
April 2018 | Volume 5 | Article 871

Review
published: 04 April 2018

doi: 10.3389/fmed.2018.00087

Frontiers in Medicine | www.frontiersin.org

Edited by: 
Demosthenes Bouros,  

National and Kapodistrian University 
of Athens, Greece

Reviewed by: 
Venerino Poletti,  

Aarhus University Hospital, Denmark  
Martin Petrek,  

Palacký University, Olomouc, Czechia  
Keren Sarah Borensztajn,  

INSERM UMRS933 Physiopathologie 
des maladies génétiques 

d’expression pédiatrique, France

*Correspondence:
Milica Vukmirovic  

milica.vukmirovic@yale.edu;  
Naftali Kaminski  

naftali.kaminski@yale.edu

Specialty section: 
This article was submitted to 

Pulmonary Medicine,  
a section of the journal  

Frontiers in Medicine

Received: 03 February 2018
Accepted: 20 March 2018

Published: 04 April 2018

Citation: 
Vukmirovic M and Kaminski N (2018) 

Impact of Transcriptomics on Our 
Understanding of Pulmonary Fibrosis.  

Front. Med. 5:87.  
doi: 10.3389/fmed.2018.00087

impact of Transcriptomics on Our 
Understanding of Pulmonary Fibrosis
Milica Vukmirovic* and Naftali Kaminski*

Section of Pulmonary, Critical Care and Sleep Medicine, Precision Pulmonary Medicine Center (P2MED), Yale University 
School of Medicine, New Haven, CT, United States

Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disease characterized by aber-
rant remodeling of the lung parenchyma with extensive changes to the phenotypes of 
all lung resident cells. The introduction of transcriptomics, genome scale profiling of 
thousands of RNA transcripts, caused a significant inversion in IPF research. Instead 
of generating hypotheses based on animal models of disease, or biological plausibil-
ity, with limited validation in humans, investigators were able to generate hypotheses 
based on unbiased molecular analysis of human samples and then use animal models 
of disease to test their hypotheses. In this review, we describe the insights made from 
transcriptomic analysis of human IPF samples. We describe how transcriptomic studies 
led to identification of novel genes and pathways involved in the human IPF lung such 
as: matrix metalloproteinases, WNT pathway, epithelial genes, role of microRNAs among 
others, as well as conceptual insights such as the involvement of developmental path-
ways and deep shifts in epithelial and fibroblast phenotypes. The impact of lung and 
transcriptomic studies on disease classification, endotype discovery, and reproducible 
biomarkers is also described in detail. Despite these impressive achievements, the 
impact of transcriptomic studies has been limited because they analyzed bulk tissue and 
did not address the cellular and spatial heterogeneity of the IPF lung. We discuss new 
emerging technologies and applications, such as single-cell RNAseq and microenviron-
ment analysis that may address cellular and spatial heterogeneity. We end by making 
the point that most current tissue collections and resources are not amenable to analysis 
using the novel technologies. To take advantage of the new opportunities, we need new 
efforts of sample collections, this time focused on access to all the microenvironments 
and cells in the IPF lung.

Keywords: interstitial lung diseases, idiopathic pulmonary fibrosis, transcriptomics, biomarkers, microenvironment, 
microarray, RNAseq

iNTRODUCTiON

Our understanding of idiopathic pulmonary fibrosis (IPF), a chronically progressive scarring lung 
disease, with a significant genetic component, has dramatically changed in the last two decades. 
This has happened because after years of formulating hypotheses based on animal models, or 
analogies from other diseases, pulmonary researchers shifted their focus to analyzing the human 
lung. The increased availability of well-characterized human tissues and the emergence of high 
throughput transcriptomic profiling technologies facilitated a new era in IPF research, one in which 
novel hypotheses are based on observations from human lungs. The sheer size of the data, and its 
unbiased nature, reintroduced serendipity in pulmonary fibrosis research, and thus led to numerous, 
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FigURe 1 | Evolution of idiopathic pulmonary fibrosis (IPF) transcriptome analysis. The progression of IPF transcriptomic research is that of increased complexity, 
more genes studied, more sample studied, and more detailed phenotypes. In the early days, a few thousand genes were analyzed on a small number of samples 
and limited analytical approaches. During the emerging period investigators studied tens of samples, mostly on microarrays that profiled of all protein coding 
mRNAs. In the established period, the numbers of samples are in hundreds, all transcribed RNA is measured, and analytical methods are sophisticated.
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previously unexpected observations, novel hypotheses and 
paradigm shifts. In this perspective, we provide an overview of 
the impact of transcriptomics on our understanding of IPF. We 
highlight the timeline of major discoveries (Figure 1) with a focus 
on mechanisms and pathways, novel biomarkers and disease clas-
sification, non-coding RNAs, and disease microenvironments.

BRieF HiSTORY

The history of transcriptomics in pulmonary fibrosis, is a story of 
ever increased technological throughput, enhanced sophistication 
of data analysis and availability of human samples. Gene expres-
sion microarrays, which allowed the parallel analysis of hundreds 
and later thousands of genes, emerged in the second half of the last 
decade of the twentieth century (1, 2). When the first publication 
of the application of microarray analysis to pulmonary fibrosis in 
mice was published in 2000 (3), microarrays could profile ~6,000 
transcripts, the statistical approaches were not widely accepted, 
and human tissues were not available. Two years later, the first 
analysis of human lungs in 2002 included only eight samples, used 
a classification algorithm and did not mention a p-value (4). These 
papers were exciting and novel but very limited in numbers of 
samples and sophistication of analytical approaches.

