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ABSTRACT Nontuberculous mycobacteria (NTM) are emerging opportunistic patho-
gens that colonize household water systems and cause chronic lung infections in sus-
ceptible patients. The ability of NTM to form surface-attached biofilms in the nonhost
environment and corded aggregates in vivo is important to their ability to persist in
both contexts. Underlying the development of these multicellular structures is the ca-
pacity of mycobacterial cells to adhere to one another. Unlike most other bacteria, NTM
spontaneously and constitutively aggregate in vitro, hindering our ability to understand
the transition between planktonic and aggregated cells. While culturing a model NTM,
Mycobacterium smegmatis, in rich medium, we fortuitously discovered that planktonic
cells accumulate after �3 days of growth. By providing selective pressure for bacteria
that disperse earlier, we isolated a strain with two mutations in the oligopeptide per-
mease operon (opp). A mutant lacking the opp operon (Δopp) disperses earlier than wild
type (WT) due to a defect in nutrient uptake. Experiments with WT M. smegmatis re-
vealed that growth as aggregates is favored when carbon is replete, but under condi-
tions of low available carbon relative to available nitrogen, M. smegmatis grows as
planktonic cells. By adjusting carbon and nitrogen sources in defined medium, we tuned
the cellular C/N ratio such that M. smegmatis grows either as aggregates or as plank-
tonic cells. C/N-mediated aggregation regulation is widespread among NTM with the
possible exception of rough-colony Mycobacterium abscessus isolates. Altogether, we
show that NTM aggregation is a controlled process that is governed by the relative
availability of carbon and nitrogen for metabolism.

IMPORTANCE Free-living bacteria can assemble into multicellular structures called
biofilms. Biofilms help bacteria tolerate multiple stresses, including antibiotics and
the host immune system. Nontuberculous mycobacteria are a group of emerging
opportunistic pathogens that utilize biofilms to adhere to household plumbing and
showerheads and to avoid phagocytosis by host immune cells. Typically, bacteria
regulate biofilm formation by controlling expression of adhesive structures to attach
to surfaces and other bacterial cells. Mycobacteria harbor a unique cell wall built
chiefly of long-chain mycolic acids that confers hydrophobicity and has been
thought to cause constitutive aggregation in liquid media. Here we show that ag-
gregation is instead a regulated process dictated by the balance of available carbon
and nitrogen. Understanding that mycobacteria utilize metabolic cues to regulate
the transition between planktonic and aggregated cells reveals an inroad to control-
ling biofilm formation through targeted therapeutics.

KEYWORDS Mycobacterium, biofilms, carbon metabolism, nitrogen metabolism,
physiology

The adhesive biofilm matrix can serve as a physical barrier against external stresses
such as desiccation and predation, can interact with and sequester antimicrobial

agents, and can short-circuit phagocyte signaling (1–4). Additionally, the three-
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dimensional (3D) structure of biofilms creates chemical gradients across a cellular
population (5–9), resulting in a spectrum of physiologies and metabolisms which, along
with genetic diversification and stochastic differences in gene expression, give rise to
substantial cell-to-cell heterogeneity (9–12). Heterogeneous bacterial communities
demonstrate increased fitness compared to homogenous communities in a variety of
models and experimental systems (11–13). Notably, most antibiotics target rapidly
dividing bacteria, so slow-growing and dormant cells that develop in biofilms contrib-
ute to antibiotic tolerance (5, 10, 14–17).

Bacteria have evolved to enter and exit from the biofilm state in response to species-
and strain-specific environmental signals. Cell-cell adhesion is a pivotal step in biofilm
development in all bacteria, including nontuberculous mycobacteria (NTM) (18). Pecu-
liarly, mycobacteria spontaneously aggregate under nearly all laboratory culture con-
ditions, forming hydrophobic clumps in shaking cultures (19–22). This constitutive
aggregation suggests either that mycobacteria express adhesive structures in response
to signals that are very common in laboratory cultures or that they have adapted to
always grow as aggregates in aqueous environments. The latter possibility has become
the dominant paradigm, exemplified by the common addition of detergents such as
Tween 80 to mycobacterial cultures to prevent clumping (20, 21, 23).

