
1Scientific Reports | 5:10267 | DOI: 10.1038/srep10267

www.nature.com/scientificreports

Flexible conformable 
hydrophobized surfaces for 
turbulent flow drag reduction
Joseph C Brennan1, Nicasio R Geraldi1, Robert H Morris1, David J Fairhurst1, Glen McHale2 & 
Michael I Newton1

In recent years extensive work has been focused onto using superhydrophobic surfaces for drag 
reduction applications. Superhydrophobic surfaces retain a gas layer, called a plastron, when 
submerged underwater in the Cassie-Baxter state with water in contact with the tops of surface 
roughness features. In this state the plastron allows slip to occur across the surface which results in 
a drag reduction. In this work we report flexible and relatively large area superhydrophobic surfaces 
produced using two different methods: Large roughness features were created by electrodeposition 
on copper meshes; Small roughness features were created by embedding carbon nanoparticles 
(soot) into Polydimethylsiloxane (PDMS). Both samples were made into cylinders with a diameter 
under 12 mm. To characterize the samples, scanning electron microscope (SEM) images and confocal 
microscope images were taken. The confocal microscope images were taken with each sample 
submerged in water to show the extent of the plastron. The hydrophobized electrodeposited copper 
mesh cylinders showed drag reductions of up to 32% when comparing the superhydrophobic state 
with a wetted out state. The soot covered cylinders achieved a 30% drag reduction when comparing 
the superhydrophobic state to a plain cylinder. These results were obtained for turbulent flows with 
Reynolds numbers 10,000 to 32,500.

When a droplet of water comes into contact with a superhydrophobic surface, it makes a contact angle 
of over 150° and has low hysteresis between advancing and receding contact angles. Nature has found 
multiple uses for superhydrophobic surfaces ranging from the self-cleaning effect of Lotus leaves1,2 to the 
underwater respiration of Fishing Spiders3,4. In recent years there has been significant research into using 
superhydrophobic surfaces for large area drag reducing applications. Much of this work has focussed on 
either cylinders or on flat surfaces. This work has been performed in two main ways: theoretically using 
computational fluid dynamics (CFD) simulations5–14 and experimentally with the aid of towing tanks 
and circulation experiments15–24. When an object travels through a fluid, for example a ship traveling 
through water, or a fluid travels through an object, for example water through a pipe, drag forces are 
experienced. Form drag occurs due to the physical dimensions of the object obstructing and altering the 
flow of the fluid. Skin friction also occurs due to the fluid traveling over the surface of the sample. The 
hydrodynamic property of this interaction leads to a characteristic parameter, the drag coefficient. The 
drag coefficient of an object is a dimensionless quantity that describes the drag force that an object of a 
certain shape experiences whilst travelling through a fluid. A high drag coefficient shows that there is a 
large drag force on the object, whereas a low drag coefficient shows that there is a low drag force on the 
object. By using superhydrophobic surfaces the amount of skin friction that the object being tested expe-
riences can be reduced. Superhydrophobic surfaces can exist in one of two extremes. The Cassie-Baxter 
state describes a superhydrophobic surface where the surface roughness features do not penetrate into 
the fluid that the surface is submerged in. The other extreme is the Wenzel state where the fluid fully 
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surrounds all of the roughness features. This Wenzel state is not superhydrophobic due to lower contact 
angles achieved when the sample is in this state. As well as potentially superhydrophobic surfaces being 
in one of these two states the surface can also be in an intermediate state between the two. In this state 
the surface is partially wetted so that it is neither in the full Cassie-Baxter state nor the full Wenzel state. 
For a superhydrophobic surface to retain a plastron layer, the sample needs to be in the Cassie-Baxter 
state or at least in the partially wetted state. Superhydrophobic surfaces are able to achieve a drag reduc-
tion due to the presence of the plastron layer and the large slip that can occur across the surface of this 
plastron layer9,23,25. The air layer has a much lower viscosity than the fluid so acts to lubricate the motion 
of the fluid. If the superhydrophobic surface is in the Wenzel state then the sample is just a roughened 
surface which leads to a drag increase when there is not a large increase in Reynolds number value. The 
drag reduction lifespan of a surface is limited by the length of time for which the sample remains in the 
Cassie-Baxter state26. The plastron layer can be removed in two main ways, through diffusion of the gas 
layer into the surrounding fluid or by being stripped by the relative movement between the surface and 
the fluid. When a surface becomes fully wetted in one area, it can rapidly become fully wetted over the 
whole surface if there is no specific surface roughness designed to stop this behaviour. Recently there 
has been work into methods of retaining and replenishing the plastron air layer27–29. This work negates 
some of the plastron lifetime problems that samples currently experience by using the Leidenfrost effect 
to create a water vapour layer around the sample or by using electrolysis to create a hydrogen layer 
between surface features.

