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AKT Kinase Pathway: A Leading Target in Cancer Research

Ambuj Kumar, Vidya Rajendran, Rao Sethumadhavan, and Rituraj Purohit

Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore,
Tamil Nadu 632014, India

Correspondence should be addressed to Rituraj Purohit; riturajpurohit@gmail.com

Received 14 August 2013; Accepted 2 October 2013

Academic Editors: D. Ferrari, T. Robak, and A. Roccaro

Copyright © 2013 Ambuj Kumar et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

AKT1, a serine/threonine-protein kinase also known as AKT kinase, is involved in the regulation of various signalling downstream
pathways including metabolism, cell proliferation, survival, growth, and angiogenesis.The AKT kinases pathway stands among the
most important components of cell proliferationmechanism. Several approaches have been implemented to design an efficient drug
molecule to target AKT kinases, although the promising results have not been confirmed. In this paper we have documented the
detailed molecular insight of AKT kinase protein and proposed a probable doxorubicin based approach in inhibiting miR-21 based
cancer cell proliferation. Moreover, the inhibition of miR-21 activation by raising the FOXO3A concentration seems promising in
reducing miR-21 mediated cancer activation in cell. Furthermore, the use of next generation sequencing and computational drug
design approaches will greatly assist in designing a potent drug molecule against the associated cancer cases.

1. Introduction

AKT1, a serine/threonine-protein kinase also known as AKT
kinase, is involved in the regulation of various signalling
downstream pathways involved in cell metabolism, cell pro-
liferation, survival, growth, and angiogenesis. It is a member
of the most frequently activated proliferation and survival
pathway in cancer. AKT recognizes and phosphorylates
the consensus sequence RXRXX(S/T) of the target proteins
when surrounded by hydrophobic residues [1].The activation
of AKT1 is driven by membrane localization, which is in
turn initiated by the binding of the pleckstrin homology
(PH) domain to phosphatidylinositol-3,4,5-trisphosphate
(PtdIns(3,4,5)P3) or phosphatidylinositol-3,4-bisphosphate
(PtdIns(3,4)P2), followed by phosphorylation of the regula-
tory amino acids serine 473 (Ser 473) and threonine 308 (Thr
308) [1]. Because this sequence is present in many proteins,
numerous AKT substrates have been identified and validated
[2]. Genetic mutations in AKT signalling pathway regulators
have been reported to induce oncogenic transformation of
the healthy human cell [3] and detected in malignant glioma
and endometrial cancer and to some extent in prostate
cancer [4, 5], non-small cell lung cancer [6], melanoma
[7], hepatocellular carcinoma [8], and breast cancer [9]. The
importance of AKT in human cancer is largely inferred

from frequently occurring mutations in the enzymes that
regulate the activity of these second messenger phospho-
lipids (PtdIns(3,4,5)P3, PtdIns(3,4)P2) and ultimately cause
the activation of AKT through membrane recruitment [1].
Tumour samples from the patients with breast, colorec-
tal cancer and cases of leukaemia have been shown to fre-
quently harbour activating somatic mutations in AKT1 [1].
Germline mutations in the AKT pathway regulators have
been detected with high rate in the autosomal dominant
hamartoma cancer syndromes [10], Cowden disease [11],
Bannayan-Zonana syndrome [12], and Lhermitte-Duclos dis-
ease [13].Hence, AKT1 seems to have a crucial but passive role
in oncogenesis and acts as an indirect intermediary between
mutated upstream regulatory proteins and downstream sig-
nalling molecules [1].

The oncogenic activation of AKT1 can be induced by
several means, most commonly occurring either due to the
compromise in its membrane targeting by PH domain or due
to the pathological conformational changes occurring in the
mutant structure [1]. The genetic mutations in PH domain
have been previously reported to interfere with correct
localization and sensitivity towards the PtdIns and have led
to major consequences to its functional behaviour [1]. A
point mutation at nucleotide 49 that results in a lysine
substitution for glutamic acid at amino acid 17 (AKT(E17K))
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Figure 1: Regulation of AKT signalling activation.

has been implicated in cancer cases [1]. While screening the
causes behind such observation, the computational approach
forms a significant backbone and serves in carrying keen
experimental observations in low cost input. Thus, in one
of our works, we conducted molecular docking and molec-
ular dynamics simulation to infer the associated molecular
changes occurring in AKT1 PH domain [1]. The results
showed that the mutation induces rapid conformational
drifting in the PH domain which might be the crucial reason
behind the loss of AKT1/2 inhibitor VIII interaction and of a
4-fold rise in its localization to plasma membrane [1].

