 and S1PR3, and fingolimod is a pan-S1PR inhibitor [53–56].
Although S1PR1-3 are expressed ubiquitously, S1PR4 and S1PR5 are only expressed in
lymphoid tissue and the central nervous system respectively [57,58], and thus were not
investigated in the context of HDGC. CDH1−/− cells showed increased sensitivity to W123
treatment across several concentrations, and VPC 23019 did not induce any reduction
in cell numbers. However, it should be noted that VPC 23019 has particularly limited
solubility and could only be tested at a maximum concentration of 1.34 µM. Both JTE-013
and Fingolimod induced indiscriminate growth inhibition of both cell lines (Figure 2B,
Tables S4 and S5). Collectively, these data suggest that inhibition of sphingosine kinase 1,
neutral sphingomyelinase, and S1PR1 represent CDH1−/− cell-specific vulnerabilities.

3.3. E-Cadherin-Null Cells Exhibit Vulnerabilities in Clathrin- and Flotillin-Mediated Endocytosis

Inhibitors of vesicle formation (MNS), clathrin- (chlorpromazine) and flotillin-mediated
endocytosis (PP1, PP2 and SU6656) were capable of preferentially inhibiting MCF10A
CDH1−/− cell growth (Figure 1). To further explore endocytosis as a CDH1−/− cell-specific
vulnerability, three additional inhibitors were assessed in MCF10A cells: Dyngo-4a, PA-
COCF3, and EGA. Dyngo-4a disrupts dynamin-mediated endocytosis, and PACOCF3
inhibits phospholipase A2, which is involved in the trafficking of several ligands and recep-
tors across different endocytosis pathways [59]. However, no decrease in either CDH1+/+

or CDH1−/− cell numbers was observed following Dyngo-4a treatment, and PACOCF3
inhibited both cell lines indiscriminately (Figure 3A, Tables S6 and S7). Although the precise
mechanism is unknown, EGA inhibits the maturation of late endosomes [60] and was more
toxic to CDH1−/− cells across several concentrations (Figure 3A, Tables S6 and S7). In con-
trast to the MCF10A data, NCI-N87 CDH1−/− cells were less sensitive to PP1 than NCI-N87
CDH1+/+ cells (Figure S2B, Tables S12 and S13). However, concordant with the MCF10A
results, NCI-N87 CDH1−/− cells were more sensitive to treatment with chlorpromazine
than CDH1+/+ cells (Figure S2C, Tables S12 and S13).

The Src family kinase inhibitors PP1, PP2 and SU6656 were initially selected for their
ability to disrupt flotillin-mediated endocytosis through Fyn kinase inhibition. However,
all three compounds also inhibit other Src family kinases, including Lck, Hck, c-Src, Yes,
and Lyn (Table S8). To determine whether the inhibition of other Src family kinases was
responsible for the synthetic lethal phenotype, we assessed two additional inhibitors that
are highly specific for individual Src family kinases: the c-Src inhibitor bosutinib and
Lck inhibitor. Neither drug caused a synthetic lethal effect in the MCF10A isogenic cell
lines, although CDH1−/− cells displayed a small, non-significant increase in sensitivity to
bosutinib (Figure 3B, Tables S6 and S7). Since the only other target shared between PP1,
PP2, and SU6656 is Fyn kinase, we hypothesize that inhibition of this kinase, or combined
inhibition of Fyn kinase and c-Src, is required for the synthetic lethal phenotype we have
observed with Src family kinases.