Relatively large area superhydrophobic surfaces have been created before. These are usually achieved 
through tiling30,31, painting32 or spraying33 a superhydrophobic product onto a surface. The main issue 
with tiling is making sure that the tiles are placed perfectly level on the surface. A small misalignment 
can lead to extra drag that hides the underlying effect of the superhydrophobic surfaces being tested. 
Painting and spraying superhydrophobic surfaces create large areas that are uniform and level but both 
have issues with the durability of the superhydrophobic layer that they create. This leads to a shorter 
product lifetime than other methods for creating superhydrophobic surfaces.

Drag coefficient values for smooth cylinders have been widely researched. In the Reynolds number 
range presented in this work, 10,000 to 32,500, the drag coefficient value for a plain cylinder is ~1.134. 
The effect that roughness has on the drag coefficient of a cylinder has also been widely researched35–39. 
The roughness of a cylinders surface can be quantified using the roughness parameter
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Previously, confocal microscopy has been used to quantify the thickness of plastron air layers on 
superhydrophobic surfaces26,40. Confocal microscopy has also been used to take images of the coverage 
of the plastron layer on the superhydrophobic surfaces40. Confocal microscopes are able to measure the 
thickness of a plastron layer by focusing on the substrate, the reflection that occurs at the gas-liquid 
interface and on the top of the roughness features. This technique only works for surfaces that reflect 
light. By using the known position of the sample surface and the gas-liquid interface, the thickness of the 
plastron and the protrusion height of the sample into the fluid can be measured simultaneously.

In this report we outline two methods for creating large area flexible superhydrophobic surfaces. 
These are an electrodeposition method for creating large area superhydrophobic copper mesh samples 
and a method for making large area superhydrophobic soot samples. The combination of these two 
methods allows surfaces with various feature heights and spacings to be made. For the drag coefficient 
experiments, we use a recirculating flow chamber with a Laser Doppler Anemometry (LDA) system. 
This LDA system is used to measure water velocities downstream of the superhydrophobic sample being 
tested. As well as these drag coefficient results, the superhydrophobic surfaces are characterized using 
confocal microscopy and SEM. All experiments were undertaken with the sample underwater for under 
an hour. This has been shown to negate the effect of diffusion of the plastron air layer into the sur-
rounding fluid26. By negating the effects of diffusion, the stripping of the plastron layer of our samples 
is completely determined by the shear stress that the flow of fluid has on the surface. Prior to confocal 
microscopy, the samples were subject to a flow of water that caused a shear stress on the surface to 
remove some of the plastron layer as was experienced by the samples being tested for drag coefficient 
values. For drag reduction values the electrodeposited copper mesh samples show drag reduction results 
when comparing a plastron-bearing superhydrophobic surface to the same surface without the plastron 
air layer. The soot sample results show a drag reduction when comparing the plastron-bearing surface 
to a plain cylinder. This is due to the fact that wetting out the superhydrophobic soot surface with a low 
surface tension solvent is not possible without damaging the underlying surface. The results presented 
in this work show that both methods of creating superhydrophobic samples lead to surfaces with drag 
reductions of up to 32% when comparing the plastron bearing samples to the same sample after the plas-
tron air layer has been removed and that this drag reduction is caused through a combination of plastron 
thickness, plastron surface coverage and protrusion length of surface roughness features in to the fluid.
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Results
SEM images of plain copper meshes, electrodeposited copper meshes and soot surfaces are shown in 
Fig. 1(a–j). Figure 1(a–d) shows plain meshes with mesh numbers 40, 60, 100 and 200 respectively. The 
wire diameter and spacing for each mesh number can be found in Table 1. The repeating pattern distance 
measurements shown in Table 2 were also measured using the SEM images.