Regulation of AKT signalling activation is carried out
by the transfer of phosphate group from PI(3,4,5)P3 to
AKT protein (Figure 1). PI(3,4,5)P3 is a lipid second mes-
senger involved in phosphate mediated activation of var-
ious downstream effectors associated with the oncogenic
pathways [14]. Their role in regulation of AKT/PKB kinase
and in amplifying AKT induced antiapoptotic and growth
stimulatory effects has been supported by several research
articles [15]. AKT is the important downstream target of
PI(3,4,5)P3, which controls cell proliferation and protects the
cell from apoptosis. The negative regulation of phosphate
mediated AKT signalling pathway through phosphatase
activity of PTEN [16] and NKX 3.1 [17] helps in main-
taining a feedback control towards the phosphate trans-
fer and associated activation of oncogenic pathways. The
loss of their phosphatase activity prevents the dephos-
phorylation of phosphatidylinositol-3,4,5-trisphosphate to
phosphatidylinositol-4,5-bisphosphate, which then allows
the transfer of phosphate molecule to PDK1 and AKT
proteins, allowing the activation of MDM2, GSK3, P27, P21,
CASP9, BAD, FKHR, IKK, and MTOR genes (Figure 1). This
activation finally leads to the apoptosis inhibition [15], cell
cycle progression [18], tumour growth [19], and impairment
of G1 and G2 cycle arrest [20].

2. miRNA Based Gene Expression Regulation

Other than genetic mutations, role of miRNAs have also
been identified as the active mediator of tumorigenic cel-
lular transformations, targeting the 3󸀠-UTR region of the
tumour suppressor genes [21]. MicroRNAs that are partially
complementary to a target can also speed up deadenylation,
causingmRNAs to be degraded sooner.miRNAs occasionally

also cause histone modification and DNA methylation of
promoter sites [22, 23], which affects the expression of target
genes. PTEN,NKX 3.1, and PTENP1 are the well-knownAKT
signalling pathway regulators and are also the favourite site
for miRNA’s regulated deactivation [24]. PTEN and NKX 3.1
are the known targets of multiple miRNAs including, most
notably, the glioma-implicated miR-21 [25]. Furthermore,
miR-26a has also been identified as an active candidate in
downregulating the PTEN expression in breast and prostate
cancers [26]. hsa-miR-22, another mature miRNA, is actively
involved in forming a regulatory loop in PTEN/AKT path-
way and modulates signalling kinetics, downregulating the
PTEN expression levels by acting directly through a specific
site on PTEN 3󸀠-UTR [27]. Moreover, hsa-miR-1297, hsa-
miR-19, hsa-miR-22, and hsa-miR-23ab are also involved in
oncogenic downregulating of PTEN expression in human
cells [28, 29]. The in-depth understanding of these miRNAs
and their role in suppressing the gene activity can help to
inhibit the phosphate mediated oncogenic AKT signalling
pathway by targeting the AKT and PI3K genes using specific
miRNAs, thus protecting cell from the rapid tumorigenic pro-
liferations. Moreover, it can become the future endeavour in
finding a promising cure to the associated cancer cases.These
approaches in coordination with other target based drug
therapies can prove to be an asset to future cancer research.

3. Genomic Variations

Genomic variations, especially in the exonic regions have
been identified as the key factor in inducing cancers in
human. Through the advancements of genome sequencing
technologies, we have now become highly capable of identi-
fying these oncogenic mutations, and it has paved our way to
understand their possible role in inducing cancers. Illumina
HiSEQ and Solexa 3D machines along with the excellent
data analysis computational platforms have now enabled
us to conduct high range genome wide association studies
(GWAS) and to develop the target based drug therapies.
Potential implementation of genome sequencing technology
in studying the gene downregulation and in studying the
exact mechanism of their downregulation by elucidating its
causal element has been a great achievement in the field of
cancer research [30]. Research carried out by Astle et al.
(2012) usingNGS technology has presented promising results
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in understanding the role of NGS in identifying the target
site in oncogenic AKT signalling pathway for drug discovery
[31]. Further, the gene expression analysis using mRNA
sequencing has provided an additional support to understand
the effectiveness of genome sequencing as an effective tool
in cancer researches [32]. The role of NGS technology is
becoming the center of excellence in cancer research day by
day, facilitating the candidate gene identification in various
forms of cancers [33]. It also provides the possible way to
design target based therapies by identifying the intercellular
components to target the tumour promoting genes [34, 35].
Detecting the role of hsa-miR-7 in controlling the tumour
progression in non-small cell lung cancer using NGS tech-
niques has provided us an excellent insight in developing the
microRNA based therapy for cancer control [36].