3.4. Disruption of Autophagy Preferentially Inhibits the Growth of Non-Tumorigenic
CDH1−/− Cells

Two potent autophagy inhibitors, chloroquine and hydroxy-chloroquine, showed a
synthetic lethal effect in the primary drug screen (Figure 1). Chloroquine accumulates in
lysosomes, inhibiting neoglycolipid metabolism and proteolysis, thus preventing degra-
dation of autolysosomes [33]. Hydroxy-chloroquine is a derivative of chloroquine, and
inhibits autophagy via the neutralization of lysosomes [34]. However, the specific protein
targets of both compounds are unknown. One additional autophagy inhibitor, STF-62247,
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was assessed to provide further support for autophagy as a defective process in MCF10A
CDH1−/− cells. STF-62247 disrupts lysosome function, although the specific target is un-
known. This compound accumulates in lysosomes, and both impairs degradation and
causes swelling, resulting in a buildup of large static lysosomes [61]. In agreement with
the observed chloroquine and hydroxy-chloroquine inhibition, MCF10A CDH1−/− cells
were more sensitive to STF-62247 treatment than MCF10A CDH1+/+ cells across several
concentrations (Figure 4A, Tables S9 and S10), suggesting that these cells are sensitive
to inhibition of autolysosome maturation. To examine the functionality of autophagy
in CDH1-null cell lines directly, we used an autophagy assay to demonstrate that both
MCF10A and NCI-N87 cells upregulated autophagy following CDH1 loss (Figure 4B).
Therefore, increased reliance on autophagy in CDH1-null cells may explain the suscepti-
bility of MCF10A CDH1−/− cells to inhibition by chloroquine, hydroxy-chloroquine, and
STF-62247. Surprisingly, both CDH1+/+ and CDH1−/− cells derived from the NCI-N87
gastric cancer cell line exhibited similar sensitivity to chloroquine treatment, demonstrating
the importance of genetic background to drug response (Figure S1D, Tables S12 and S13).
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Figure 3. Efficacy of compounds inhibiting endocytosis and Src family kinases. MCF10A and
MCF10A CDH1−/− cells were drugged, then viability was quantified through nuclei counting, and
normalization to vehicle controls. Although a nine-point serial dilution was assessed, only the three
consecutive compound concentrations that exhibited the greatest difference in viability between
CDH1+/+ and CDH1−/− cells are depicted. Where no toxicity was observed, the maximum assessed
concentrations are depicted. (A) Cell viability following treatment with three endocytosis inhibitors.
(B) Cell viability following treatment with inhibitors of Src family kinases. Average values were
calculated from three biological replicates, with +/− 1 standard error of the mean depicted by error
bars. P-values were calculated using Student’s t-test; * p ≤ 0.05, ** p ≤ 0.01.
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Figure 4. Differences in autophagy between CDH1+/+ and CDH1−/− cells. (A) MCF10A and MCF10A
CDH1−/− cells were drugged with STF-62247, then viability was quantified through nuclei counting,
and normalization to vehicle controls. Although a nine-point serial dilution was assessed, only the
three consecutive compound concentrations that exhibited the greatest difference in viability between
CDH1+/+ and CDH1−/− cells are depicted. (B) MCF10A and NCI-N87 isogenic cell lines were treated
with 0.2% DMSO, then autophagic vacuoles were stained and quantified. Average values were
calculated from three (MCF10A) or five (NCI-N87) biological replicates. Error bars depict +/− 1
standard error of the mean. P-values were calculated using Student’s t-test; * p ≤ 0.05.

3.5. Combination Drug Treatment Enhances Efficacy against MCF10A CDH1−/− Cells

In order to identify synergistic drug combinations, a selection of candidate synthetic
lethal compounds were tested together across an 8-point dilution series. Because of its
strong synthetic lethal effect, PF-543 was used in each combination, along with three FDA-
approved drugs-chloroquine, chlorpromazine and atorvastatin, an inhibitor of cholesterol
synthesis that we have previously shown to be synthetic lethal with CDH1 [15]. Each of
these combinations was synergistic in both MCF10A and MCF10A CDH1−/− cells across
most of the tested concentrations (Figure 5, Table S11) [62]. These data suggest that
combining synthetic lethal drugs can improve efficacy against CDH1−/− cells and may
enable reduction of the drug dose used for chemoprevention, leading to lower toxicity
and greater patient compliance. Additionally, these results highlight sphingosine kinase 1
inhibition as an area of interest for future drug development.

