
M a j o r  A r t i c l e

1330  •  jid  2022:225  (15 April)  •  Ragonnet-Cronin et al

The Journal of Infectious Diseases

 

Received 1 February 2021; editorial decision 26 May 2021; accepted 1 June 2021; published 
online June 2, 2021.

Presented in part: Conference on Retroviruses and Opportunistic Infections March 8–11 2020 
(virtual conference) Boston, MA, USA; Dynamics & Evolution of HIV and Other Human Viruses 
May 10–13, 2020 (virtual conference) San Diego, CA, USA.

Correspondence: Manon Ragonnet-Cronin, MRC Centre for Global Infectious Diseases 
Analysis, Imperial College London, School of Public Health, St Mary’s Hospital, Norfolk Place, 
London W2 1PG, UK (manonragonnet@imperial.ac.uk).

The Journal of Infectious Diseases®    2022;225:1330–8
© The Author(s) 2021. Published by Oxford University Press for the Infectious Diseases Society 
of America. This is an Open Access article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
DOI: 10.1093/infdis/jiab293

Human Immunodeficiency Virus (HIV) Genetic Diversity 
Informs Stage of HIV-1 Infection Among Patients 
Receiving Antiretroviral Therapy in Botswana
Manon Ragonnet-Cronin,1,  Tanya Golubchik,2 Sikhulile Moyo,3 Christophe Fraser,2 Max Essex,3,4 Vlad Novitsky,3,4,5 and Erik Volz,1,  with the PANGEA 
Consortium
1MRC Centre for Global Infectious Diseases Analysis, Imperial College London, London, United Kingdom, 2Big Data Institute, University of Oxford, Oxford, United Kingdom, 3Botswana Harvard AIDS Initiative, 
Gaborone, Botswana, 4Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA, 5Brown University, Providence, Rhode Island, USA

Background.  Human immunodeficiency virus (HIV)-1 genetic diversity increases during infection and can help infer the time 
elapsed since infection. However, the effect of antiretroviral treatment (ART) on the inference remains unknown.

Methods.  Participants with estimated duration of HIV-1 infection based on repeated testing were sourced from cohorts in 
Botswana (n = 1944). Full-length HIV genome sequencing was performed from proviral deoxyribonucleic acid. We optimized a ma-
chine learning model to classify infections as < or >1 year based on viral genetic diversity, demographic, and clinical data.

Results.  The best predictive model included variables for genetic diversity of HIV-1 gag, pol, and env, viral load, age, sex, and ART 
status. Most participants were on ART. Balanced accuracy was 90.6% (95% confidence interval, 86.7%–94.1%). We tested the algorithm 
among newly diagnosed participants with or without documented negative HIV tests. Among those without records, those who self-
reported a negative HIV test within <1 year were more frequently classified as recent than those who reported a test >1 year previously. 
There was no difference in classification between those self-reporting a negative HIV test <1 year, whether or not they had a record.

Conclusions.  These results indicate that recency of HIV-1 infection can be inferred from viral sequence diversity even among 
patients on suppressive ART.

Keywords.   ART; early HIV infection; HIV; HIV treatment; NGS.

Accurate inference of human immunodeficiency virus (HIV)-1 
infection stage is crucial for estimating HIV incidence and to 
evaluate the population-level effectiveness of antiretrovirals and 
other interventions. Identifying recent HIV infections is also 
critical to estimating their contribution to onward transmission 
[1–6]. The Fiebig staging system classifies early HIV infection 
based on a combination of diagnostic assay results, including 
tests for viral ribonucleic acid (RNA) and the p24 viral antigen 
[7]. Then, in the first few months of infection, time since sero-
conversion can be estimated based on serological assays, which 
measure the type and strength of immune responses. After infec-
tion, HIV-specific antibodies increase, and antibody test cutoffs 
can distinguish between recent and chronic infections [8, 9].  

However, the window period for detecting recent infections 
using serological assays is limited to approximately 4 months, 
after which antibody levels reach a plateau [8, 9]. Furthermore, 
many factors influence the performance of serological assays, 
including country of origin, race/ethnicity, disease progression 
[10], and, importantly, HIV-1 subtype [9]. Thus, there is a ra-
tionale for developing complementary methods for identifying 
recent infections.

