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INTRODUCTION

Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback.
A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past
several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or
graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a
current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration
scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of
geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded com-
putation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the
GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our
scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors.

Copyright © 2007 Kai Zeng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

tual floating-point calculations [3, 5], they do not support

CT imaging has seen tremendous development over the past
decades. Now, it is widely used in the medical imaging field.
However, due to the high computational cost required for re-
construction, its real-time imaging applications [1] remain
challenging. Bolus-chasing computed tomography (CT) an-
giography is a primary example which demands real-time CT
feedback.

To address this problem, various techniques are used
for fast image reconstruction. A number of commercial
hardware-based solutions are available. For example, XTril-
lion (by TeraRecon, Inc.) uses an application-specific PCI
card, while Mercury Computer Systems relies on blade-
based Linux clusters. However, the specialized hardware is
expensive and unsuitable for general purpose applications.
Alternatively, efforts are made using graphic cards [2, 3],
since the main operation for commercial CT reconstruc-
tion is backprojection, similar to texture mapping in com-
puter graphics [4]. Although graphics cards are highly op-
timized, they do not support floating-point calculations.
Hence, they are not ideal for medical imaging applications.
Despite that the latest graphics cards can implement vir-

tull 32 bits floating calculations. Another bottle-neck is that
the graphic cards require data exchange between CPU and
GPU.

In this paper, a multi-core PC-based acceleration scheme
is proposed for filtered-backprojection-(FBP-) based image
reconstruction. This scheme reduces computational cost and
maintains image quality. Our scheme integrates the follow-
ing techniques for fast image reconstruction. First, geomet-
ric symmetry is taken into account to eliminate redundant
operations. That is, only one computation is performed for
multiple symmetric positions. Second, efficient data struc-
tures are used to minimize the data access time. Third, the
single-instruction multiple-data (SIMD) technique is em-
ployed for data-level parallel processing. Fourth, the multi-
threading programing is done to take advantage of multi-
core processors, realizing the true parallel computation ca-
pability. Finally, an Intel C++ complier is used to optimize
the code for Intel processors.

This paper is organized as follows. In Section 2, the CT
reconstruction algorithm is overviewed, and then each of
our acceleration techniques is described. In Section 3, nu-
merical experiments on various datasets and different PCs
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FIGURE 1: Scanning geometry with the patient static and source
moving in a helical trajectory.

are presented to evaluate the speedups with our scheme and
the conventional implementation. In Section 4, relevant is-
sues and research directions are discussed.

2. MATERIAL AND METHODS

2.1. CTreconstruction algorithm

The most popular multislice CT reconstruction methods
remain data rebinning-based fan-beam reconstruction fil-
tered backprojection (FBP) algorithms. Therefore, our work
is focused on the typical fan-beam FBP algorithm. Note
that the application of our scheme is not limited to the
fan-beam case, because it can also be applied to accelerate
the latest approximate cone-beam algorithms [6-8], which
can be treated as generalized fan-beam reconstruction algo-
rithms.

In a typical CT setting, the data acquisition system (an
X-ray source and a detector assembly) is rotated rapidly
in the gantry while the patient on a table is translated
into the gantry opening. This process is illustrated in
Figure 1. Because the multi-row detector arrays span a very
small cone angle, acquired helical scan data are usually re-
binned into a series of virtual circular scan data for re-
construction of a stack of images [9]. Here we assume
a method from [10], in which the virtual fan-beam pro-
jection data are calculated according to the following for-
mula:
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F1GUrk 2: Helical data interpolation scheme. Helical scanning pro-
jection data are rebinned into a series of circular scan datasets via
linear interpolation.

Rotating
direction
P X-ray

source
\

1
[
1
1

FIGURE 3: Fan-beam geometry on the z = z; plane.

where f° = B+ k X 2m, k € N,sothat z, < zp < z,
pc denotes virtual circular scan data, p, denotes acquired
helical projection, z, and z, are the distances from pro-
jections a and b to the virtual circular plane, respectively,
in Figure 2, f and y are the projection angles shown in
Figure 3.