Even several years later, studies that aimed at classifying disease 
included relatively low numbers of samples (5–10). These studies 
were more sophisticated in data normalization, visualization, and 
the wide adaptation of statistical approaches to address multiple 
testing (11, 12). Tissue availability has only increased when 

NIH-NHLBI established the Lung Tissue Research Consortium, 
a multicenter publicly available lung tissue repository (13). The 
expanded availability of tissues allowed application of microarray 
platforms to hundreds of samples (14, 15) as well the public avail-
ability of data through the Lung Genomics Research Consortium 
(16). Development of RNAseq for deeper sequencing than with 
microarray platforms resulted in routine profiling of the whole 
transcriptome including coding and non-coding RNAs, detection 
of larger dynamic ranges of transcripts, and identification of novel 
transcripts and variants (17, 18). This further allowed analysis of 
low-input and degraded RNA samples that enabled research on 
lung microenvironments and archived tissues (19, 20). Currently, 
when approaching a transcriptomic study, investigators do not 
have to be limited by sample or technological feasibility. Instead, 
they can follow a rational approach to design (Figure 2). The key 
insights below largely follow aspects of this outline.

MeCHANiSMS AND PATHwAYS

Transcriptomics studies revealed numerous novel molecules and 
pathways highly relevant for IPF pathogenesis. Here, we describe 
the most prominent findings, while a more complete list is avail-
able in Table 1.

Matrix Metalloproteinases
Development of IPF was initially explained as fibroblast prolifera-
tion, higher expression of tissue inhibitor proteinases (TIMPs), 
and reduced activity of matrix metalloproteases (MMP) (55). The 
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FigURe 2 | A rational approach to design of transcriptomics study. An 
overview of steps to help researchers make appropriate study design is 
presented. First, distinguish whether study aims to identify biomarkers or 
mechanisms. Then, the source of tissues together with power analysis to 
calculate sample size to be able to answer research question should be 
performed. Decision about the type of analysis should be made (bulk, sorted 
cells, or single cells). Last, the technology to perform transcriptome analysis 
should be chosen.
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first study that analyzed human lungs contradicted this paradigm 
(Figure  1; Table  1). Instead of the expected downregulation, 
authors found that MMPs were among the most increased genes 
in IPF lungs including MMP1, MMP2, MMP7, and MMP9 (4). 
MMP7 was localized predominantly in alveolar epithelium, and 
MMP7 knockout mice were relatively resistant to fibrosis (4). In 
addition to MMP7, MMP1 (4), MMP3 (28), MMP19 (29), and 
MMP28 (56) have been found to be increased in lung epithelial 
cells of patients with IPF, with diverse and sometimes opposing 
roles (57, 58).

While their exact roles have not been fully elucidated, the ini-
tial unexpected observation that MMPs are increased in the IPF 
lung, has been validated numerous times. It is now well accepted 
that MMPs affect numerous signaling pathways that together 
contribute to the profibrotic environment in the IPF lung and 
may also serve as effective biomarkers (see below).

genes expressed in Lung epithelium
Transcriptomic analysis of bulk tissue depends on follow-up 
analyses to decipher the cellular origin of differentially expressed 
genes. One of the most surprising findings in IPF transcriptomics 
was that cellular origin of large number of genes that distinguish 
the IPF lung from controls ended up being the alveolar epithe-
lium (59, 60) (Figure  1; Table  1). Among the first examples 
were MMP7, and later SPP1, a protein known to be expressed 
in inflammatory and bone cells, that in IPF is increased in the 
epithelial cells adjacent to myofibroblasts foci (22).

Other genes increased in IPF and unexpectedly localized 
to the alveolar epithelium adjacent to fibrotic regions include 
N-cadherin (5), HIF-1-alpha (31), IGFBP-4 (9), CCNA2 (10), 
TAGLN (33), CRLF1 (34), EGFR (35), and DIO2 (54). Among 
decreased genes, reduced expression of CAV1 (6) and AGER 
(52) in IPF compared with control lungs was thought to reflect 

changes in epithelial function or loss of type I alveolar epithelial 
cells (Table 1).

Of particular interest in this context, is a study that demon-
strated that IPF patients with increased expression of cilia genes 
exhibited also increased MMP7 and MUC5B, as well as micro-
scopic honeycombing but not myofibroblast foci on histological 
examination, suggesting that they represented a distinct IPF 
endophenotype (61) (Table 1 and see below).

Fibroblasts and Fibroblast Foci Related 
gene expression
Genes associated with myofibroblasts, a hallmark of lung histology 
in IPF, have been described as early as 2002 in bulk tissue analysis 
(4). Analysis of lung fibroblasts treated with TGFB1 revealed 
responses to TGFB1 and smooth muscle like myofibroblast 
phenotype switching (62) that was similar to what was observed 
in the IPF lung. Fibroblasts isolated from IPF lungs exhibited 
increased expression of IGFBP3 and IGFBP5 (43), TWIST1 (48), 
WNT5A (45), COMP (63), and FOXF1 (38). Increased Vascular 
cell adhesion molecule 1 gene expression in IPF lungs negatively 
correlated with lung function (39). Another TGFB1 induced 
gene, FKBP10, a collagen chaperone, was also increased in IPF 
and IPF lung fibroblasts and contributed to Collagen synthesis 
(40). Recently, TAZ, a transcriptional coactivator important in 
development, was shown to be increased in the fibroblastic foci 
and to contribute to fibrotic response through TAZ-mediated 
regulation of CTGF (42) (Figure 1; Table 1).