NTM are emerging pathogens that utilize various forms of aggregation for survival
and persistence both in the host and in the nonhost environment (22, 24–27). From the
baseline aggregated state, environmental parameters such as high iron trigger the
maturation of NTM biofilms (18, 28). Biofilm formation is important for the ability of
NTM to survive standard water decontamination protocols and to persist in household
water systems (24, 29, 30). NTM can infect healthy adults after repeated exposure and
are especially dangerous to immunocompromised populations and patients with lung
disorders such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD)
(29, 31–33). Infections with NTM can be very difficult to treat; Mycobacterium abscessus
lung infections, in particular, require long courses of antibiotic cocktails that have
limited efficacy and extensive adverse side effects (31, 34, 35). When M. abscessus
acquires mutations that reduce expression of surface glycopeptidolipids (GPLs), it
develops a rough-colony morphology and forms cords, rope-like structures in which
the axis of each bacterial cell is parallel to the axis of the cord, in liquid culture (21,
36–39). Rough-colony isolates demonstrate increased pathogenicity in a zebrafish
model and an enhanced ability to evade phagocytosis (22, 25, 26), indicating that the
formation of multicellular structures by NTM is positively related to their sustained
infection of hosts.

Because cell-cell adhesion is a requirement for biofilm formation and cording, a
more thorough understanding of the regulatory pathways underpinning mycobacterial
aggregation holds promise for combating NTM infections. In this study, we set out to
understand whether and how aggregation is regulated in NTM. Toward this end, we
developed an assay to quantify mycobacterial aggregation in liquid media under
various nutritional conditions. Contrary to the conventional wisdom, we found that
aggregation and dispersal are regulated processes in a variety of NTM, both pathogenic
and nonpathogenic, dictated in large part by the relative availability of carbon and
nitrogen.

RESULTS
Mycobacterial aggregates disperse as cultures age. During routine culture in a

rich medium with no detergent, the model NTM Mycobacterium smegmatis MC2155
grows as aggregated clumps. However, we noted that nonaggregated (planktonic) cells
accumulated after �40 h of growth (Fig. 1a). We developed an assay to distinguish and
quantify aggregated cells and planktonic cells over time. Briefly, culture replicates were
harvested by passing an entire culture through a 10-�m cell strainer. The optical
density at 600 nm (OD600) of cells that passed through the strainer (planktonic fraction)
was immediately recorded. Aggregates that collected on the strainer were water bath
sonicated in phosphate-buffered saline (PBS) plus 24.8% Tween 20, and the OD600 of
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the resultant suspension was recorded (Fig. 1b). Phase-contrast microscopy revealed
that the planktonic fraction was composed mostly of single cells and small clusters of
2 to 4 cells (Fig. 1c). Scanning electron microscopy (SEM) of a representative aggregate
revealed a densely packed structure (Fig. 1d). Performing this assay on M. smegmatis
grown in rich medium plus 0.2% glucose revealed a decrease in the aggregate fraction
concurrent with planktonic cell accumulation after �40 h of growth, suggesting a
mechanism of controlled dispersal (Fig. 1e).

Mutations in oligopeptide permease genes cause early dispersal. To gain
insight into the genetic regulation of M. smegmatis aggregation and dispersal, we
designed an evolution experiment to select for mutants that disperse earlier than wild

FIG 1 Quantification of mycobacterial aggregation/dispersal over time. (a) In rich medium plus 0.2%
glucose, M. smegmatis grows as clumps at early time points (left tube, 30 h of growth). In older cultures,
planktonic cells accumulate (right tube, 72 h of growth). (b) Cartoon depicting a method to separate and
quantify aggregated and planktonic mycobacterial cells. (c) Phase-contrast micrograph showing the
planktonic (top panel) and aggregated (bottom panel) fraction of a 72-h-old culture. The planktonic
fraction is largely single cells and small clumps. Cells that are retained on the strainer (aggregated
fraction) mostly exist as large clumps. (d) SEM of a representative M. smegmatis aggregate that was
retained on the strainer after �30 h of growth in rich medium. (e) Aggregation curve of WT M. smegmatis
grown in rich medium plus 0.2% glucose. Cells were harvested at each indicated time point and
processed with the method outlined in panel b. Data are representative of n � 4 trials.
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type (WT) in rich medium plus 0.2% glucose. Briefly, every 24 h 1 ml of a 5-ml culture
was centrifuged at low speed to pellet aggregates. A new 5-ml culture was inoculated
with 100 �l of the supernatant and grown for another 24 h (Fig. 2a). After 60 passages
(roughly 575 doublings), planktonic cells visibly accumulated after 24 h of growth.
Passage 60 was plated, and a single colony was selected and cultured. The passage 60
isolate displayed an early-dispersal phenotype compared to WT in rich medium plus
0.2% glucose (Fig. 2b). We sequenced the genomes of the passage 60 isolate, our WT
strain (passage 0), and a passage 40 isolate that showed no early-dispersal phenotype
(see Fig. S1A in the supplemental material). In total, the passage 40 isolate had 13
mutations compared to our passage 0 isolate, seven of which were in nontransposon
open reading frames (ORFs). The passage 60 isolate had 11 mutations compared to our
passage 0 isolate, nine of which were in nontransposon ORFs (Table 1).