After transforming helical projection data py, to circular
fan-beam projection data p,, the conventional fan-beam re-
construction algorithm [11] can be used. As the rebinning
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F1GURE 4: Flowchart of the helical CT reconstruction algorithm: (a)
process with one thread, and (b) with multithreads.

cost is insignificant, our optimization targets the reconstruc-
tion process:

2 1
feopa) = | por(opa)ds, (2
2
Pes (s Bs20) = pe(y, B, 2z0) D cosy * .yz h(y), (2b)
2sin”y
L= \/D2 + 12— 2Drcos(f - 0), (2¢)
Yo = arcsin w, (2d)

L

where f is an objectfunction to be reconstructed, p. s are the
filtered projection data, D is the distance from the source to
the center of rotation, and h(y) is the ramp filter [11]. While
the inner convolution is the filtration process, the outer inte-
gration is the most time-consuming backprojection process,
as shown in Figure 4(a).

2.2. Acceleration techniques

Since the backprojection is the bottleneck, let us analyze the
backprojection process as shown in Algorithm 1. Clearly, a
large part of the computational cost is due to the inner loop
that calculates yo, 1/L?, interpolation coefficients, and ac-
cumulates the incremental contributions to the final recon-
struction. In the following, we show how the backprojection
can be speeded up using various techniques.

2.2.1.  Utilization of geometric symmetry

For our circular fan-beam reconstruction, two types of sym-
metries are available, which are referred to as the right-angle
symmetry and complement symmetry. The right-angle sym-
metry, or 90-degree symmetry, is shown in Figure 5. That is,
a new pair of source and pixel positions is obtained by ap-
plying a 90-degree rotation to a current pair of source and
pixel positions. The resultant 4 pairs of source and pixel po-
sitions share the same 1/L? and y,, which can be calculated

for loop of every x projection angel 8 € [0, 27) (increasing
step is Af)
for loop of every y coordinate
for loop of every x coordinate
Calculate L of pixel (x, y);
Calculate y, of pixel (x, y);
Calculate projection data p. r(yo,3) at channel y,
by liner interpolation
Weight interpolated projection data by AB/L?,
thatis, p rw = pAB/LA
Accumulate weighted and interpolated
projection data p, 1, to pixel (x, y)
end
end
end

ArcgoriTHM 1: Pseudocode for the backprojection.

from (3) and (4), respectively. As the interpolation coeffi-
cients required by the backprojection are determined by vy,
they are the same as well. Therefore, for the four sets under
consideration, the calculations of these parameters need to
be done only once:
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FIGURE 5: Right-angle symmetry. Four pairs of source and pixel po-
sitions share the same L and y,.

where (xp, y,) denotes the pixel in the first quadrant. The
following two requirements, which are usually satisfied in
practice, are necessary to use the right-angle symmetry. The
first requirement is that the projection data must be available
at the involved four angles. Namely, the number of projec-
tions in a full scan must be divisible by 4, which is reasonable
for current medical CT scanners. For instance, a SOMATOM
system generates 1160 projections per turn, while a Light-
speed scanner produces 984 projections per turn. The other
requirement is that the reconstruction region must be sym-
metric about the x- and y-axes, such as a square or a circle in
the clinical imaging situation.

The second type of symmetry is the complement sym-
metry, as shown in Figure 6. Here, a pair of source and pixel
positions complements the other pair of source and pixel po-
sitions if they are symmetric with respect to a diagonal line
(e.g., y = x). For these 2 pairs of source and pixel positions,
L s are the same, while y, for one has the opposite sign of that
for the other, as shown by (5) and (6), respectively,

Loet1 = \/D2 +1r2—2Drcos (B —0)
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FiGure 6: Complement symmetry. Two pairs of source and pixel
positions share essentially the same L and yy.