Figure 1(f–i) shows the electrodeposited copper meshes in the same order. The effect of the copper 
electrodeposition can be seen when comparing the plain copper meshes Fig. 1(a–d) to the electrodepos-
ited copper meshes Fig. 1(f–i). Two magnifications of soot surface are included showing the large scale 
roughness of the piled up soot particles (Fig. 1(e)) and a higher magnification showing the soot surface 
(Fig. 1(j)). Figures 1a,b,f,g were taken at x50 magnification. Figures 1c,d,h,i were taken at a magnification 
of x140. Figures 1e,j were taken at magnifications of x400 and x4000 respectively.

All surfaces were characterised using advancing and receding contact angles. For this, images were 
taken and analysed using a drop shape analysis system (Krüss DSA10). Surface feature height, plastron 
thickness, protrusion of features into the liquid and plastron coverage was measured using a confocal 
microscope (Leica SP5C Spectral Confocal Laser Scanning Microscope). Due to the low reflectivity of the 
matt black soot surface we were unable to get images of the surface using the confocal microscope, but 
were able to get images of the plastron air layer coverage. Samples were imaged after water was flowed 

Figure 1.  SEM images of copper mesh, electrodeposited copper mesh and soot surface. (a-d) Plain copper 
meshes, (e) low magnification soot surface, (f-i) electrodeposited copper meshes and (j) high magnification 
soot surface.

Mesh number Wire diameter (μm) Wire spacing (μm)

40 221 ±  9 488 ±  23

60 165 ±  5 263 ±  11

100 59 ±  1 208 ±  4

200 54.5 ±  0.7 77 ±  6

Table 1.  Mesh numbers and physical sizes for the 4 meshes used in this report.

Copper 
mesh 
number 
or soot

Advancing 
contact 

angle (°)

Receding 
contact 

angle (°)

Roughness 
parameter 
(roughness 

scale/cylinder 
diameter)

Average 
feature 

thickness 
(μm)

Average 
plastron 
thickness 

post water 
flow (μm)

Average 
feature 

protrusion 
height post 
water flow 

(μm)

Repeating 
pattern 

length (L) 
(μm)

Solid 
fraction 

(%)