Of particular interest are genes downregulated in IPF lungs 
and IPF fibroblasts, as they may represent key features lost during 
disease. RXFP1, a relaxin/insulin-like family peptide receptor is 
significantly decreased in IPF tissues and fibroblasts and cor-
relates with disease severity. A relaxin-like peptide, CGEN25009 
was effective at decreasing bleomycin-induced, fibrosis in  vivo 
(41). Similarly, PTPN11, a ubiquitously expressed SH2 domain-
containing tyrosine phosphatase, was decreased in IPF lungs 
and IPF fibroblasts. Overexpression of constitutively active 
PTPN11 reduced the responsiveness of fibroblasts to profibrotic 
stimuli, and viral delivery of PTPN11 to wild-type mice blunted 
bleomycin-induced pulmonary fibrosis (50) (Figure 1; Table 1).

The wNT Pathway in iPF
Perhaps, one of the most intriguing finding in IPF lungs gene 
expression was the aberrant activation of developmental pathways 
and especially the WNT/β-catenin pathway in IPF (Figure  1; 
Table 1) (64, 65). In 2003, the first observation of β-catenin expres-
sion in fibroblastic foci, as well as its expression and colocaliza-
tion with WNT downstream target genes, CCND1 and MMP7 
in adjacent proliferative bronchiolar lesions was reported (64). 
Subsequently, increased WNT1, WNT7b, WNT10b, FZD2 and 
FZD3, β-catenin, and LEF1 were found in IPF lungs (23). WNT1, 
WNT3a, β-catenin, and GSK3B were mainly localized to alveolar 
and bronchial epithelium with increased expression of WNT 
targets CCND1 and MMP7. Increased expression of WISP1, a 
WNT inducible signaling protein, was found in IPF lungs. WISP1 
had profibrotic effects in vitro, and WISP1 neutralizing antibod-
ies blunted fibrosis in  vivo (47). Inhibition of WNT/β-catenin 
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TABLe 1 | Summary of relevant idiopathic pulmonary fibrosis (IPF) genes identified by transcriptome profiling.

gene iDa gene name Direction of 
expression

Tissue localization Relevant pathway Reference

expressed in lung epithelium in iPF
MMP7 Matrix metallopeptidase 7 Increased Lung (alveolar epithelial cells and 

fibroblasts), peripheral blood 
and BAL

Extracellular matrix degradation, 
defensins, SPP1, and WNT/β-
catenin pathway

(4, 5, 21–27)

MMP3 Matrix metallopeptidase 3 Increased Lung, epithelial cells Extracellular matrix degradation, 
β-catenin pathway

(28)

MMP19 Matrix metallopeptidase 19 Increased Lung, epithelial cells Extracellular matrix degradation, 
PTGS2 pathway

(29)

MMP1 Matrix metallopeptidase 1 Increased Lung, epithelial cells Extracellular matrix degradation, 
mitochondrial function/HIF-1-alpha 
pathway

(30)

SPP1 Osteopontin Increased Lung (epithelial cells) Extracellular matrix degradation (9, 22)
IGFBP-4 Insulin-like growth factor binding 

protein 4
Increased Lung (alveolar and basal cells) IGF1 pathway (5, 24)

CCNA2 Cyclin A2 Increased Lung (alveolar epithelial cells) Cell cycle regulation (10)
HIF1A Hypoxia-inducible factor-1 alpha Increased Lung (alveolar epithelial cells) Hypoxia, p53/VEGF pathways (31)
CAV1 Caveolin-1 Decreased Lung Cell cycle regulation, TGF-b/JNK 

pathway
(6)

SYN-2 Syndecan-2 Increased Lung, alveolar macrophages TGF-b pathway (32)
TAGLN Transgelin Increased Lung, ATII cells TGF-b pathway (33)
CRLF 1 Cytokine receptor-like factor 1 Increased Lung, ATII Th1 cells inflammatory response (34)
EGFR Epidermal growth factor receptor Increased Lung, epithelial cells Reepithelization (35)
LYCAT Lysocardiolipin acyltransferase Decreased Lung (epithelial cells), peripheral 

blood mononuclear cell (PBMC)
Mitochondrial membrane potential (36)

SERPINF1 (PEDF) Pigment epithelium-derived factor Increased Lung Angiogenesis (37)

Fibroblasts related gene expression in iPF
FOXF1 Forkhead box F1 Increased Lung COL1/ARPC1 pathway (38)
VCAM-1 Vascular cell adhesion molecule 1 Increased Lung, fibroblast foci and blood 

vessels
TGF-b/ERK/Cyclin D pathway (39)

FKBP10 FK506-binding protein 10 Increased Lung, fibroblasts, and CD68 (+) 
macrophages

TGF-b/Col I synthesis (40)

RXFP1 Relaxin/insulin-like family peptide 
receptor 1

Decreased Lung TGF-b (41)

TAZ Transcriptional coactivator with 
PDZ-binding motif

Increased Lung CTGF and Col1 pathways (42)

IGFBP3, IGFBP5 Insulin-like growth factor binding 
proteins 3 and 5

Increased Lung IGF pathway (43)

wNT pathway in iPF
WNT1, 3a, 5a, 7b, 10b, 
Fzd2 and 3, β-catenin, 
Lef1, Gsk-3β

Wingless and others Increased Lung, fibroblasts, alveolar and 
bronchial epithelium