Sequencing data can be used to estimate HIV genetic diversity 
within hosts, and so genetic sequences may provide an alterna-
tive biomarker to inform stage of HIV infection [11–13]. Most 
HIV infections are established by a single founder virus, and 
viral diversity within a host increases over time [14]. Therefore, 
the number of ambiguous nucleotide bases produced by 
population-based sequencing can be used to distinguish recent 
from chronic infections [11, 12]. Next-generation sequencing 
(NGS) enables precise identification of viral haplotypes and 
calculation of viral population diversity within hosts. Pairwise 
diversity estimates derived from NGS thus yield a more accu-
rate estimation of time since infection [13, 15]. Accumulation 
of genetic diversity also indicates time since infection with the 
hepatitis C virus [16].

Most published studies seeking to identify recent infections 
have been conducted on samples from recent diagnoses and 
known to be antiretroviral therapy (ART) naive. However, in 
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population-based cohorts, thousands of individuals have been 
sequenced without knowledge of infection timing or treatment 
initiation [17]. For example, the PANGEA Consortium has 
sequenced HIV from over 18  000 individuals across sub-Sa-
haran Africa. In Botswana, at one of the PANGEA sites, ini-
tiation of treatment at diagnosis (universal ART) was rolled 
out from 2016 onwards, and over 6000 individuals have been 
sequenced through PANGEA. Classifying those infections 
as recent or chronic is important for downstream analysis of 
incidence trends and transmission patterns. Because many 
PANGEA participants were on fully suppressive ART, it was 
not always possible to generate HIV sequences from viral RNA 
in plasma; instead, viral sequences were generated from pro-
viral deoxyribonucleic acid (DNA). An additional question 
is whether changes in viral diversity are maintained among 
treated patients within proviral DNA sequences to the extent 
that diversity-based metrics for identifying recent infections 
can still be applied.

We determined whether HIV infections could be classified as 
being more recent or older than 1 year based on NGS sequence 
diversity metrics, among a cohort of participants in Botswana, 
the majority of whom were on ART and many sequenced from 
proviral DNA.

METHODS

Data

Participant data were obtained from 3 different cohorts that in-
cluded participants with duration of infection known to be less 
or more than 1 year and for whom full genome NGS sequences 
were available. Next-generation sequencing was performed by 
the BioPolymers Facility at Harvard Medical School (https://
genome.med.harvard.edu/) and through collaboration with 
the PANGEA HIV consortium [17, 18] (www.pangea-hiv.org) 
using Illumina platforms MiSeq and HiSeq, as previously de-
scribed [19–21]. Assembly and alignment methods for these 
samples have been detailed elsewhere [22]. Sequences were 
subtyped using REGA [23]. We used sequences from a single 
time point for each participant. Samples were collected across 
3 studies: BHP012 [24], Mochudi [25], and the Botswana 
Combination Prevention Project (BCPP) [25]. The BHP012 
study ran from 2004 to 2008 and screened participants for 
HIV infection by a combination of enzyme immunoassay and 
HIV-1 RNA testing to recruit recently infected patients based 
on the estimated date of seroconversion [24]. Participants 
from the Mochudi study were tested for HIV-1 antibodies an-
nually from 2010 to 2013, and seroconverters were identified 
based on a negative then a positive test [25]. Most data origin-
ated from BCPP, a community-randomized trial conducted 
from 2013 to 2018 across 30 villages in Botswana [26]. We 
classified BCPP infections as recent if participants had a docu-
mented negative HIV test less than 1 year before their positive 
diagnosis at the beginning of the trial or whether participants 

seroconverted during the trial with a documented negative 
test less than 1 year prior. The BCPP infections were classified 
as chronic if participants were HIV positive at enrollment and 
had documented evidence of a positive HIV test >1 year be-
fore the trial. Demographic and clinical data were available for 
most participants, including age, sex, viral load, sample date, 
and ART status. Because sample dates were so strongly asso-
ciated with cohort of sampling, we did not include them as 
a predictor in our models. Human immunodeficiency virus 
sequences and associated epidemiological and clinical data 
utilized within the study are available upon request to the 
PANGEA consortium (https://www.pangea-hiv.org/).

Calculating Genetic Diversity

We calculated the genetic diversity at each site in the HIV ge-
nome using 2 statistics: Entropy, denoted H, and the mean pair-
wise difference, denoted π. These are defined as follows:

H = −
4∑

k=1

x log x

and

π = 1 −
4∑

k=1

x2

Where 𝑘 takes the value of each nucleotide in turn (A, C, 
T G) and 𝑥 takes the relative frequency of each nucleotide in 
turn. For each gene (gag, pol, and env), we then calculated av-
erage entropy and π, eliminating sites with coverage <100 after 
deduplication. Entropy and π were log-transformed for analysis.