4. Current Approach

In an effort to improve therapeutic options in cancer, many
investigational drugs are being developed to inhibit sig-
nalling pathways that promote the survival of cancer cells
[37, 38]. To date, the most developed inhibitor of AKT is
perifosine, a lipid-based inhibitor. In vitro, perifosine inhibits
translocation of AKT to the cell membrane and inhibits the
growth of melanoma, lung, prostate, colon, and breast cancer
cells [38–40]. Synergistic effects of perifosine and traditional
chemotherapeutic agents such as etoposide in leukemia cells
[41], doxorubicin in MM cells [42], and temozolomide in
glioma cells [43] is also a notable element that can be used
to design a potent drug molecule. Moreover, perifosine has
also been found to sensitize cancer cells to apoptosis and
cell cycle arrest induced by radiation in vitro and in vivo
[44–46]. Recently, it was shown that perifosine leads to
significant inhibition of proliferation and induction of apop-
tosis in Waldenstrom macroglobulinemia cells in vitro [47].
Furthermore, triciribine (API-2), also known as triciribine-
phosphate, was identified as an AKT inhibitor after screen-
ing the National Cancer Institute (NCI) structural diver-
sity set. Triciribine inhibits AKT2 phosporylation at both
sites (T309 and S474) and inhibits EGF-induced phos-
phorylation of all three isoforms of AKT in vitro [48].
More recently, rapamycin analogues such as CCI-779 and
RAD-001 have been explicitly designed for development
as anticancer drugs [49, 50]. These inhibitors of mTOR
bind to the FK506-binding protein, FKBP-12, which then
binds and inhibits mTOR [49, 50]. Synergistic effects of
rapamycin and EGFR TKIs have been observed in several
in vitro systems, including glioblastoma multiforme [51–53],
prostate cancer [54, 55], pancreatic cancer [54], squamous
cell carcinoma [56], renal cell carcinoma [57, 58], leukemia
[59], cervical carcinoma [60], and non-small cell lung cancer
[54]. Several other studies extended the efficacy of these
combinations to xenograft experiments [54, 60, 61]. Some of
the most commonly used Akt inhibitors are listed in Santa
Cruz Biotechnology (http://www.scbt.com/chemicals-table-
akt inhibitors.html). Although combinations of these path-
way inhibitors with various types of chemotherapy have
been conducted extensively in preclinical studies, only a few
of them have been able to minimize the tumour growth

and provide a permanent cure to cancer, where the patient
selection and toxicity test prevail as a major hurdle.

5. Computational Approaches for Drug Design

The protein 3D structure forms a major drug targeting
element in pharmacological studies, andmost of the drug dis-
coverymethods rely on the structural conformations of target
proteins. Conformational flexibility of a protein molecule
affects its interaction with a ligand and their biological
partners at different levels [62–73]. At a particular time step a
particular protein attains specific conformation that occupies
a minimum on its free-energy landscape. Transitions from
one minimum to another correspond to dynamic changes
in the structure of the protein that controls their continuous
structural fluctuations and is central to protein function. In
silico approaches provide an excellent platform to determine
these conformation properties of proteins. Advancements
in computing power, systematic tools, and algorithms have
improved the quality of protein structure simulation and
analysis to a very high extent. In silico molecular mod-
elling when combined with molecular dynamics simulation
approaches helps in identifying the stable conformation and
significant structures that can be used to study the conse-
quences of structural variants.

Molecular dynamics simulation (MDS) is one of the prin-
cipal tools in the theoretical study of biological molecules.
This computational method calculates the time dependent
behaviour of a molecular system. MD simulations have
aided in gaining the detailed insight of the atomic fluctu-
ations and conformational changes of proteins and nucleic
acids. These methods are now routinely used to investigate
the structure, dynamics, and thermodynamics of biological
molecules and their complexes.TheMDS techniques are also
very useful in detecting the changes in protein conforma-
tion and atomic fluctuations. Molecular dynamics simula-
tion approaches have also been extensively used to report
the structural consequences of the cancer associated point
mutations. The native and mutant structures are imposed
to the long-term molecular dynamics simulation in order
to record the changes in their motion trajectory. Atomic
fluctuations, structural changes, domain loss, changes in the
vital protein folds, and stability, as well as the retention and
loss of crucial interactions, can be easily studied using the
MDS approach. The root mean square deviation (RMSD),
root mean square (RMSF), radius of gyration (Rg), solvent
accessible surface area (SASA), principal component analysis
(PCA), energy change, dihedral changes, and DSSP calcula-
tions are some of the most crucial factors that have enabled
us to determine the in-depth structural consequences of the
cancer associated mutations. Moreover, the in silico docking
experiments are usually followed byMDS of the protein-drug
complex molecule. This helps in detecting the stability of the
protein-drug complex which further helps in determining
the effectiveness of drug in binding to a particular target
protein. Certain high range force fields that have provided
a wide range of options to simulate a protein structure in
different environment have now become the central criterion
for structure analysis and drug design.