Therefore, such a symmetry can also be used to reduce the
computational cost. The requirements for use of the com-
plement symmetry are the same as those for the right-angle
symmetry.

Using these two types of symmetries, the backprojection
can be significantly speeded up, since only one set of parame-
ters needs to be calculated for the eight sets. The implementa-
tion of the backprojection is accordingly modified, as shown
in Algorithm 2. Note that after the calculation of yy and L
once for 8 pairs of source and detector positions, 8 filtered
projection values are put to 8-pixel positions together in the
inner-loop.

2.2.2. Optimization of data structures

To evaluate the computational complexity, the time for CPU
to access data must be considered, especially for the CT
reconstruction process because the backprojection requires
frequent visits to a great amount of filtered projection and
image data. The CPU data access mechanism with multi-
level caches is illustrated in Figure 7. Specifically, a cache can
be used to reduce the average time to access data in the main
memory (RAM). The cache is a smaller, faster memory chip
which stores copies of data from the most frequently used
main memory locations. As long as a majority of memory
accesses are to the cached memory locations, the average la-
tency of memory accesses will be reduced to the cache la-
tency, instead of the main memory latency. The L1 cache is
the fastest and usually about 16 ~ 32KB. The L2 cache is
faster than RAM and about 1 ~ 2 MB. The slowest RAM is
1 ~4GB.

When the processor needs to read from or write to the
main memory, it first checks if the data is in the cache. If it is
in the cache, we say that a cache hit has occurred; otherwise
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for loop of every y coordinate
for loop of every x coordinate
Calculate L of pixel (x, y);
Calculate y, of pixel(x, y);
For Sets 1, 2, 3,4

Yo = —Yo

end
end
end

for loop of every projection angel 8 € [0,71/4) (increasing step is Af3)

Calculate projection data p. (yo,8) at channel y, by liner interpolation
Weight interpolated projection data by AB/L?, that is, pc r, = pcAB/L
Accumulate weighted and interpolated projection data p. 7, to pixel (x, y)

For complementary Sets 1c, 2¢, 3¢, 4¢

Calculate projection data p. r(yo,8) at channel y, by liner interpolation
Weight interpolated projection data by AB/L?, thatis, p. . = pcAB/L?
Accumulate weighted and interpolated projection data p. ,, to pixel (x, y)

ArLgoriTHM 2: Pseudocode for the backprojection with the right-angle and complement symmetries.
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F1GURE 7: Mechanism for CPU to access data via multilevel caches.
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a cache miss is counted. In the case of a cache hit, the pro-
cessor immediately reads or writes the data. However, in the
case of a cache miss, it takes much longer time to access the
data. Due to the limited cache capacity, one way to execute
the code efficiently is to increase the hit rate by optimizing
the data structures.

Usually, projection data are sequentially stored in the or-
der of f3, while reconstructed images are stored rowwisely.
Thus, for implementation of the right-angle and symmetry,
the access to 8 pairs of projection and image data will very
likely result in cache misses due to the address gaps, as shown
in Figure 8. Such misses within the inner loop will cause a
significant latency. To address this problem, in our optimized
data structures all the data are arranged into blocks indexed
to reflect symmetric relationships. Therefore, the cache miss
rate can be greatly reduced in the inner loop.

2.2.3. SIMD technique

The SIMD technique enables the data-level parallelism like
in a vector processor, as shown in Figure 9. With an SIMD

processor, one instruction can process a block of data at a
time instead of just one datum, which is much more efficient
than the conventional single instruction single-data (SISD)
technique. Small-scale (64 or 128 bits) SIMD operations are
now popular supported by general PC CPUs, such as those
from Intel and AMD [12, 13]. We use the Intel SSE (stream-
ing SIMD extensions) instruction set to implement the SIMD
technique in our backprojection process. Within the inner
loop, we backproject 8 projection data onto 8 pixels, accord-
ing to the same instructions such as interpolation, weighting,
and accumulation. Therefore, we have a perfect situation to
employ the SIMD technique. As the SSE only supports si-
multaneous processing of 4 floating data at a time (128-bits
register), 8 data are processed in two groups.