Logistic Regression and Machine Learning (xgboost) Models

All analyses were performed in R 3.6.1, using the packages caret 
[27], pROC [28], and xgboost [29]. We split our data repeatedly 
into training (70%) and testing (30%) datasets to evaluate a series 
of logistic regression models. Predictors included the following: log 
entropy and/or log π for each gene (gag, pol, env), gender, age, log 
viral load, and ART status. We ran models with and without inter-
actions between diversity and ART status and interactions between 
diversity and viral load. We then evaluated the ability of each model 
to predict the probability of being recent (0–1) for each sample, 
by calculating sensitivity, specificity, and balanced accuracy for a 
range of thresholds. Models were optimized for balanced accuracy 
(which optimizes the sum of sensitivity and specificity to improve 
identification across both classes), and we assessed the robustness 
of estimates through cross-validation (1000 replicates).

Next, we fitted the xgboost machine learning algorithm, 
again predicting probability of recency and including diversity 
metrics and/or demographic and clinical predictors. We com-
pared performance (as measured by balanced accuracy) of the 
xgboost models through cross-validation (1000 replicates).

https://genome.med.harvard.edu/
https://genome.med.harvard.edu/
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Reliability of Self-Reported Human Immunodeficiency Virus Testing History

Our classifier was then evaluated on a separate dataset. At en-
rollment, BCPP participants were asked when they had last 
been tested for HIV (if at all), what the test result was, and 
whether they had a record of that result. Using our best-fit pre-
diction algorithm, we predicted recency for 3 groups of partici-
pants: (A) those with recorded evidence of a negative test within 
the last year (note that these individuals were removed from the 
training dataset for this iteration of the model), (B) those who 
self-reported a negative HIV test within the last year but had 
no record, and (C) those who self-reported a negative HIV test 
more than 1  year ago but had no record. We then compared 
the frequencies of predicted recent and chronic infections be-
tween groups A and B and groups B and C using Fisher’s exact 
test. Because the xgboost model generates for each sample the 
probability of recency rather than a binary prediction, we also 
compared the probability distributions between both pairs of 
groups using the Kolmogorov-Smirnov (KS) test.

RESULTS

Genetic Diversity Is Affected by Stage of Infection and Antiretroviral 

Treatment Status

Stage of infection could be classified as < or >1 year for 1944 
participants: 209 recent (20% on ART) and 1735 chronic (93% 
on ART) participants. Most participants originated from the 
BCPP trial [26], supplemented by seroconverters from BHP012 
(n = 39) [8] and Mochudi (n = 16) [9]. Most sequences were 
subtype C (1875 of 1943, 96.5%), remnant sequences were sub-
types A1, B, F1, and C recombinants. There was a marked dif-
ference in age between participants with recent versus chronic 
infections (Table 1).

There was a statistically significant difference in genetic di-
versity between recent and chronic infections, as estimated 

through entropy or π (KS test D = 0.47, P < 10–16) (Figure 1). 
Nonetheless, there was considerable overlap in diversity dis-
tributions, particularly among individuals on ART (Figure 1). 
In addition, the range of diversity among recent infections was 
substantial, reflecting the divergent cohorts from which these 
data were obtained. As expected, individuals with chronic in-
fections on ART had lower genetic diversity than individuals 
with chronic infections who were not on ART (log mean en-
tropy = −3.56 vs −3.50, KS test P = .02). Identical patterns were 
observed if participants were split by viral suppression rates 
(Supplementary Figure 1), reflecting viral suppression rates 
>95% (1595 of 1662) among treated patients.