http://www.scbt.com/chemicals-table-akt_inhibitors.html
http://www.scbt.com/chemicals-table-akt_inhibitors.html
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6. Suggested Approach

Through the advancement in the use of genome sequencing
techniques in clinical bioinformatics and target based drug
therapy development, the accuracy in the postclinical trials
has raised in the last few decades. The use of such techniques
to unravel the mechanism behind miR-21 mediated PTEN
gene silencing and to find a plausible cure can be a better
approach. Moreover, doxorubicin, a potential drug which
translocates the FOXO3A protein inside the cell nucleus [74],
in combination with rapamycin, can prove to be a potential
combination to diminish the proliferation of miR-21 induced
cancer cell proliferation and could be a better template to
study the oncogenic miR-21 pathway inactivation. FOXO3A
attacks the promoter binding region of the miR-21 coding
region in TEMM43 gene, which in turn deactivates the pro-
liferation of this miRNA. As discussed above, the high level
of miR-21 diminishes the activity of PTEN by binding it at
3󸀠-UTR region which plays an active role in inducing cancer
proliferations. Inhibiting the miR-21 activation by raising
the FOXO3A concentration could help in reducing miR-21
mediated cancer activation in cell.Many other targets in AKT
kinase pathway are available which can be exploited to study
the cancer cell proliferation mechanism and can be further
used to find the cure.
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Iniesta, and M. González-Barón, “P13K/Akt signalling pathway
and cancer,” Cancer Treatment Reviews, vol. 30, no. 2, pp. 193–
204, 2004.

[15] L. V. Madrid, C.-Y. Wang, D. C. Guttridge, A. J. G. Schottelius,
A. S. Baldwin Jr., and M. W. Mayo, “Akt suppresses apoptosis
by stimulating the transactivation potential of the RelA/p65
subunit of NF-𝜅B,” Molecular and Cellular Biology, vol. 20, no.
5, pp. 1626–1638, 2000.

[16] A. Carnero, C. Blanco-Aparicio, O. Renner, W. Link, and J. F.
M. Leal, “The PTEN/PI3K/AKT signalling pathway in cancer,
therapeutic implications,” Current Cancer Drug Targets, vol. 8,
no. 3, pp. 187–198, 2008.

[17] W. W. He, P. J. Sciavolino, J. Wing et al., “A novel human pros-
tate-specific, androgen-regulated homeobox gene (NKX3.1)
that maps to 8p21, a region frequently deleted in prostate
cancer,” Genomics, vol. 43, no. 1, pp. 69–77, 1997.

[18] I. Shin, F. M. Yakes, F. Rojo et al., “PKB/Akt mediates cell-cycle
progression by phosphorylation of p27(Kip1) at threonine 157
and modulation of its cellular localization,” Nature Medicine,
vol. 8, no. 10, pp. 1145–1152, 2002.

[19] T. Xiang, Y. Jia, D. Sherris et al., “Targeting the Akt/mTOR
pathway in Brca1-deficient cancers,” Oncogene, vol. 30, no. 21,
pp. 2443–2450, 2011.

[20] E. S. Kandel, J. Skeen, N.Majewski et al., “Activation of Akt/pro-
tein kinase B overcomes a G2/M cell cycle checkpoint induced
by DNA damage,” Molecular and Cellular Biology, vol. 22, no.
22, pp. 7831–7841, 2002.

[21] D.Didiano andO.Hobert, “Molecular architecture of amiRNA-
regulated 3󸀠 UTR,” RNA, vol. 14, no. 7, pp. 1297–1317, 2008.

[22] Y. Tan, B. Zhang, T. Wu et al., “Transcriptional inhibiton of
Hoxd4 expression bymiRNA-10a in human breast cancer cells,”
BMCMolecular Biology, vol. 10, article 12, 2009.

[23] P. G.Hawkins andK. V.Morris, “RNA and transcriptionalmod-
ulation of gene expression,” Cell Cycle, vol. 7, no. 5, pp. 602–607,
2008.



The Scientific World Journal 5

[24] L. Poliseno, L. Salmena, J. Zhang, B. Carver, W. J. Haveman,
and P. P. Pandolfi, “A coding-independent function of gene and
pseudogene mRNAs regulates tumour biology,” Nature, vol.
465, no. 7301, pp. 1033–1038, 2010.