Wnt signaling (23, 44, 45)

LRP5 Wnt co-receptor Increased Lung, PBMC Wnt and TGF-b pathway (46)
WISP1 Wnt1-inducible signaling protein-1 Increased Lung Wnt signaling (47)

Apoptotic response in iPF
TWIST1 Twist basic helix–loop–helix 

transcription factor 1
Increased Lung—fibroblastic foci Apoptosis/PDGF pathway (48)

CXCL12 Chemokine ligand 12 Increased Lung Inflammation (8)
TNSF10, BAX, CASP6 Apoptotic regulators Altered 

expression
Lung Apoptosis (49)

SHP2 (PTPN11) SH2 domain-containing tyrosine 
phosphatase-2

Decreased Lung Apoptosis/Tyr and Ser/Thr kinase 
pathways

(50)

Host defense implicated in iPF
DEFA3–4 Defensin alpha 3 and 4 Increased Lung and peripheral blood Host defense (10, 51)
AGER (RAGE) Advanced glycosylation end 

product-specific receptor
Decreased Lung and peripheral blood Inflammation (24, 52)

Mitochondria-related genes in iPF
PINK1 PTEN-induced putative kinase 1 Decreased Lung Dysfunction of mitochondria (53)
DIO2 Iodothyronine deiodinase 2 Increased Lung TH pathway/mitochondrial 

biogenesis
(54)
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TABLe 2 | Summary of gene signatures that classify interstitial lung diseases.

# genes Tissue origin Disease comparison Sample size Year Reference

407 Lung Idiopathic pulmonary fibrosis (IPF) vs HP 15 (IPF)
12 (HP)

2006 (5)

332/6 Lung Sporadic IPF vs familial, IPF vs non-specific interstitial 
pneumonitis (NSIP)

16 sporadic IPF (2 NSIP)
10 familial (4 NSIP)

2007 (8)

242/335 Lung, fibroblasts CTRL vs (SScPF; SScPAH; iPAH; IPF) 33 (15 severe PF, 6 moderate/severe PF and PAH, 4 
moderate PF with PAH, 7 PAH), 10 IPF

2011 (75)

<50 Lung SSc/IFP; IPF vs NSIP ≤10 2007, 
2011

(8, 75)

22 Lung IUP vs (non-IUP, sarc, HP) 77 training set (39 IUP, 38 non-IUP), validation  
set 48 (22 IUP, 26 non-IUP)

2015 (19)

4,734 Lung PH-IPF and PAH vs CTRL 18 (PAH), 8 (PH-IPF) 2010 (76)

74 Lung Chronic lung disease 13 data sets 2015 (77)

>1,500/32a LCM lung PH-IPF vs CTRL, PH-chronic obstructive pulmonary 
disease (COPD) vs CTRL, PH-IPF vs PH-COPD

LCM pulmonary arterioles (n = 8) 2014 (78)

255 LCM lung PH-IPF vs NPH-IPF 8 PH-IPF, 8 NPH-IPF 2013 (79)

2,490b

337c

214d

Lung IPF vs COPD vs CTRL 19 IPF, 49 COPD 2016 (18)

3 Gene 
clusters

Lung IPF vs COPD vs CTRL 319 (3 data sets)e 2015 (15)

a32 small DEGs overlap between PH-IPF and PH-COPD.
b2,490 DEGs between IPF and CTRL.
cDEGs between COPD and CTRL.
dDEGs overlap between IPF and COPD.
e4,259 mRNA and 438 microRNA and also includes 669 clinical variables.

5

Vukmirovic and Kaminski Transcriptomics in Pulmonary Fibrosis

Frontiers in Medicine | www.frontiersin.org April 2018 | Volume 5 | Article 87

pathway attenuated lung fibrosis in mice, suggesting an essential 
role of WNT/β-catenin pathway in IPF development (46, 66).

While many of these observations were focused on epithelial 
cells, WNT5A, a member of the non-canonical signaling pathway 
was increased in IPF lung fibroblasts, with multiple observations 
suggesting its role in determining fibroblast phenotype in IPF 
(45, 67, 68).

Aging, Metabolism, and  
Mitochondria-Related Molecules
Mitochondrial dysfunction is emerging as one of the key features 
of IPF. Gene expression data revealed decreased PINK1, a key 
regulator of mitophagy, and analysis of IPF lungs revealed accu-
mulation of dysfunctional mitochondria in alveolar epithelial 
cells. Findings from PINK1 knockout confirmed these results, 
and established a role for impaired mitophagy in IPF (53) poten-
tially through TGFB1 effects (69).

High expression of DIO2, an enzyme that activates thyroid 
hormone in IPF lungs, and a predisposition to fibrosis among 
DIO2 knockout mice, led investigators to treat bleomycin 
treated mice with thyroid hormone or a small molecule 
agonist (54). Thyroid hormone reversed bleomycin-induced 
mitochondrial injury both in vivo and in vitro and augmented 
resolution of fibrosis in mouse models of pulmonary fibrosis. 
This effect was dependent on intact PPARGC1A and PINK1 
pathways suggesting that the antifibrotic effect of thyroid 
hormone was mediated through restoration of mitochondrial 
homeostasis (54).