Antiretroviral Treatment Status and Diversity Are Most Important for 

Predicting Stage of Infection

We compared 4 models: (1) a model including a measure of di-
versity only (for gag, pol, and env), (2) a model including dem-
ographic and clinical predictors only (age, sex, ART status, 
viral load), (3) a model including measures of diversity and 
ART status, and (4) a model including all available predictors. 
Diversity calculated using entropy performed slightly better 
than diversity calculated using π (data not shown), as dem-
onstrated previously [30]; henceforth, we present results only 
for entropy. In the complete dataset, 89.2% of samples were 
from chronic infections, meaning that a model predicting all 
samples to be chronic would have an accuracy of 89.2%. This 
number represents the “no information rate.” The model based 
on diversity alone did not predict recency any better than the 
no information rate, but all 3 other models performed signif-
icantly better than the no information rate (Figure 2A). We 
selected the best model based on balanced accuracy (Figure 
2B), which corrects for the difference in size of the 2 classes by 
maximizing both sensitivity and specificity instead of maxi-
mizing the overall rate of correct calls. The model with the 
highest balanced accuracy included all predictors: log en-
tropy for each of gag, pol, and env, age, sex, log viral load, and 
ART status as well as interaction terms for diversity and ART 
status and diversity and viral load, and its specificity was sig-
nificantly higher than that of the other models (Figure 2D). 
This latter result indicates than demographic and clinical 
predictors other than ART were particularly informative for 
correctly classifying chronic infections. The gag region con-
tributed most substantially to the model, followed by pol, but 
inclusion of all 3 regions performed best (data not shown). 
In more than 1000 cross-validation replicates, the accuracy 
of the best model was 93.2% (95% confidence interval [CI], 
90.0%–96.2%), balanced accuracy was 90.6% (95% CI, 86.7%–
94.1%), sensitivity was 93.9% (95% CI, 89.9%–97.6%), and 
specificity was 87.4%% (95% CI, 78.6%–94.8%). The balanced 
accuracy of this final model was significantly higher than the 
balanced accuracy of the next best model, containing only di-
versity and ART (balanced accuracy = 87.6%; t test, P < 10–16).

Table 1.  Demographic and Clinical Characteristics of Individuals With 
Known Recent and Chronic Infectionsa

Variable Category Recent Chronic

Total  209 1735

Study BCPP 154 1735

 BHP012 39 0

 Mochudi 16 0

ART status Treated 41 1621

 Untreated 168 99

 NA 0 15

Age Mean (±SD) 29.71 (±10.33) 42.78 (±10.09)

Sex F 162 1322

 M 47 413

Viral load, log10 copies/mL Mean (±SD) 3.58 (±1.27) 1.86 (±0.78)

 NA 6 0

Abbreviations: ART, antiretroviral treatment; BCPP, Botswana Combination Prevention 
Project; NA, not applicable; SD, standard deviation. 
aViral loads were log-transformed before calculating the mean for each group. Undetectable 
viral loads, which indicate viral suppression, are recorded as 40 copies/mL, because that is 
the lower limit of the viral load assay used.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab293#supplementary-data
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xgboost Can Predict Stage of Infection for Incomplete Cases

Next, we compared the best performing logistic regression 
model to a machine learning model (xgboost) with the same 
predictor variables: log entropy for each of gag, pol, and env; 
and age, sex, log viral load, and ART status. Note that xgboost 
does not require interaction terms to be detailed explicitly. 
Models were compared through 200 cross-validation replicates. 
When optimized for balanced accuracy, the regression and ma-
chine learning models performed comparably, with no differ-
ence in balanced accuracy, sensitivity slightly higher for the 

machine learning model, and specificity slightly higher for the 
regression model (Figure 3A–C). However, demographic and 
clinical data were not complete for every participant included, 
and sequence data were not always available for every gene. In 
instances in which data were missing, the logistic regression 
model failed to make predictions (Figure 3D). We were able to 
fit regression model variants, removing 1 predictor (including 
1 gene region) at a time, and the model still predicted accu-
rately for those samples that were missing information (data 
not shown), but such a procedure is time intensive. The xgboost 
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model had good prediction accuracy even for participants with 
missing data, although missing data is not explicitly imputed.

The sensitivity, specificity, and accuracy statistics in the lo-
gistic regression model do not consider cases for which no pre-
diction is made. Our test datasets comprised ~582 cases, and, 
for a typical model run, the logistic regression model could not 
predict for approximately 10.01% of cases (Figure 3). xgboost 
performed well in predicting stage of infection among partici-
pants with and without missing data (data not shown).