40 161 ±  7 140 ± 11 0.049 ±  0.001 550 ±  9 506 ±  12 44 ±  3 709 ±  9 35 ±  5

60 158 ±  3 133 ± 2 0.034 ± 0.001 378 ±  7 283 ± 16 95 ±  9 428 ±  6 55 ±  6

100 163 ±  2 141 ±  3 0.013 ±  0.001 131 ±  7 103 ±  12 28 ±  5 267 ±  5 27 ±  4

200 152 ±  2 136 ± 1 0.0085 ±  0.0008 92 ±  6 64 ±  10 28 ±  4 132 ±  3 39 ±  9

Soot 159 ±  2 153 ± 2 n/a n/a n/a n/a n/a n/a

Table 2.  Contact angles, feature thickness, plastron thickness, feature protrusion heights, repeating pattern 
length and solid fraction.
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over the surface. This is to replicate the conditions they face in the water circulating flow chamber where 
drag coefficient measurements were taken. The same flow process was undertaken as has been previously 
published by Brennan et al.24. Results from the contact angle measurements and confocal microscope are 
shown in Table 2. Figure 2 shows images taken using the confocal microscope of a soot sample and the 
40 mesh number electrodeposited sample with wire diameter of 221 μ m and spacing between wires of 
490 μ m. These images are a combination of images taken from a confocal stack that have been combined 
to show the reflective plastron air layer and the protruding parts of the samples. The confocal microscope 
images do not show the entirety of the plastron air layer. This is because where the plastron meets the 
surface, the water forms a meniscus which reflects light away from the detector. This results in the images 
under representing the extent of the plastron coverage. The solid fraction (δ ) was measured for each of 
the electrodeposited copper mesh surfaces using the confocal microscope images.

The results for advancing contact angles are similar for all surfaces being tested. Each has an advanc-
ing contact angle of over 150°. The soot coated surface has a high advancing contact angle of 159 ±  2° 
and a high receding angle of 153 ±  2° resulting in a superhydrophobic surface with low hysteresis. The 
electrodeposited copper mesh samples have high contact angles but with receding contact angles much 
lower resulting in large hysteresis of up to 25°.

All drag coefficient measurements were taken in a large water circulating flow chamber with the 
cylinders placed at a depth of 1.2 m. At this depth it has been previously shown that the plastron air 
layer has a lifetime of over 3 hours26. A motor with variable speeds produced laminar flow with water 
velocities in the range of 1.4 ms-1 to 2.8 ms-1 allowing control of the Reynolds number experienced by 
the samples. Water velocity measurements were taken tangentially across the cylinder samples and drag 
coefficient values were calculated from these velocities using the momentum deficit technique41. For the 
momentum deficit technique to be used with a 1D LDA system the LDA measurement volume needs 
to be 30 cylinder diameters downstream of the cylinder being tested. At this point the vortexes formed 
by the cylinder are reduced such that the water velocity perpendicular to the cylinder is negligible. The 
LDA took measurements every 3 mm from one side of the cylinder to the other. The total distance was 
set so that free-stream water velocities could be found either side of the cylinder. A Gaussian was fitted 
to the raw LDA data allowing the drag coefficient to be calculated using41
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where U1 is the free stream velocity, U  is the velocity at a given point as measured by the LDA, y is the 
horizontal displacement and d is the diameter of the cylinder being tested.

To investigate the effect that the plastron air layer has on the drag coefficient of the cylinder being 
tested the samples were run in the Cassie-Baxter state with the plastron air layer present between surface 
roughness features and in the Wenzel state where there is no plastron air layer present on the surface 
of the sample. To achieve this Wenzel state without the plastron air layer the copper mesh coated cyl-
inders were dipped in ethanol15 which prevents the build-up of the plastron air layer. When an ethanol 

Figure 2.  In both images the light areas show the reflective plastron-water interface. (a) Soot covered 
sample. (b) 40 mesh number electrodeposited copper mesh with wire diameter of 221 μ m and wire spacing 
of 490 μ m.



www.nature.com/scientificreports/

5Scientific Reports | 5:10267 | DOI: 10.1038/srep10267

pre-treatment was applied to the soot covered samples the plastron layer was not fully prevented and 
resulted in partial destruction of the soot layer.

Figure 3(a–e) shows the average results for drag coefficient against Reynolds number for all 5 super-
hydrophobic samples in their plastron-bearing state and after the wetting out pre-treatment that prevents 
the build-up of the plastron air layer. The graphs also show results from a smooth plain cylinder. Each 
graph shows results for multiple cylinders tested a minimum of 5 times each in the plastron-bearing state 
and in the wetted out state after pre-treatment.