Changes in expression of genes encoding numerous metabolic 
enzymes from IPF lungs associated with glucose, fatty acid and 
citric acid metabolism suggesting on large alterations in mito-
chondria function (70). Similar findings were found in fibroblasts 
and alveolar macrophages (71, 72). More detailed review of age-
related perturbations in genome and epigenome associating with 
plausible roles of mitochondria in pathogenesis were published 
elsewhere (73, 74).

geNe eXPReSSiON PATTeRNS AS  
TOOLS FOR DiSeASe DiAgNOSiS, 
CLASSiFiCATiON, AND OUTCOMe 
PReDiCTORS

Transcriptomics studies have also been used to identify disease 
class related gene expression patterns in the lung, as well as to 
prioritize protein biomarkers found in the blood stream, or to 
identify peripheral blood mononuclear cells (PBMCs), gene 
expression patterns that correlate with disease clinical attributes. 
The studies are summarized in Table 2.

Disease Classification
An early suggestion that lung gene expression can be used to clas-
sify disease emerged from comparison of lungs of patients with 
IPF from those with fibrotic hypersensitivity pneumonitis (HP) 
using transcriptome analysis (5). The enrichment pathway analy-
sis of the HP signature revealed T-cell activation, inflammation, 
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TABLe 3 | Summary of gene signatures that predict idiopathic pulmonary fibrosis (IPF) progression [rapid vs slow (stable)].

# genes Tissue origin Sample size (iPF) Year Reference

437 Lung 26 (rapid progressors), 88 (slow progressors) 2007 (7)
579 Lung 23 (stable), 8 (acute exacerbation) 2009 (10)
134 Lung 6 (stable), 6 (progressive) 2009 (9)
472 Lung 119 (training), 111 (validation) 2013 (61)
468/12b Bleomycin rat/IPF human 100 (human), 73 (rats) 2015 (14)
1,428/2,790/13a Peripheral blood mononuclear cell (PBMC) 130 (mild vs ctrl; severe vs ctrl; mild vs severe) 2012 (51)
118 PBMC 45 (training), 21 and 75 (validation) 2015 (85)
52 PBMC 45 (discovery), 75 (validation), and 425 (validation) 2013, 2017 (86, 87)

a13 DEGs between mild and severe IPF.
b12 is set of translational markers.

6

Vukmirovic and Kaminski Transcriptomics in Pulmonary Fibrosis

Frontiers in Medicine | www.frontiersin.org April 2018 | Volume 5 | Article 87

and humoral immune response pathways, whereas the IPF gene 
signature showed enrichment for cell adhesion, extracellular 
matrix, and lung development pathways (80).

Analysis of lung samples obtained from patients with sporadic 
IPF, familial pulmonary fibrosis with a usual interstitial pneumonia 
(UIP) pattern, and non-specific interstitial pneumonitis (NSIP) 
revealed similarities on gene expression patterns and pathways 
and a minimal difference between IPF and NSIP (Table 2) (5, 8). 
Similar findings were found when systemic sclerosis (SSc) associ-
ated pulmonary fibrosis and IPF were compared (75).

A recent study used supervised machine learning algorithms 
to distinguish lung biopsy samples with UIP from non-UIP 
(NSIP, sarcoidosis, and HP) identified a 22 gene signature 
(specificity 92%, sensitivity 64–82%). This approach was solely 
based on transcriptional data concordant with UIP pathological 
findings without integration of clinical information, or com-
parison to patient-level diagnoses by multidisciplinary teams, 
the current diagnostic gold standard (19). The same group 
continued improving genomic classifiers to differentiate UIP 
from non-UIP and demonstrate high robustness toward lung 
tissue collection using transbronchial biopsy (81, 82) (Figure 1; 
Table 2).

Lung gene expression Profiles Associated 
with Disease Activity and Severity
Idiopathic pulmonary fibrosis has different patterns of progres-
sion, from stable disease lasting for long periods of time to rapid 
progression, and acute exacerbations that are highly lethal. 
Despite a very small number of samples, differentially expressed 
genes were found in end-stage lungs obtained from patients 
with rapid and slow progression defined by length of symptoms 
(Figures 1 and 2; Table 3) (7). Similar findings were also found 
in a study aimed to identify genes that defined progression by 
rate of deterioration in pulmonary function tests (9). SFTPA1, 
SPP1, and HSPA1A were among top increased genes and cor-
related with worst survival in IPF in agreement with previous 
reports (83, 84).

The study of acute exacerbations of IPF has been limited, 
because of lack of tissue availability. Using a unique resource 
of rapid lung autopsies (88) investigators compared lung gene 
expression profiles of acute exacerbations, stable end-stage IPF, 
and controls (10). They did not find any significant evidence for 

infection or overt inflammation in acute exacerbation lungs, 
but they did find increased expression of CCNA2, and DEFA3 
and DEFA4, antimicrobial proteins of the alpha-defensin family 
known to be cleaved by MMP7 (25) and evidence for widespread 
epithelial apoptosis.

A more sophisticated effort to identify disease endotypes 
based on tissue gene expression, incorporated clinical and his-
tological information in the analysis (61). This determined that 
patients with increased expression of cilia-related genes, such 
as DNAH6, DNAH7, DNAI1, and RPGRIP1L, exhibited also 
increased expression of SPP1, MMP1, MMP7, PLUNC, MUC5B, 
as well as more microscopic honeycombing on histology but no 
myofibroblastic foci (61) (Table  3). Interestingly, MMP7 has 
previously been shown to attenuate ciliated cell differentiation 
during wound repair (27). Another effort to identify disease 
activity genes studied gene expression commonalities between 
IPF disease progression in humans and bleomycin-induced 
lung fibrosis in rats (14). They identified the largest overlap in 
differentially expressed genes between lung transcriptome of 
bleomycin-induced fibrosis and IPF human lungs and identified 
12 genes (C6, CTHRC1, CTSE, FHL2, GAL, GREM1, LCN2, 
MMP7, NELL1, PCSK1, PLA2G2A, and SLC2A5) as translational 
markers of disease activity. Of those markers, four classified IPF 
patients based on disease severity (14).