3.6. Establishment of a Murine-Derived Gastric Organoid Model of HDGC

To test the preferred candidate chemoprevention drugs in a more complex model of
HDGC, we established gastric organoids from CD44-Cre/Cdh1fl/fl/tdTomato mice (here-
after referred to as Cdh1fl/fl organoids). Following the addition of endoxifen to organoid
cultures, Cre recombinase activity is induced, resulting in excision of exons 6 to 10 of the
Cdh1 gene, abrogating E-cadherin activity. In addition, a premature stop codon is removed
from the tdTomato construct, enabling expression of the red fluorescent protein tdTomato
(Figure 6). Organoids were also generated from CD44-Cre/tdTomato mice, enabling an E-
cadherin-positive control that can be treated with endoxifen to activate tdTomato expression
(hereafter referred to as Cdh1+/+ organoids).

Cdh1fl/fl and Cdh1+/+ organoids were induced with endoxifen and disrupted into
single-cell suspensions, and then single tdTomato-positive cells were seeded following
fluorescence-activated cell sorting. After a period of 11 days, single Cdh1+/+ cells grew into
cystic gastric organoids (Figure 7A). However, only a small number of single Cdh1−/− cells
were capable of generating organoids, and these exhibited both a disorganized structure
and lacked a transparent lumen (Figure 7B). Most Cdh1−/− cells instead grew as a 2-
dimensional layer of cells within the Matrigel (Figure 7C). Some of these cells presented
with an elongated morphology and decreased cell–cell contacts, both characteristic of
mesenchymal cells. Additionally, some cells presented with a swollen cytoplasm, similar in
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morphology to signet ring cells, which are the typical constituents of early HDGC lesions.
Although interesting findings, potentially representing both active epithelial–mesenchymal
transition (EMT) signaling and signet ring cell formation, the failure of single Cdh1−/−

cells to generate organoids necessitated an alternative approach to generate 3-dimensional
structures suitable for comparison with Cdh1+/+ organoids.

Cancers 2022, 14, x FOR PEER REVIEW 14 of 27 
 

 

 
Figure 5. Efficacy of candidate compound combinations. MCF10A (left) and MCF10A CDH1–/– (mid-
dle) cells were drugged with P5-543 in combination with (A) chloroquine, (B) chlorpromazine, or 
(C) atorvastatin, then viability was quantified through nuclei counting, and normalization to vehicle 
controls. Treatment with single inhibitors is also depicted. Although an 8-point serial dilution was 
assessed, only the three greatest concentrations are shown. Combination index values (CI, right) 
indicate drug interactions. Synergistic effects are represented by CI > 0.9 (depicted by dotted red 
line), additive effects by CI values between 0.9 and 1.1, and antagonistic effects by CI < 1.1. Error 
bars depict +/− 1 standard error of the mean. P-values were calculated using Student’s t-test; * p < 
0.05, ** p < 0.01. 

3.6. Establishment of a Murine-Derived Gastric Organoid Model of HDGC 
To test the preferred candidate chemoprevention drugs in a more complex model of 

HDGC, we established gastric organoids from CD44-Cre/Cdh1fl/fl/tdTomato mice (hereaf-
ter referred to as Cdh1fl/fl organoids). Following the addition of endoxifen to organoid cul-
tures, Cre recombinase activity is induced, resulting in excision of exons 6 to 10 of the 

Figure 5. Efficacy of candidate compound combinations. MCF10A (left) and MCF10A CDH1−/−