All electrodeposited copper mesh samples show a drag reduction when comparing the plastron bear-
ing runs to the same sample wetted out with an ethanol pre-treatment. For the soot covered sample it is 
better to compare the plastron bearing state to that of a plain cylinder. This is due to the ethanol wetting 
out pre-treatment damaging the surface of the sample. The highest drag reduction values are 32% for 
the 40 mesh number electrodeposited copper mesh with wire diameter of 221 μ m and spacing of 490 μ m 
and 30% for the soot covered sample. The smallest error on the drag coefficient value is for the soot 
covered cylinder. This shows that the smoother surface obtained through that manufacturing process 
leads to more repeatable surface when compared to the electrodeposited copper mesh surfaces. These 
drag reduction percentages for this geometry are similar to previously published results24 where drag 
reductions of 28% were achieved on cylinders in the same Reynolds number range as tested here. CFD 
simulations have also been conducted on cylinders42,43 and have shown the effect of slip on cylinders. 

Figure 3.  Drag coefficient (CD) values at various Reynolds numbers (Re) for all superhydrophobic cylinder 
samples. The graphs show plastron bearing results (diamonds), wetted out after pre-treatment results 
(squares) and smooth plain cylinder (circles) for (a) electrodeposited copper mesh number 40 with wire 
diameter 221 μ m and spacing of 490 μ m, (b) electrodeposited copper mesh number 60 with wire diameter 
195 μ m and spacing of 265 μ m, (c) electrodeposited copper mesh number 100 with wire diameter 59 μ m and 
spacing of 210 μ m, (d) electrodeposited copper mesh number 200 with wire diameter 55 μ m and spacing of 
75 μ m and (e) soot.
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Other superhydrophobic geometries have led to drag reductions of 40% in microchannels12,44 and 66% 
in a rheometer set-up25.

Previous work has shown no direct correlation between contact angles and slip lengths45. For this 
reason it is most appropriate to look at the coverage of the plastron on the surface of the samples and 
the size of the repeating pattern (L) on the electrodeposited copper mesh samples. Confocal microscope 
images of the soot covered samples show that they have a maximum distance of approximately 1 mm 
between points where the soot is in contact with the liquid. The repeating pattern size for the electro-
deposited copper mesh can be found from the SEM images in Fig. 1.

It has been previously shown that the slip length for ridge geometries can be estimated using46;

φ− ( ) ( )~b L log 3eff s

Where beff  is the effective slip length, L is the roughness periodicity and Φ s is the solid fraction.
The effective slip length for a regular repeating array of posts can be estimated using46;
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The electrodeposited copper mesh coated cylinders investigated in this report can be considered to 
be made up of a combination of pillars and ridges. The effective slip length for an array of pillars and 
for ridges is proportional to L. This means as the repeating geometry size increases so does the effective 
slip length. The drag reduction results shown in Fig. 3 show that as the repeating pattern size increases 
so does the drag reduction value for the electrodeposited copper mesh samples.

All of the cylinders tested were made with similar diameters and were tested across the same range of 
Reynolds numbers. This means that all of the samples had similar values for boundary layer thickness. 
As Reynolds number increases the boundary layer thickness decreases48 which in turn should lead to a 
larger drag reduction caused by the plastron bearing samples. This is not seen in this work as our results 
show a fairly constant value of drag reduction as Reynolds number increases for the plastron bearing 
samples. Since Reynolds number values are related to the speed of the water this discrepancy is most 
likely due to a drag increase caused by the greater shear stresses on the plastron layer causing some of 
it to be removed from the samples.