Cross Disease endotypes
The availability of large datasets such as the LGRC, allowed  
also analysis of multiple chronic lung disease in parallel. 
Recently, applying a novel computational approach named 
integrative phenotyping framework, investigators discovered 
novel endotypes of chronic obstructive pulmonary disease 
(COPD) and IPF (15). They integrated clinical phenotype data 
with mRNA and microRNA data and identified novel patient 
clusters. The genes that characterized the patients in the inter-
mediate clusters were enriched with inflammatory and immune 
pathways, suggesting that patients from those clusters could 
have a mechanistically distinct autoimmune endotypes (15). 
Similarly, the same group integrated mRNA, microRNA, and 
splicing gene variants to identify convergent transcriptional 
regulatory networks in IPF and COPD (18). The p53/hypoxia 
pathway emerged as a convergent pathway in COPD and IPF. 
A recent study performed meta-analysis of 13 published data 
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TABLe 4 | Summary of single genes—biomarkers of idiopathic pulmonary fibrosis (IPF) progression.

gene iD gene name Tissue origin Sample size (iPF) Year Reference

MMP7 Matrix metallopeptidase 7 Lung, serum, plasma, BAL 13 (lung), 74 (plasma, lung, BAL)
20 (BAL)
214 (plasma, 140 derivation and 101 validation)
65 (serum), 1,227 (serum), 97 (plasma)

2002, 2008
2009
2012
2016, 2017

(4, 24)
(89)
(26)
(90, 91, 92)

SPP1 Osteopontin Lung, BAL 18 2005 (22)
COMP Cartilage oligomeric matrix protein Lung 115 2013 (63)
CXCL13 C–X–C motif chemokine 13 Lung, plasma 92, 94 2014 (93)
CCL8 Chemokine (C–C motif) ligand 8 Lung, BAL, plasma 8 (lung), 86 (BAL, plasma) 2017 (94)
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sets including cystic fibrosis, COPD, IPF and asthma, environ-
mental conditions (smoking, epithelial injury), and control to 
identify general markers of chronic lung disease (77). Increased 
inflammatory, wounding, defense response and regulation of 
cell proliferation pathways, and decreased immune response 
pathways were observed (77). While intriguing, all of these 
studies were limited by lack of resolution with regard to cel-
lular admixture and depth of clinical phenotyping (Figure 1; 
Table 2).

Prioritization of Protein Biomarkers
Genome scale transcriptome studies facilitated the develop-
ment of protein-based biomarkers for IPF diagnosis (Figures 1 
and 2; Table 4). A comparison of proteins in the blood flow of 
patients with IPF to control using a targeted proteomic approach 
identified a signature of MMP1, MMP7, MMP8, IGFBP1, and 
TNFRSA1F (24) that was able to distinguish IPF from controls 
with high sensitivity and specificity. MMP 1 and MMP 7 were also 
increased in the lungs of IPF patients and able to differentiate IPF 
patients from other chronic lung disease including hypersensitiv-
ity pneumonitis and sarcoidosis.

Indeed, MMP7, which emerged out of the first microarray 
analysis of human IPF lungs, was replicated as predictive of 
increased mortality in multiple cohorts of IPF patients (14, 26, 
90–92, 95). Similar experimental strategy, following a lung gene 
expression finding with assessment of a protein in the peripheral 
blood, has been applied to many molecules including SPP1 (22), 
COMP (63), CXCL13 (93), CCL8 (94), and others (Table 4).

Peripheral Blood gene expression 
Patterns
The transcriptome of the peripheral blood is highly appealing 
because of information about disease presence and outcome. It 
represents a safe and accessible alternative to availability of sam-
ples from the lung. Microarray gene expression profiles of whole 
blood RNA (51) distinguished IPF patients from controls, and 
among IPF patients, 13 genes were changed with increased dis-
ease severity as assessed by DLCO but not FVC (Figures 1 and 2;  
Table  3) (51). Interestingly, alpha-defensins identified in acute 
exacerbations in the lung (10) were also associated with disease 
severity in the peripheral blood.

A subsequent study aimed to identify PBMC gene expres-
sion profiles predictive of increased mortality in patients with 
IPF (86). The authors performed microarray analysis on RNA 

isolated from PBMCs in discovery and replication cohorts of IPF 
patients. They identified a 52-gene outcome-predictive signature 
that distinguished two patient groups with significant differ-
ences in transplant free survival in both cohorts. Interestingly, 
increased mortality was associated with decreases in the T-cell 
co-stimulatory molecules CD28, ICOS, LCK, and ITK, poten-
tially highlighting the role of potential T-cell aberrations and 
maybe the role of immunosenescence in IPF. Remarkably, the 
outcome-predictive accuracy of a score calculated based on 
the 52-gene signature was recently validated in a six cohorts 
study containing 425 IPF patients (87). Adding the 52-gene risk 
score to the Gender, Age, and Physiology index significantly 
improved its mortality predictive accuracy, suggesting that the 
genomic signature improved on the performance of validated 
clinical markers. Analysis of longitudinal changes in the signa-
ture revealed that while the 52-gene risk score tracked changes 
in FVC, patients never shifted their risk profile. However, in a 
subset of treated patients, a shift in the risk score was also accom-
panied by functional improvement, suggesting that the 52-gene 
signature may be indicative of response to the therapy. These 
datasets were also used in manuscripts that applied Weighted 
Gene Co-expression Network Analysis to identify gene expres-
sion modules that correlate with outcome (85) or microbiome 
changes (96) (Table 3). The impressive accuracy and replication 
should drive experiments that test the value of these biomarkers 
prospectively and assess in detail shift in circulating inflam-
matory cells in IPF using unbiased methods such as single-cell 
RNAseq.