(middle) cells were drugged with P5-543 in combination with (A) chloroquine, (B) chlorpromazine, or
(C) atorvastatin, then viability was quantified through nuclei counting, and normalization to vehicle
controls. Treatment with single inhibitors is also depicted. Although an 8-point serial dilution was
assessed, only the three greatest concentrations are shown. Combination index values (CI, right)
indicate drug interactions. Synergistic effects are represented by CI > 0.9 (depicted by dotted red
line), additive effects by CI values between 0.9 and 1.1, and antagonistic effects by CI < 1.1. Error bars
depict +/− 1 standard error of the mean. P-values were calculated using Student’s t-test; * p ≤ 0.05,
** p ≤ 0.01.
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Figure 6. Schematic of transgenic mouse constructs. (A) The CD44 promoter drives expression of a
Cre recombinase-ERT2 fusion protein. (B) Endoxifen treatment causes the fusion protein to localise to
the nucleus. Cre recombinase recognises two loxP sites flanking exons 6 to 10 of the Cdh1 gene, and
excises this region through Cre-mediated recombination, effectively deactivating Cdh1. (C) Induction
of the fusion protein also excises a premature stop codon inserted into a tdTomato construct, inducing
expression of the red fluorescent protein tdTomato.

It was hypothesized that, if given an initial period of growth without endoxifen
treatment, Cdh1fl/fl organoids would generate a sufficient structure to prevent Cdh1 loss
completely abrogating 3-dimensional organization. Cdh1fl/fl organoids were grown for
24 h, then treated with endoxifen to activate Cre recombinase, or treated with a DMSO
vehicle control. After a further 72 h of growth, immunofluorescence was performed against
E-cadherin, and confocal microscopy was utilized to assess the 3-dimensional structure.
DMSO-treated organoids presented a highly organized structure consisting of a monolayer
of E-cadherin-positive cells surrounding a hollow lumen (Figure 8A). Endoxifen-treated
Cdh1fl/fl organoids were capable of maintaining a 3-dimensional structure, in contrast to
the results from single Cdh1−/− cells. These organoids displayed a relatively disorganized
structure, with clusters of Cdh1−/−/tdTomato-positive cells expanding as small lesions
outside of the epithelial plane (Figure 8B). Some organoids maintained a hollow lumen,
while others contained a dense core of Cdh1−/− cells.

3.7. Validation of Candidate Synthetic Lethal Compounds in Organoid Models of HDGC

To validate the candidate synthetic lethal pathways identified during MCF10A drug
screening, a single inhibitor of each of sphingolipid signaling (PF-543), autophagy (chloro-
quine), clathrin- (chlorpromazine), and flotillin-mediated endocytosis (PP1) was selected.
A 3-point serial dilution of each drug was assessed in both the gastric organoid model
described here, and a murine-derived mammary organoid model also established from
CD44-Cre/tdTomato and CD44-Cre/Cdh1fl/fl/tdTomato mice (manuscript in preparation).
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cells with a relatively disrupted structure. (C) Most single Cdh1−/− cells failed to generate organoids,
instead presenting with mesenchymal-like (left) or signet ring cell-like (right) morphologies.

In the gastric organoid model of HDGC, both the sphingosine kinase 1 inhibitor PF-
543 and the c-Src/Fyn kinase inhibitor PP1 preferentially inhibited the growth of Cdh1fl/fl

organoids across all assessed concentrations (Figure 9, Tables S14 and S15). Chlorpromazine
induced a synthetic lethal effect at 6.25 µM but was highly toxic to both organoids at greater
concentrations (Figure 9, Tables S14 and S15). Chloroquine induced a synthetic lethal effect
at both 12.5 µM and 25 µM but was also highly toxic regardless of Cdh1 status at 50 µM
(Figure 9, Tables S14 and S15).
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Figure 8. Confocal microscopy of organoids. Immunofluorescence was performed against E-cadherin,
with DAPI-stained nuclei. Confocal images represent the focal planes running through the approxi-
mate centre of the organoids. (A) Highly structured organoids derived from Cdh1fl/fl mice without
induction of Cre recombinase. (B) Relatively disorganised organoids derived from Cdh1fl/fl mice
with induction of Cre recombinase. Some organoids maintain a hollow lumen (left), while others
contain a dense core of Cdh1−/− cells.

When mammary organoids were treated with PF-543, synthetic lethality was observed
across all assessed concentrations (Figure 10, Tables S16 and S17). Chlorpromazine induced
a synthetic lethal effect at both 50 µM and 100 µM, but synthetic lethality was only observed
for PP1 and chloroquine at elevated concentrations (Figure 10, Tables S16 and S17).