To identify dispersal-related mutations, we narrowed our list of passage 60 candi-
date genes by discarding two genes that were also mutated in the passage 40 isolate
(MSMEG_2148 and MSMEG_5061), one gene that acquired a silent mutation (MSMEG_
3677), and divIVA (MSMEG_4217), because it is essential in M. smegmatis (40). We
generated deletion mutants in a WT background of the four remaining candidates:
oppF, oppD, kdpD, and the hypothetical gene MSEMG_6497. Because oppF and oppD
code for two ATPase subunits associated with an oligopeptide permease (Opp) com-
plex, we deleted the entire 5-gene opp operon (MSMEG_0643 to MSMEG_0639, termed
Δopp). While the ΔkdpD and ΔMSMEG_6497 mutants showed no dispersal phenotype
(Fig. S1B), the Δopp mutant phenocopied the passage 60 isolate by displaying early
dispersal (Fig. 2b). Complementation of the opp operon via the integration vector
pMH94-opp restored aggregation in both Δopp and the passage 60 isolate (Fig. S2) (41).
Altogether, these results indicate that a functional oligopeptide permease system helps
maintain aggregation in rich medium plus 0.2% glucose.

The Opp complex imports oligopeptides for signaling and/or catabolism in multiple
bacterial species (42, 43). Our rich medium contains tryptone and yeast extract, both of
which are composed largely of oligopeptides, so we reasoned that (i) exogenous
peptides themselves are a proaggregation signal, (ii) a self-produced peptide phero-
mone serves as a proaggregation signal, or (iii) metabolizing peptides as nutrients
provides the cell with a proaggregation signal. To distinguish between these possibil-
ities, we grew WT and Δopp strains in a defined, peptide-free glycerol medium. If
exogenous peptides are necessary for aggregation (i), neither WT nor Δopp should
aggregate in the peptide-free medium; if a self-produced pheromone is required for
aggregation (ii), WT should aggregate but Δopp should be defective; and if peptides are
used as a nutrient that provides a proaggregation signal (iii), providing the cells with
alternative carbon and nitrogen sources should bypass the need for peptide import and
both strains should aggregate. WT and Δopp maintained aggregation to similar degrees
in glycerol defined medium (Fig. 2c), suggesting that the Opp complex promotes
aggregation in rich medium by increasing cells’ access to the peptide nutrient sources.

Carbon availability dictates M. smegmatis aggregation and dispersal. Because
the Δopp mutant’s aggregation deficiency in rich medium plus 0.2% glucose appeared
to be due to a defect in nutrient uptake, we tested whether nonpeptide carbon
supplementation could complement this defect. Indeed, glucose addition prolonged
aggregation in both WT and Δopp, suggesting that carbon starvation is a signal for
dispersal (Fig. 3a and Fig. S3A). Because of the utility of being able to measure nearly
complete dispersal, rich medium experiments going forward contain no glucose unless
otherwise noted. If carbon starvation leads to aggregate dispersal, we would predict
that either carbon-free buffer or carbon-depleted medium should be sufficient to
induce dispersal. We therefore resuspended WT aggregates (grown in rich medium for
48 h) in either PBS or conditioned medium from 52-h-old cultures. After 12 h, we
harvested and quantified aggregated and planktonic populations (Fig. 3b). Aggregates
decreased to similar degrees in both conditioned medium and PBS (Fig. 3b). Further-
more, when 0.6% glucose was added to conditioned medium, dispersal was largely
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FIG 2 Mutations in an oligopeptide permease operon lead to early dispersal. (a) Cartoon depicting an
evolution experiment to select for an M. smegmatis strain that disperses earlier than WT. (b) Aggregation
curve of WT M. smegmatis, the passage 60 isolate, and the Δopp mutant grown in rich medium plus 0.2%
glucose. The top panel shows the aggregated fraction, and the bottom panel shows the planktonic
fraction. Data are representative of n � 3 trials. (c) Aggregation curve of WT M. smegmatis and the Δopp
mutant grown in glycerol defined medium. The top panel shows the aggregated fraction, and the
bottom panel shows the planktonic fraction. Data are representative of n � 2 trials.
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prevented (Fig. 3b). Unexpectedly, when aggregates were resuspended in conditioned
medium, planktonic cells accumulated to a significantly higher extent than in PBS
(Fig. 3b). This result indicated that, instead of growth as aggregates and subsequent
dispersal, there may be a window of time in a rich medium culture wherein nutrient
conditions favor growth as planktonic cells.