Splitting the Data by Treatment Status Improves Recency Prediction

Next, we assessed the sensitivity and specificity of our final 
model in predicting stage of infection in ART-treated versus 
ART-naive cases. We examined the distribution of model 
statistics based on 200 cross-validation tests. Although 
overall sensitivity and specificity for this model were high, 
specificity among the ART-naive group was low (34.1%) 
(Supplementary Figure 2), meaning that the model was not 
good at identifying ART-naive chronic infections. Similarly, 
our ability to correctly classify recent infections among 
ART-treated individuals was subpar (sensitivity  =  64.6%) 
(Supplementary Figure 2). In both cases, numbers within 
these groups were small as a proportion of total chronic in-
fections (99 of 1735) (Table 1) and of total recent infections 
(41 of 209), explaining why the model was unable to accu-
rately disentangle that group. Balanced accuracy (the mean 
of sensitivity and specificity) was significantly improved 

for both ART-treated and ART-naive individuals by fitting 
xgboost models and predicting recency status separately on 
ART-naive and ART-treated individuals (t test, P < 10–16 for 
both comparisons) (Figure 4), although sensitivity among 
ART-naive and specificity among ART-treated were both 
reduced (all P  <  10–16) (Supplementary Figure 2). These 
models separately achieved 91.4% sensitivity and 83.7% 
specificity among ART-treated individuals and 81.4% sen-
sitivity and 86.9% specificity among ART-naive individuals. 
Our models performed better in ART-treated participants 
than ART-naive because our dataset was larger.

Self-Reported Human Immunodeficiency Virus Testing History in Botswana 

Is Reliable

Finally, we applied our xgboost model to classify infections 
diagnosed at the start of BCPP trial. We set out to compare pre-
dictions between participants who had documented evidence of 
a prior negative HIV test within the last year (n = 12), those who 
reported a negative HIV test within the previous year but had 
no record (n = 46), and those who reported a negative HIV test 
more than 1 year prior but who had no record (n = 114). There 
were twice as many predicted chronic infections among those 
self-reporting a negative HIV test within the last year with no 
record (19.6%) than among those who did have a record (8.3%), 
but the difference was not significant (Fisher test, P  =  .42) 
(Table 2). The distribution of predicted probabilities of recency 
for those 2 groups were not significantly different either (KS 
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test, P = .97) (Supplementary Figure 3A). In contrast, those who 
self-reported a negative HIV test more than 1  year ago were 
significantly more likely to be classified as chronic than those 
self-reporting a negative HIV test less than 1 year ago (37.7% vs 
19.6%, Fisher’s test, P = .04) (Table 2), and their recency prob-
ability distributions were also significantly different (KS test, 
P = .007) (Supplementary Figure 3B).

DISCUSSION

We were able to predict the stage of HIV infection within a co-
hort including participants receiving ART with suppressed viral 
load. Stage of infection could be inferred from proviral DNA 
sequence diversity with high accuracy. Our model performed 
comparably to models using NGS-derived measures of ge-
netic diversity to predict stage of infections among ART-naive 
participants [13, 15]. Recent infections were identified with a 
sensitivity of 93.9% and a specificity of 87.4%. Among treated 
participants, genetic diversity measures (eg, entropy) displayed 
overlap between recent and chronic infections, but including 
clinical and demographic data allowed for the groups to be dis-
entangled. A  gradient boosting machine learning algorithm 
provided substantial improvements by classifying stage of in-
fection even among the 10% of participants missing 1 or more 
predictors.

Estimating time since infection from HIV sequences relies 
on the steady accumulation of genetic diversity within patients 
after infection. However, after ART initiation, virus replication 
is suppressed and sequences from proviral DNA can resemble 
those present when treatment was initiated [31–33]. As a con-
sequence, classifying infections as recent or chronic when pa-
tients are on ART is challenging. Our predictive model achieved 
a balanced accuracy significantly above 50% regardless of ART 
status. However, we concede that ART interferes with disease 
staging, whether using clinical or sequenced-based metrics, 
and, in agreement, fitting models independently to treated and 
untreated participants improved predictive ability. Our dataset 
was skewed, with only a minority of recent infections treated, 
but such individuals will become more numerous as treatment 
expands, thus predicting stage of infection among this group 
is of considerable importance. In fact, future studies may in-
clude only treated patients; based on our analyses, staging of 
infection should still be possible. Additional resolution may re-
quire investigation of longitudinal changes in genetic diversity 
in treated patients, but the cross-sectional data to which our 
model is fitted reflects the types of data currently available.