[25] F. Meng, R. Henson, H. Wehbe-Janek, K. Ghoshal, S. T. Jacob,
and T. Patel, “MicroRNA-21 regulates expression of the PTEN
tumor suppressor gene in human hepatocellular cancer,” Gas-
troenterology, vol. 133, no. 2, pp. 647–658, 2007.

[26] J. T. Huse, C. Brennan, D. Hambardzumyan et al., “The
PTEN-regulating microRNA miR-26a is amplified in high-
grade glioma and facilitates gliomagenesis in vivo,” Genes and
Development, vol. 23, no. 11, pp. 1327–1337, 2009.

[27] N. Bar and R. Dikstein, “miR-22 forms a regulatory loop in
PTEN/AKT pathway and modulates signaling kinetics,” PloS
ONE, vol. 5, no. 5, Article ID e10859, 2010.

[28] M. G. Pezzolesi, P. Platzer, K. A.Waite, and C. Eng, “Differential
expression of PTEN-targetingMicroRNAsmiR-19a andmiR-21
in Cowden syndrome,” American Journal of Human Genetics,
vol. 82, no. 5, pp. 1141–1149, 2008.

[29] Z. Liang, Y. Li, K. Huang, N. Wagar, and H. Shim, “Regulation
of miR-19 to breast cancer chemoresistance through targeting
PTEN,” Pharmaceutical Research, vol. 28, no. 12, pp. 3091–3100,
2011.

[30] K. Horiguchi, K. Sakamoto, D. Koinuma et al., “TGF-𝛽 drives
epithelial-mesenchymal transition through 𝛿EF1-mediated
downregulation of ESRP,” Oncogene, 2011.

[31] M. V. Astle, K. M. Hannan, P. Y. Ng et al., “AKT induces senes-
cence in human cells via mTORC1 and p53 in the absence of
DNA damage: implications for targeting mTOR during malig-
nancy,” Oncogene, vol. 31, no. 15, pp. 1949–1962, 2012.

[32] B. Orr, A. C. P. Riddick, G. D. Stewart et al., “Identification of
stromally expressed molecules in the prostate by tag-profiling
of cancer-associated fibroblasts, normal fibroblasts and fetal
prostate,” Oncogene, vol. 31, no. 9, pp. 1130–1142, 2012.

[33] J. Lee, L. Li, N. Gretz, J. Gebert, and S. Dihlmann, “Absent in
melanoma 2 (AIM2) is an important mediator of interferon-
dependent and -independent HLA-DRA and HLA-DRB gene
expression in colorectal cancers,” Oncogene, vol. 31, no. 10, pp.
1242–1253, 2012.

[34] S. Joha, A.-L. Nugues, D. Hétuin et al., “GILZ inhibits the
mTORC2/AKT pathway in BCR-ABL+ cells,”Oncogene, vol. 31,
no. 11, pp. 1419–1430, 2012.

[35] D. Huertas, M. Soler, J. Moreto et al., “Antitumor activity of a
small-molecule inhibitor of the histone kinase Haspin,” Onco-
gene, vol. 31, no. 11, pp. 1408–1418, 2012.

[36] S. Xiong, Y. Zheng, P. Jiang, R. Liu, X. Liu, and Y. Chu, “Micro-
RNA-7 inhibits the growth of human non-small cell lung cancer
A549 cells through targeting BCL-2,” International Journal of
Biological Sciences, vol. 7, no. 6, pp. 805–814, 2011.

[37] J. LoPiccolo, C. A. Granville, J. J. Gills, and P. A. Dennis, “Tar-
geting Akt in cancer therapy,” Anti-Cancer Drugs, vol. 18, no. 8,
pp. 861–874, 2007.

[38] J. C. Obenauer, L. C. Cantley, and M. B. Yaffe, “Scansite 2.0:
proteome-wide prediction of cell signalling interactions using
short sequence motifs,” Nucleic Acids Research, vol. 31, no. 13,
pp. 3635–3641, 2003.

[39] M. Crul, H. Rosing, G. J. De Klerk et al., “Phase I and phar-
macological study of daily oral administration of perifosine (D-
21266) in patients with advanced solid tumours,” European
Journal of Cancer, vol. 38, no. 12, pp. 1615–1621, 2002.

[40] S. B. Kondapaka, S. S. Singh,G. P.Dasmahapatra, E. A. Sausville,
and K. K. Roy, “Perifosine, a novel alkylphospholipid, inhibits
protein kinase B activation,”Molecular CancerTherapeutics, vol.
2, no. 11, pp. 1093–1103, 2003.
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