Discussion
We have shown two methods for creating large area flexible superhydrophobic surfaces. These have been 
created through the electrodeposition of copper on copper meshes with various wire diameters and spac-
ing and by creating flexible PDMS surfaces with soot embedded into the surface. Both hydrophobized 
copper mesh and soot can be used to create drag reductions of up to 32%. The copper mesh samples 
reach this 32% drag reduction value when comparing the plastron-bearing sample to the same sample 
wetted out with an ethanol pre-treatment that prevents the build-up of the plastron air layer. There is 
not always a drag reduction when comparing the plastron bearing electrodeposited copper meshes to a 
plain rod. The samples made from the electrodeposited copper mesh with a wire diameter of 221 μ m and 
spacing of 490 μ m and electrodeposited copper mesh with a wire diameter of 195 μ m and wire spacing of 
265 μ m both show drag reductions when comparing the plastron bearing runs to the runs with the plain 
cylinders. However the samples made with electrodeposited copper mesh with a wire diameter of 59 μ m 
and spacing of 210 μ m in the plastron bearing state have drag coefficient values that are the same as a 
plain rod. The samples made with the electrodeposited copper mesh with a wire diameter of 55 μ m and 
spacing of 75 μ m in the plastron bearing state have a drag increase compared to a plain rod even with 
the plastron air layer present. The soot samples achieve a drag reduction of up to 30% when comparing a 
superhydrophobic sample to a plain smooth cylinder. The soot covered sample is compared to a smooth 
cylinder due to the inability to fully wet out the surface without damaging it during the process. These 
drag reduction results show that the large plastron coverage obtained by the soot surface leads to as 
high a value of drag reduction as the thick plastron obtained using the largest copper mesh tested which 
had wire diameters of 221 μ m and spacing between wires of 490 μ m. These results show that a large 
drag reduction can be obtained through large plastron coverage as shown by the hierarchical structures 
formed by the clumping of soot particles on the surface of the sample and by the hierarchical structure 
of the small copper depositions on the large copper mesh. These experiments have reduced the effect of 
plastron lifetime constraints by keeping the time of the sample being submerged underwater to under 
1 hour. This leads to negligible diffusion of the plastron into the water. Overcoming this is one of the 
main challenges currently faced when using superhydrophobic surfaces for drag reduction applications.
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Methods
Superhydrophobic cylinders were created via two different methods. Superhydrophobic copper mesh 
samples were created by electrodeposition of copper onto copper meshes with various wire diameters and 
spacing. This electrodeposited copper mesh was then hydrophobized and wrapped around a cylinder to 
make a superhydrophobic covered cylinder. Soot covered samples were created by partially embedding 
soot into Polydimethylsiloxane (PDMS) and then wrapping this superhydrophobic surface around a cyl-
inder to again make a superhydrophobic cylinder.

To create superhydrophobic copper mesh samples four copper meshes of various wire diameters and 
spacing were chosen to have copper electrodeposited onto their surface. These meshes had mesh num-
bers of 40, 60, 100 and 200. A mesh number is how many holes there are in an inch across the surface 
of the mesh. This means that a high mesh number mesh has a thin wire with small spaces whereas a 
low mesh number mesh has thicker wires with wider spacing. The wire diameter and spacing for each 
mesh are shown in Table 1.

Superhydrophobic surfaces can be made through electrodeposition of copper onto a copper substrate 
using a copper-acid bath method that gives diffusion limited aggregation49–51. The solution used was 
made from 1.25 M copper sulphate (Copper II sulphate hydrate 98%, Sigma-Aldrich) in 0.26 M sulphu-
ric acid (SG 1.84, 98+ %, Fisher). A total of 1 L was used for each electrodeposition and the solution 
was changed after two samples to avoid contamination. Before electrodeposition could commence, the 
copper meshes were bonded to a clean piece of copper using a cyanoacrylate adhesive. The edge of the 
copper mesh and any areas of the exposed copper sheet were then coated in nail varnish to act as an 
electrical insulator. This combined sheet was then bent around a steel cylinder with a diameter of 20 cm. 
This has the effect of improving the flatness of the copper mesh and improving the electrical contact 
between the mesh and the copper sheet. This bent sheet is used as the cathode during electrodeposi-
tion. The anode is made from a copper sheet twice the size of the cathode sheet and is bent around the 
same 20 cm diameter steel cylinder so that all points of cathode surface are equidistant from the anode 
surface. The cathode and anode were held 1 cm apart for the duration of the electrodeposition using 
acrylic spacers. Electrodeposition occurred at a current density of 240 mAcm-2 for all meshes and lasted 
for 30 minutes. The copper mesh was then rinsed and removed from the copper backing sheet to leave a 
copper mesh with growth features on the surface. The mesh was then hydrophobized using a solution of 
5% commercial waterproofing product (Granger’s Extreme Wash In) and 95% warm water. The mesh was 
then placed in an oven at 60 °C for 4 hours to evaporate any water and solvent from the waterproofing 
product from the surface leaving a superhydrophobic copper mesh.