ROLe OF NON-CODiNg RNAs iN iPF

Until recently considered the dark matter of the genome, the sig-
nificant role of non-coding RNAs in human health and disease is 
increasingly appreciated (97). We will focus here on microRNAs, 
as their role has been extensively studied in pulmonary fibrosis.

MicroRNA Changes Reveal Loss of 
Differentiation
MicroRNAs are small non-coding RNAs that regulate gene 
expression by either initiating RNA degradation or inhibiting 
translation through binding to the 3′ UTR of their target gene. 
Acting as rheostats, many microRNAs regulate the general 
responsiveness of a cell to a certain stimulus by affecting numer-
ous genes and frequently serving as gate keepers of feed forward 
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TABLe 5 | Data and tissue repositories.

Name website Reference

Lung Tissue Research 
Consortium

http://www.ltrcpublic.com/ (126)

Lung Genomics Research 
Consortium

http://www.lung-genomics.org/ (126)

Lung development map https://www.lungmap.net/ (127, 128)
Cell differentiation analysis 
(scRNAseq)

http://www.cs.cmu.edu/~jund/
scdiff/index.html

(129)

loops. The expression of approximately 10% of the microRNAs 
is different in IPF compared with control lungs (98, 99). The 
microRNA expression patterns observed in IPF are similar to 
those observed in the developing lung. Comparison of fetal, 
IPF and control lungs revealed that miR-487b, miR-409-3p, 
miR-154, miR-154*, miR-134, miR-299–5p, miR-410, miR-382, 
miR-377, and miR-296 were increased in IPF or fetal lungs 
compared with controls (99). A time course systems biology 
analysis of microRNAs changed during postnatal lung devel-
opment suggested that close to 40% were also changed in IPF 
(100). In the same vein, comparison of microRNA signatures in 
IPF and non-small cell lung cancer revealed significant similari-
ties and numerous microRNAs that changed in the same direc-
tion. Notably, over 20 microRNAs including members of the 
miR-30, let-7, miR-29 families were decreased in IPF and lung 
cancer, commonly increased microRNAs included miR-155, 
miR-21, miR-205, and miR-31 (101). While the cellular origin 
and exact effects of all of these common microRNA changes 
are unclear, together with the observations about lung develop-
ment, microRNA changes in the IPF lung suggest a loss of the 
differentiated organ regulatory networks potentially as a result 
of desynchronized aging (102, 103).

iPF MicroRNAs and TgFB1
One of the most recurrent themes in microRNAs in IPF, is that 
they are both regulated by and regulators of TGFB1 signaling. 
Thus, in many cases, a change in the expression of a microRNA 
disrupts the careful balance of self-limited activation of TGFB1. 
Let-7d, a microRNA known to regulate epithelial cell differ-
entiation, is a good example. It is decreased in IPF lungs, it is 
inhibited by TGFB1 through direct effect of SMAD3, and when 
it is inhibited, it ceases to inhibit HMGA2, allowing amplifica-
tion of TGFB1 signaling and early fibrotic changes in vivo and 
in vitro (98). Similarly, miR-21, a microRNA increased in IPF 
lungs, is induced by TGFB1 and is an inhibitor of SMAD7, a 
regulatory SMA that inhibits TGFB1 signaling pathways (104). 
A larger number of TGFB1 inducible microRNAs, localized 
to chromosome 14q32, were also increased in IPF lungs (99). 
Other microRNAs regulating or regulated by TGFB1 were 
found to be changed in IPF lungs include miR-30, miR-199, 
miR-29, miR-26, miR-155, miR-326, and others (105). While, it 
can be safely said that microRNA changes in IPF seem to result 
in lowering the cell profibrotic threshold, it has to be mentioned 
that they were obtained in isolation, for one microRNA at a 
time, but in the IPF lung, at least when analyzed in bulk, they 
happen simultaneously. To understand better the effects of 
microRNA perturbations, careful dissection of the cellular, 
spatial, and temporal changes, as well as their integrated effects 
is required.

miR-29, the Ultimate Antifibromir
Of microRNAs differentially expressed in IPF, the miR-29 family 
is probably the most extensively studied both mechanistically and 
as a therapeutic target, because of its known inhibitory effects 
on extracellular matrix proteins, and growth factors such CTGF 
and IGF1 (106). miR-29 family members are decreased in cardiac, 

renal and liver fibrosis, keloid, fibrotic Crohn’s disease, and other 
fibrotic conditions (107–113). miR-29 family microRNAs are 
decreased in IPF lungs (114), they regulate numerous genes 
related to fibrosis (115) and seem to regulate profibrotic signals 
from the extracellular matrix to fibroblasts (116). Both gene 
delivery of miR-29 via a transposon method (117) or using a miR-
29b mimic (118) augmented resolution of bleomycin-induced 
pulmonary fibrosis. While most of these studies focused on the 
role of miR-29 in fibroblasts, two recent studies suggested that 
miR-29 could be important in prevention of pulmonary fibrosis 
(119) or bronchopulmonary dysplasia (120) through beneficial 
effects on alveolar repair. Regardless of the cell specificity of 
the effect, miR-29 supplementation seems a viable option as an 
antifibrotic therapy.