Taken together, the drug screening data from MCF10A cells, gastric organoids, and
mammary organoids demonstrate the vulnerability of CDH1-null cells to inhibition of
sphingolipid signaling, autophagy, and endocytosis.
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Figure 9. Sensitivity of gastric organoids to treatment with candidate synthetic lethal compounds.
Both Cdh1+/+ and Cdh1fl/fl organoids were drugged, then viability was quantified through measure-
ment of organoid area, normalized to vehicle controls. Average values were calculated from three
biological replicates, with +/- 1 standard error of the mean depicted by error bars. P-values were
calculated using Student’s t-test; * p ≤ 0.05, ** p ≤ 0.01.
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4. Discussion

In this study, we have utilized an MCF10A model of HDGC to identify novel druggable
vulnerabilities in CDH1−/− cells. Inhibition of sphingolipid metabolism, autophagy, clathrin-,
and flotillin-mediated endocytosis was capable of preferentially inhibiting CDH1−/− cell
growth, and the single most promising inhibitor from each pathway was validated in both
gastric and mammary organoid models of HDGC.

Although inhibition of de novo sphingolipid synthesis was not synthetic lethal with
CDH1, the inhibition of neutral sphingomyelinase with GW4869, responsible for converting
membrane-associated sphingomyelin into ceramide [50], preferentially inhibited MCF10A
CDH1−/− cell growth. Sphingomyelin represents the primary source of sphingolipids
within the plasma membrane [50] and the only source of ceramide. Ceramide is required
for the translocation of some proteins across lipid raft boundaries and is required for the
formation of ceramide-rich platforms, hypothesized to be important in the clustering of
specific receptors [63]. The cortical actin cytoskeleton is a critical component of lipid raft
domain homeostasis [63], and thus the disorganized actin cytoskeleton in CDH1−/− cells is
predicted to result in poorly maintained membrane compartmentalization. Treatment with
GW4869, which has previously been shown to induce lipid raft defects and reduce protein
association with these regions [63], may further disrupt the organization of these rafts in
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CDH1−/− cells. This would result in impaired membrane trafficking regulation and per-
turbation of stable signaling hubs while leaving CDH1+/+ cells relatively unharmed. Sup-
porting this, our laboratory has previously found that depletion of membrane-associated
cholesterol, a critical component of lipid raft organization [64], through treatment with
statins [13,19] or methyl-β-cyclodextrin is synthetic lethal [15]. Alternatively, ceramide
depletion may instead deprive cells of sphingosine, which ceramidase can generate from
ceramide [65].

Membrane-associated sphingosine can be phosphorylated by sphingosine kinase 1 to
generate sphingosine-1-phosphate, a bioactive sphingolipid. Sphingosine-1-phosphate
can be secreted and subsequently binds to S1PRs 1–5, activating downstream signaling
dependent on the bound receptor. Inhibition of both sphingosine kinase 1 and S1PR1
induced a synthetic lethal effect. However, sphingosine kinase 1 inhibition was more
potent. These data suggest that either other functions of sphingosine-1-phosphate are
vulnerable to E-cadherin loss or another S1PR is responsible for part of the synthetic lethal
mechanism. Considering the low solubility of the only currently available S1PR3 inhibitor
VPC 23019, S1PR3 cannot be ruled out as a potential synthetic lethal candidate. S1PR1 and
S1PR3 are localized to lipid rafts regions, whereas S1PR2 is found both within raft regions
and dispersed throughout the membrane [66]. Additionally, normal sphingosine kinase
1 function requires lipid raft association [67], and at least one sphingosine-1-phosphate
transporter, required for extracellular secretion, is localized to lipid rafts [66]. The hypothe-
sized inability of CDH1−/− cells to effectively maintain lipid rafts is predicted to result in
defective sphingosine kinase 1 activity, sphingosine-1-phosphate secretion, and clustering
of both S1PR1 and S1PR3, thus reducing the activation of downstream signaling. Fur-
ther disruption of this signaling through inhibition of S1PRs or sphingosine-1-phosphate
generation is predicted to result in CDH1−/− cell-specific growth inhibition or death.