To create the superhydrophobic mesh cylinders the hydrophobized electrodeposited mesh was 
wrapped around an acrylic pipe with an outer diameter of 10 mm and an inner diameter of 8 mm. This 
pipe had been pre-cut to the right length using a laser cutter (Universal M-300) and a 2 mm slit was also 
cut into the acrylic pipes. This slit was there so that when the mesh was being wrapped around the pipe 
both ends could be inserted into the slit and the mesh could be folded around the acrylic to keep the 
mesh tight and flat on the surface. Two part epoxy glue (Araldite 2029) was then used to glue the two 
ends of the copper mesh together above the slit in the acrylic. To add stability, the acrylic tube and mesh 
was attached to a 6 mm diameter brass core using acrylic pieces. This brass core could then be attached 
to two end pieces of brass that were machined so that they could be held in the large recirculating flow 
chamber used to measure drag coefficients. Small superhydrophobic samples were made as well as supe-
rhydrophobic copper mesh cylinders. These flat samples were electrodeposited and hydrophobized in 
the same way as the cylinder meshes but were cut into smaller pieced and attached to flat microscope 
slides. These samples were made so that properties such as contact angle, plastron thickness and plastron 
coverage could be measured.

To create a superhydrophobic flexible surface with small feature height and large area coverage we 
used a method similar to Geraldi et al.52. The method was modified so that larger areas of PDMS, 
approximately 150 mm by 50 mm, were coated in soot in order to produce flexible superhydrophobic 
films with bi-scale roughness. The soot produces nanoscale roughness and as the particles build up on 
the surface during the fabrication process, a network structure forms that produces micro-scale rough-
ness53. Rectangular areas were prepared, with widths equal to the circumference of the 10 mm diameter 
brass cylinders, to which the flexible surfaces were mounted. Using a cyanoacrylate adhesive and primer, 
the soot coated PDMS sections were glued to the cylinder, making sure the edges of each section were 
aligned accurately to minimise the effects of the seams.

Both sample making processes created a join along the length of the cylinder where the superhy-
drophobic surface joins onto itself. In each case this is minimised by careful levelling and cutting of the 
surfaces. To minimise the effect this has on the drag coefficient results the join was placed on the down-
stream side of the sample. This places it behind the separation point reducing its impact.

A simple schematic of the experimental setup used for measuring the drag coefficient of the supe-
rhydrophobic cylinders is shown in Fig.  4. The velocity of the water downstream of the sample was 
measured using a Laser Doppler Anemometer (Dantec dynamics flow explorer) (LDA). The LDA was 
attached to a 3 axis traverse which could move the laser so that it measured far enough away on either 
side of the sample that free stream water velocities could be found. Between these free stream values, the 
LDA took a velocity reading every 3 mm. All cylinders were tested in a plastron bearing state and after 
a pre-treatment that prevented the build-up of the plastron air layer. To achieve this state without the 
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plastron air layer, both the copper mesh coated cylinders and the soot coated cylinders were dipped in 
ethanol15. By preventing the build-up of the plastron air layer we are able to compare the same sample 
with and without the plastron to test the effect that the plastron has on drag reduction.
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