iPF MiCROeNviRONMeNTS

The IPF lung is characterized histologically by its regional, tem-
poral and cellular heterogeneity, meaning that normal looking 
regions are interspersed with diseased regions, different regions 
may appear at different stages of disease (121, 122), and both 
the cellular content and the phenotype of known cells are dra-
matically altered in the IPF lung. Transcriptomic profiles of bulk 
tissue homogenates do not capture this complexity. They also do 
not allow understanding how cells influence each other in the 
remodeled IPF microenvironment. Improving the cellular and 
spatial resolution of transcriptomics using single cells and tissue 
microenvironments is critically important to decipher what hap-
pens in the IPF lung.

Tissue and Cellular Heterogeneity Are 
Starting to emerge
Transcriptome analyses performed on bulk lung tissue detected 
strong gene expression signals, leading to discovery of IPF 
relevant signaling pathways (Figures  1 and 2). However, it is 
unclear whether alteration in transcriptome signals represented 
core features of disease or was dominated by changes in cellular 
admixture. Increased gene expression changes observed in the 
IPF lung were frequently assigned to cell types, based on prior 
knowledge or follow-up studies, as in the case of MMP7, SPP1, 
WISP1, COMP, TWIST1, PINK1, and the others mentioned 
earlier. In most cases, such analysis was done after the fact, using 
low throughput technologies such as immunohistochemistry, 
and was dependent on prior knowledge and availability of rea-
gents. Only few studies analyzed transcriptomic gene expression 
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in well-defined IPF microenvironments. Comparison of the 
transcriptome of hyperplastic vs conserved epithelial cells and 
dense fibrotic lung regions, using laser capture microdissec-
tions identified previously unrecognized MMP19, as a molecule 
increased in hyperplastic epithelial cells, with an antifibrotic 
role (29). Two studies reported solely gene expression profiles of 
pulmonary vasculature and showed differential gene expression 
for IPF patients with and without coexistent PH (79) and for 
PH-IPF and COPD (78) (Table 2). Two clusters of co-regulated 
genes related to bronchiolar epithelium or lymphoid aggregates 
were identified when whole lung transcriptome was correlated 
with tissues histology and clinical variables (123). The first study 
to apply single-cell RNAseq of sorted epithelial cells from IPF 
patients or controls revealed distinct epithelial cell types in IPF 
lung and complete lack of some “normal” epithelial cells (124). 
Using transcriptomic profiling of flow-sorted cells, monocytes 
shown to differentiate into alveolar macrophages and continu-
ously express profibrotic genes over the course of fibrosis. Thus, 
selective targeting of alveolar macrophage differentiation within 
the lung may decrease fibrosis and avoid global monocyte or 
tissue-resident alveolar macrophage depletion (125). Besides 
transcriptomics profiling of sorted and single cells isolated from 
fresh lung, the RNAseq of archival formalin-fixed paraffin-
embedded lung biopsy from IPF patients is possible (20). This 
allows analysis of specific areas of lungs and their interaction 
observed microscopically (epithelium and fibroblastic foci), 
usage of clinical variables (survival) and overcoming the avail-
ability of fresh lung tissues.

While lung microenvironment studies are still rare, the rapid 
emergence of methods for high throughput sequencing of single 

cells, the improved ability to perform sequencing from IPF 
microenvironments, the improved analytical methods, and the 
success of old fashioned analyses of bulk tissue should encourage 
investigators to perform larger studies focusing on understanding 
temporo-spatial multicellular networks in IPF.

CONCLUSiON AND FUTURe DiReCTiONS

The progress of transcriptomics in IPF is characterized by increa-
sed sophistication and complexity (Figure 1). Transcriptomics 
studies facilitated multiple shifts with regard to the role of MMPs, 
developmental pathways, microRNAs, and the importance of 
alveolar epithelial and myofibroblast regulatory networks in 
IPF. They have also had significant impact on the discovery 
and prioritization of validated biomarkers (Figure 1). However, 
most of these studies used low sample number and lack valida-
tion cohorts. NIH NHLBI funded efforts led to generation of 
publicly available datasets of multi-omics data generated from 
carefully characterized human and mouse samples (Table  5). 
They contain, mainly bulk tissue, but also limited amounts of 
sorted cells and single-cell transcriptomic profiles. With the 
advent of novel technologies for single cell and microenviron-
ment transcriptomic profiling, we have a unique opportunity 
to triangulate IPF regulatory and transcriptional networks by 
analyzing the lung from a verity of perspectives, use available 
bulk data, as well as profiles of disease microenvironments and 
single cells (Figure 3). This will allow integration of information 
and resolution of the cellular, temporal, and spatial complexities 
of the IPF lungs and thus better therapeutics and diagnostics. In 
2014 following a series of meetings sponsored by NIH-NHLBI, 

FigURe 3 | Triangulation of transcriptomic data to understand disease. Single cell, microenvironment, and bulk tissue transcriptomic analysis have their advantages 
and disadvantages. When applied together, they can help in understanding regulatory networks in the tissue.
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