Inhibition of endocytosis mechanisms that are shared by several endocytic pathways
exhibited mixed synthetic lethality with CDH1. Treatment with inhibitors of dynamin or
phospholipase A2 were not synthetic lethal, whereas inhibitors of endosome generation and
maturation induced a synthetic lethal effect. In contrast to these mixed results, the specific
inhibition of clathrin- and flotillin-mediated endocytic pathways induced preferential
inhibition of MCF10A CDH1−/− cell growth.

Although only one of three clathrin-mediated endocytosis inhibitors were synthetic
lethal, both concanavalin A and phenylarsine oxide have been shown to interfere with
G protein-coupled receptor signaling [24] and both micropinocytosis and phagocytosis,
respectively [68,69]. However, the only currently available clathrin-endocytosis specific
inhibitor, chlorpromazine, was effective at preferentially inhibiting MCF10A CDH1−/−

and NCI-N87 CDH1−/− cell growth. The invagination of clathrin-coated pits is actin-
dependent [70], as well as the encapsulation of the immature vesicle by actin filaments [71].
Additionally, homeostasis of plasma membrane tension is primarily regulated through
actin filament-plasma membrane interactions [72], and this tension has a direct effect on
clathrin-mediated endocytosis. If tension maintenance is disrupted, clathrin polymerization
is halted, and endocytosis inhibited [73]. Consistent with this, the disruption of actin dy-
namics results in clathrin-mediated endocytosis inhibition [74], and it is predicted that the
disorganized cell cytoskeleton in CDH1−/− cells induces similar effects. Partially perturbed
clathrin-mediated endocytosis is hypothesized to result in deficits in the ability of CDH1−/−

cells to internalize nutrients, regulate crucial intercellular signaling pathways, and regu-
late receptor recycling [75]. Further disruption of this vulnerability via chlorpromazine
treatment may breach a critical functional threshold, resulting in CDH1−/− cell-specific
growth inhibition.

Three inhibitors of flotillin-mediated endocytosis (PP1, PP2 and SU6656) were identi-
fied as promising synthetic lethal candidate compounds. Each of these compounds inhibits
additional Src family kinases but share the targets Fyn kinase and c-Src. Fyn kinase is a
critical component of flotillin-mediated endocytosis, a process requiring lipid raft stabi-
lization and organization, and as described above, this is hypothesized to be perturbed in
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CDH1−/− cells. By extension, flotillin-mediated endocytosis is likely defective, potentially
due to interruption of the organization and co-localization of flotillin-1 and -2 in sufficient
levels to initiate membrane invagination [76]. Additionally, flotillin-mediated endocytosis
can be triggered by a sufficient concentration of glycosylphosphatidylinositol-anchored
proteins, and this localization is reliant upon F-actin dynamics to stabilize their position-
ing [77,78]. Flotillin-mediated endocytosis is dependent upon actin filament organization
and polymerization for vesicle scission from the membrane and subsequent reorganiza-
tion of the local membrane region to enable the generation of early endosomes [79,80]. A
combination of these effects is predicted to decrease the efficiency of flotillin-mediated
endocytosis in CDH1−/− cells, resulting in a vulnerability to further disruption. Similar
to clathrin-mediated endocytosis, this likely restricts the ability of cells to internalize im-
portant cargo and recycle crucial receptors, thus preferentially inhibiting the growth of
CDH1−/− cells. It is important to note that Fyn kinase is also involved in several other
biological pathways, including cell survival, proliferation, adhesion, and invasion [81–83].
Therefore, it is possible that these pathways are at least partially responsible for the ob-
served synthetic lethal phenotype. Unfortunately, no specific inhibitors of either Fyn kinase
or flotillin-mediated endocytosis are currently available, precluding confirmation of this
via a drug screening approach. However, combined with our recent finding that CDH1−/−

cells present with decreased endocytosis [15], and a vulnerability in clathrin-mediated
endocytosis, flotillin-mediated endocytosis is proposed as the mechanism underlying the
sensitivity to PP1, PP2 and SU6656 treatment.