The ability to distinguish between recent and chronic infec-
tions among participants on ART was in part due to the wealth 
of demographic and clinical data available from participants 
in this study; indeed, incorporating this information (and 

Table 2.  Recency Prediction Among 3 Groups: Those With Evidence of a Negative Test Within the Last Year (n = 12), Those Who Self-Reported a Negative 
Human Immunodeficiency Virus (HIV) Test Within The Last Year but Had No Record (n = 46), and Those Who Self-Reported a Negative HIV Test More Than 
1 Year Ago but Had No Record (n = 114)

Model Prediction Negative Test <1 Year—With Record Negative Test <1 Year—No Record Negative Test >1 Year—No Record

Chronic >1 year 1 (8.3%) 9 (19.6%) 43 (37.7%)

Recent <1 year 11 (91.7%) 37 (80.4%) 71 (62.3%)
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Figure 4.  Balanced accuracy of the predicted stage of infection for participants based on antiretroviral treatment (ART) status. In the joint model, the model was fit to all 
participants regardless of ART status, and ART status was included as a predictor. In the split model, the model was fit separately to ART-treated and ART-naive participants. 
The split model improved balanced accuracy for both ART-treated and ART-naive participants (P < 10–16).
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specifically, viral load [34]) has previously been shown to im-
prove prediction of stage of infection based on viral RNA di-
versity estimates [35]. Inclusion of CD4 count would further 
improve predictions [36], but CD4 counts were not available 
for our cohort because HIV treatment is now recommended 
regardless of CD4 count in Botswana. A  substantial propor-
tion of the signal was derived from ART status, but including 
measures of genetic diversity significantly improved classifica-
tions. Consistent with similar analyses [13, 15], we found gag 
and pol to be the most informative regions. The env region is 
likely to better resolve time since infection early on, but rapid 
rates of diversification lead to saturation and loss of signal later 
in infection [30, 37]. In addition, for highly divergent HIV env 
sequences, alignment remains problematic, impacting estimates 
of genetic distance. Nonetheless, we concede that although 
classification accuracy was high in our large dataset, and high 
enough for population-based downstream applications, it is in-
sufficient for use as a patient-level diagnostic test. Furthermore, 
the fitted predictive model is heavily dependent on clinical and 
demographic data, and the ways in which such factors affect 
disease progression varies across regions [38]. Specifically, our 
cohorts consisted almost entirely of subtype C infections diag-
nosed among heterosexuals, and, consequently, our model may 
not be directly extrapolatable to populations with more rapid 
transmission, for example, men who have sex with men or in-
jection drug users. We were not able to compare sequencing 
success rates between recent and chronic infections, nor were 
we able estimate the sensitivity of the proviral sequencing 
method, from our sample processing pipeline. Given that the 
HIV reservoir is smaller among patients put on treatment early 
[39], potential undersampling of this group could introduce a 
source of bias into our results.

We applied our algorithm to a subgroup of participants newly 
diagnosed with HIV at the start of the BCPP trial in Botswana. 
We found that among those with no HIV test records, those 
who self-reported a negative HIV test within the previous year 
were significantly more likely to be classified as recent infections 
by our algorithm than those who reported a negative HIV test 
more than 1 year previously. Meanwhile, there was no signifi-
cant difference in classification between those self-reporting a 
negative HIV test within the previous year, whether or not they 
had a record. There was a tendency for patients with a record to 
be more likely classified as recent, but the difference was not sig-
nificant. These results, taken together, suggest that self-reported 
testing history in Botswana is reliable. Studies assessing the ac-
curacy of HIV testing history in sub-Saharan Africa have fo-
cused on the reliability of results rather than on timing. Overall, 
recent studies have similarly found self-reporting of HIV status 
to be reliable [40, 41]; although an earlier study in Malawi con-
cluded that up to 1 of 3 of HIV-positive individuals may know-
ingly misreport their HIV status [42]. To our knowledge, ours is 
the first study that investigates the reliability of self-reporting of 

timing of HIV tests. In view of the considerable effort put into 
developing laboratory-based assays for the purpose of recency 
testing, it is worth emphasizing that self-reporting may also be 
an increasingly reliable indicator.

CONCLUSIONS

In conclusion, identifying recent infections (<1  year) using 
NGS-derived estimates of within-host HIV genetic diversity 
appears possible even among individuals on ART if additional 
demographic and clinical data are available. As universal test 
and treat becomes standard practice, future diversity-based clas-
sifiers will increasingly focus on treated populations and will be 
based on proviral DNA by necessity. These results could enable 
the detailed examination of the contribution of recent infec-
tions to onward transmission in Botswana and other PANGEA 
sites within the context of the 90-90-90 UNAIDS target.
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Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
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