2.2.4. Multithreaded programing

In recent years, the great increment of the clock speed of PC
processors seems difficult. Intel is bounded by 4 GHz, while
AMD stays under 3 GHz. Their efforts have now shifted from
improving the clock speed to increasing the number of cores
within a processor. Dual-core quad-core processors become
commercially available for a PC. However, a processor with
more than one core cannot achieve a better performance un-
less parallel computation schemes are applied. Therefore, to
take advantage of multi-core processors, multi-threaded pro-
graming must be done.

From the flowchart of our algorithm, the computation
within the inner loop is independent. Thus, the backprojec-
tion can be implemented in parallel by assigning different
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FIGURE 9: SISD and SIMD techniques: (a) SISD and (b) SIMD.

loop ranges to various cores of the processor. After all
the threads are finished, the final result can be assembled
from the results of each thread. In our implementation
(Figure 4(b) and Algorithm 2), we divide the loop of y,
instead of the loop of . Usually, the number of cores on a

TasLE 1: Configurations of the host computers.

Computer Processor RAM

One Pentium D 840
HP 4300 processor (3.2GHz), two | 5 GB DDR2 RAM
workstation | €OTes per processor,

90 nm chip

Two Xeon 3.2 GHz
HP 6200. processors, one core per 1.5 GB DDR2 RAM
workstation | processor, 90 nm chip

PC is 2, 4 or 8, it is not common for Ng/4 to be an integer,
but it is always the case for N, to be 256, 512, or 1024. Our
parallel implementation on a multi-core PC is more efficient
than that on a PC cluster in terms of time required for data
exchange between threads. In our case, the data exchange is
via on board RAM bus, while the PC cluster’s data exchange
via local network is significantly slower.

2.2.5. Intel C++ compiling

The Intel C++ Compiler creates applications that can run at
the fastest speeds on the Intel processors. It can take the full
advantage of the Intel processors when compiling codes and
generating object files. The Intel C++ compiler can be cou-
pled with the Visual Studio. This provides an integrated de-
velopment environment. In our implementation, we use it to
optimize the code for Pentium D and Xeon processors.

3. NUMERICAL EXPERIMENTS

To test the gain of our scheme, we ran our accelerated code
on Pentium D and Xeon PCs. Their configurations are listed
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TaBLE 2: Reconstruction results by applying techniques gradually.

Acceleration Technique Techniques Techniques Techniques Techniques
. None
techniques 1 1,2 1-3 1-4 1-5
Reconstruction time (s) 51.5 7.25 6.12 491 2.62 1.25
Overall speedup 1 7.1 8.4 10.5 19.9 41.2
Technique 1 Technique 2 Technique 3 Technique 4 Technique 5
Individual speedup 1 7.1 1.18 1.25 1.89 2.07

TaBLE 3: Speedup comparison on HP 4300 workstation (one Pentium D 840 processor).

i{fj ::C;(I)\Iii:nt:; Image size | Optimized mode  Rebinningtime (s)  Reconstruction time (s)  Total time (s)  Speedup
Conventional 0.029 51.5 51.5 1
1160 x 672 5122 1 thread 0.029 2.26 2.289 22.5
2 threads 0.029 1.224 1.25 41.2
Conventional 0.016 25.78 25.8 1
580 X 672 5122 1 thread 0.016 1.162 1.18 21.8
2 threads 0.016 0.655 0.671 38.5
Conventional 0.016 7.65 7.67 1
580 X 672 2567 1 thread 0.016 0.342 0.33 21.9
2 threads 0.015 0.185 0.20 38.4
TaBLE 4: Speedup comparison on HP 6200 workstation (2 Xeon 3.2 GHz processors).
Projection data, . Optimized Rebinning Reconstruction Total Speed
Nprojs X Nechannels Image size mode time (s) time (s) time (s) up
Conventional 0.032 52.0 52.0 1
1160 X 672 5122 1 thread 0.032 2.273 2.31 22.5
2 threads 0.032 1.315 1.35 38.5
Conventional 0.0185 25.88 25.9 1
580 X 672 5122 1 thread 0.0185 1.167 1.19 21.7
2 threads 0.0185 0.689 0.708 36.6
Conventional 0.0185 7.67 7.69 1
580 X 672 2562 1 thread 0.0185 0.329 0.348 22.1
2 threads 0.0185 0.1928 0.211 36.4