Inhibition of autophagy through treatment with three compounds (chloroquine,
hydroxy-chloroquine and STF-62247) was synthetic lethal with CDH1. Although the
specific protein targets of each compound are unknown, all three share a common mech-
anism of impairing autolysosomes [33,34,84], the final vesicle that degrades autophagic
cargo for nutrient release [84]. Actin plays a crucial role in initiating the synthesis of
the autophagosome, the vesicle that encapsulates autophagic cargo destined for degrada-
tion [85,86]. Actin both recruits protein complexes required for synthesis and provides
scaffolding for vesicle assembly [85,86]. As a result, when actin dynamics are disrupted,
such as in CDH1−/− cells, autophagosome synthesis is likely to be perturbed. Following
synthesis, the autophagosome is transported along microtubule networks for lysosome
fusion, resulting in autolysosome formation [84]. If this microtubule network is already
disrupted due to CDH1 loss, this transport is likely to be perturbed or delayed, decreasing
the overall rate of autophagy. Autophagic lysosomes are recycled through the extrusion of
tubules and vesicles from a lysosome, which then interact to generate a fresh lysosome [87].
In CDH1−/− cells, the disorganized microtubule network may reduce the ability of cells
to direct this tubule–vesicle interaction, impairing lysosomal recycling. This would re-
sult in an autophagy bottleneck, with insufficient lysosomes for autolysosome generation.
A similar model has been described in VHL-deficient cells, which cannot recycle lyso-
somes [88]. When treated with STF-62247, one of the autophagy inhibitors assessed in
this study, VHL-deficient cells cannot survive the accumulation of swollen autolysosomal
structures resulting from treatment, whereas VHL-positive cells can survive treatment,
hypothesized to result from their ability to efficiently recycle lysosomes, thus having less
reliance upon the degradation of the swollen autolysosomes [61]. Additionally, we have
observed an upregulation of autophagy in both MCF10A and NCI-N87 cells following
the loss of CDH1. Autophagy upregulation may enable CDH1−/− cells to overcome these
autophagy bottlenecks or to compensate for deficits in nutrient uptake resulting from
defective endocytosis. A combination of these autophagy defects is proposed to result in
CDH1−/− cell-specific vulnerabilities to further inhibition.

It should be emphasized that compounds commonly exhibit off-target effects, and
the targets of inhibitors often function across multiple biological pathways. In addition,
although each pathway of interest has been described in this study as distinct, the different
forms of vesicle trafficking and sphingolipid metabolism are complex, interlinked biological
processes. For example, autophagy can be regulated through sphingosine kinase activ-
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ity [89], which can be internalized through clathrin-mediated endocytosis [90]. Flotillins
can also directly interact with and regulate local sphingosine levels within lipid rafts [91],
and they rely upon specific compositions of sphingolipids to enable flotillin-mediated
endocytosis [92]. These combined complexities make it difficult to determine the definitive
underlying mechanism of synthetic lethality with a drug screening approach, and further
investigation through the application of siRNA or CRISPR/Cas9 screening, or functional
assays on pathways of interest, would help to validate these findings. However, drug
screening has the advantage of a clear pathway to clinical utility. Although our arbitrary
threshold for synthetic lethality, requiring a difference in cell viability of >15%, is relatively
low, it is based on a short 48 h treatment period. We anticipate the effects at the lower end
of the tested concentration range will be more pronounced following extended treatment
in vivo. Regardless, these effects identify pathways or mechanisms that are intrinsically
linked to E-cadherin function, providing a basis for further investigation and possible
novel, synergistic combinations.