in Table 1. Besides, different sizes of projection datasets and
reconstructed images were tested to evaluate the efficiency
under various conditions.

Here to test effeteness of each technique, the reconstruc-
tion times and speedups are tested by applying them gradu-
ally. The reconstruction experiments are done based on our
HP6200 workstation and reconstructing a 512 X 512 im-
age from a projection dataset (1160 X 672). The reconstruc-
tion results are shown by applying techniques step by step
(Table 2). The overall speedup and individual speedups for
each technique are also calculated to show the efficiency of
them.

The speedup results for different projection datasets and
image matrix sizes are shown in Tables 3, 4, and Figure 10.
The results on different computers are consistent. Significant
speedups were achieved using our scheme. In the case of 1160
views and 512 X 512 image, the reconstruction time was de-

creased from 52 seconds to 1.35 seconds. For a one-core com-
puter, the speedup was more than 20 times. For a two-core
computer, the speedup was almost 40 times when 2 threads
were used.

The Shepp-Logan head phantom was used in our nu-
merical experiments. The images reconstructed using our
scheme and the conventional method are shown in Figure 11.
All the images were reconstructed using 32-bit floating-point
data and were displayed in the same window [0.97, 1.05]. The
images reconstructed using our accelerated and conventional
schemes are essentially the same.

4. DISCUSSION AND CONCLUSIONS

As the CT reconstruction algorithm is highly paralleliz-
able, the speedup can be improved with more cores al-
most linearly. For example, with two quad-core processors,
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FiGUrEe 10: Experimental results on the speedup with our scheme: (a) results with the Pentium D PC and (b) with the Xeon PC.
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FiGUrEe 11: Reconstructed images of the Shepp-Logan using the conventional and accelerated codes (2 threads) in the display window

[0.97, 1.05].

the speedup that could be achieved is more than 100. As
compared to other acceleration techniques, such as those
based on specialized hardware and graphics cards, our gen-
eral purpose PC-based scheme is much cheaper without
compromising image quality. For example, a general purpose
HP or Dell workstation with a top-line two quad-core pro-
cessor and 8 GB RAM is less than $7000. All calculations are

based on 32-bit floating point data, providing sufficient ac-
curacy for medical imaging applications.

In terms of the absolute reconstruction time for a 512 X
512 image from 1160 projection views, it has been decreased
from 52 to about 1.25 seconds. If the latest multi-core pro-
cessor is used, the total time can be easily decreased by sev-
eral folds. As the computers we have still use the previous
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generation processor, the potential improvement is at least 5
times if we are equipped with the latest quad-core proces-
sors [14], that is, the reconstruction time may be reduced
to 0.3 second. Hence, it is quite promising for real-time CT
applications, such as project on Bolus-chasing CT angiogra-
phy.

In conclusion, our acceleration scheme has integrated
several techniques including utilization of geometric sym-
metry, optimization of data structures, single-instruction
multiple-data (SIMD) processing, multi-threaded computa-
tion, and an Intel C++ complier. As a result, it has speeded up
the reconstruction process by 40 times, as compared to the
conventional implementation on a general purpose PC with
2 cores. Further work is in progress to improve our results
using the latest PCs and extend our scheme for cone-beam
reconstruction.
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