This study has utilized nuclei counting for viability quantification, and although this
approach is effective at determining growth inhibition, cell death has not been confirmed.
Chloroquine, chlorpromazine, PP1, and PF-543 have all been shown to induce apoptosis in
other biological systems [93,94]. However, this will be confirmed in our models of HDGC
prior to advancing into in vivo models.

To extend our preclinical HDGC models, we have established a murine-derived gastric
organoid model of Cdh1 loss. The gastric cells comprising these organoids are capable of
differentiating into all gastric lineages, aside from parietal cells [95], making this a more
complex preclinical model for drug screening. The generation of isogenic organoid cultures
with and without functional Cdh1 was not possible from single cells, with the majority of
Cdh1−/− cultures incapable of expanding into 3-dimensional structures. This is perhaps
unsurprising due to E-cadherin’s role in cell–cell adhesion, regulation of tissue tension,
and maintaining epithelial cell polarity [96–98]. Individual Cdh1−/− cells commonly exhib-
ited a mesenchymal morphology, potentially indicative of active EMT signaling, but this
requires further validation. Additionally, cells similar in appearance to signet ring cells,
the typical constituents of HDGC stage T1a lesions [99], were common. When single cells
were grown for 24 h prior to Cre recombinase induction, 3-dimensional structures grew
from both Cdh1+/+ and Cdh1−/− cells. Cdh1fl/fl cultures exhibited relatively disorganized
structures, presenting with clusters of Cdh1−/−/tdTomato-positive cells dividing outside
of a predominantly Cdh1+/+ epithelial plane. This observation is consistent with current
hypotheses surrounding HDGC initiation, whereby CDH1−/− cells divide outside of the
epithelial plane, escape normal growth signaling regulation, and develop into lesions [100].
In addition, we have established a murine-derived mammary organoid model of Cdh1
loss (manuscript in preparation) to provide models of lobular breast cancer in HDGC
patients. Four candidate synthetic lethal compounds were assessed in each organoid model
of HDGC, and all exhibited increased toxicity against Cdh1fl/fl organoids.

Although this research has focused on the chemoprevention of HDGC, the resistance
of NCI-N87 CDH1−/− cells, representative of advanced gastric cancer, to all candidate
compounds except for chlorpromazine, necessitates further investigation into drug efficacy
in advanced cancer backgrounds. We are developing genetically modified mice with
additional oncogenic drivers, such as loss of Trp53, in order to address this issue in a
system more representative of HDGC. Activity in these models may open the way for new
approaches for treating various sporadic cancers with E-cadherin deficiency [7–10], and
may reduce the likelihood of early HDGC lesions developing therapy resistance through
additional oncogenic events.

Considering that both chloroquine and chlorpromazine are FDA approved, these
drugs are particularly interesting candidates for further development as potential HDGC
chemoprevention agents. However, to enable long-term use, it will be important to mini-
mize drug side effects. For chlorpromazine, this is likely to require chemical modification
or novel formulations to reduce its ability to cross the blood–brain barrier. Chloroquine
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may inhibit CDH1-null cells at concentrations routinely achieved during malaria treat-
ments [101,102]. However, its use as part of a synergistic combination of drugs that lack
overlapping toxicities is likely to be required for it to be considered for chemoprevention.
Alternatively, the development of a stomach-targeting drug delivery system would provide
the means to minimize the systemic side effects of all chemoprevention drugs. Fortunately,
given the relatively indolent nature of the early-stage gastric lesions in CDH1 mutation
carriers, extended intervals between repeat drug administrations are likely to be effective,
perhaps every 1–3 years.

5. Conclusions

By applying a drug screening approach to MCF10A, NCI-N87, gastric organoid and
mammary organoid models of E-cadherin loss, this study has identified sphingolipid
signaling, endocytosis, and autophagy as promising druggable vulnerabilities in CDH1−/−

cells. With further research, these compounds may lead to the development of novel
HDGC chemoprevention strategies, thus potentially offering an alternative to prophylactic
total gastrectomy.
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