Low C/N ratio drives growth as planktonic cells. Because the OD600 has a limited
range in which it can accurately measure cell density, we measured CFUs/ml of both
aggregated and planktonic fractions over time in rich medium (Fig. 4a). Aggregates
were dispersed by short water bath sonication in rich medium with Tween 80 and
Tween 20 prior to plating (Fig. S4). This experiment revealed three distinct phases of
growth. In phase I (�0 to 40 h), the fractions grow at similar rates with the aggregated
fraction outnumbering the planktonic fraction by roughly 10-fold. In phase II (�40 to
53 h), planktonic cells continue growing while aggregated fraction growth ceases.
Then, in phase III (at �53 h onward), aggregates disperse and the planktonic fraction
enters stationary phase (Fig. 4a). Our results from Fig. 3 suggest that carbon excess and
depletion drive growth as aggregates and aggregate dispersal, respectively. Therefore,
we sought to characterize the phase II culture conditions that favored planktonic cell
growth.

One well-described side effect of bacterial growth on peptides is the release of
excess ammonium into the medium (44). Indeed, ammonium levels increased as our
cultures aged, reaching �33 mM at 48 h (Fig. 4b). To test whether ammonium facili-
tated growth as planktonic cells, we added excess NH4Cl to starting cultures and
tracked aggregation. Ammonium addition led to earlier accumulation of planktonic
cells and reduced aggregation (Fig. 4c and Fig. S3B). To test whether salts have a
general effect on aggregation, we added 75 mM NaCl to WT cultures. NaCl did not
affect aggregation kinetics, indicating that ammonium specifically favors planktonic
growth (Fig. S5). If the high ammonium concentration in conditioned medium favors
growth as planktonic cells, it is notable that adding excess carbon to conditioned
medium shifts the population back toward growth as aggregates (Fig. 3b). Altogether,
these results are consistent with a model wherein carbon-replete conditions favor
growth as aggregates, high-nitrogen (relative to carbon) conditions favor growth as
planktonic cells, and carbon depletion leads to aggregate dispersal.

TABLE 1 Nontransposon ORFs mutated in passage 40 and passage 60 isolates relative to the passage 0 isolate

Passage no. and gened Function Mutation type Mutation

Passage 40
MSMEG_1808 SufE Missense Glu39Val
MSMEG_2148 HNHe endonuclease domain-containing protein Frameshift Ser534fsa

MSMEG_5061 Extracellular solute binding protein Missense Ser249Pro
MSMEG_5808 Binding protein-dependent transporter Missense Arg117Cys
MSMEG_6397 Hypothetical protein Missense Ser21Pro
MSMEG_6430 Hypothetical protein Missense Thr371Lys
MSMEG_6821 NLP/P60 family protein Missense Gln2017Arg

Passage 60
MSMEG_0639 Oligopeptide transport ATP-binding protein OppF Frameshift Lys12fsb

MSMEG_0640 Oligopeptide transport ATP-binding protein OppD Missense Phe96Leu
MSMEG_2148 HNH endonuclease domain-containing protein Missense Pro380Arg
MSMEG_2148 HNH endonuclease domain-containing protein Frameshift Ser534fsa

MSMEG_3677 Serine/threonine protein kinase Silent Val320Val
MSMEG_4217 DivIVA protein Missense Glu107Gly
MSMEG_5061 Extracellular solute binding protein Frameshift Glu225fsc

MSMEG_5395 Sensor histidine kinase KdpD Missense Arg627Cys
MSMEG_6497 Hypothetical protein Missense His43Gln

aMSMEG_2148 is 544 amino acids. Ser534 frameshift hypothetically replaces the 8 C-terminal amino acids with a different 23-amino-acid sequence.
bMSMEG_0639 is 336 amino acids. Lys12 frameshift hypothetically replaces the 325 C-terminal amino acids with a different 24-amino-acid sequence.
cMSMEG_5061 is 465 amino acids. Glu225 frameshift hypothetically replaces the 241 C-terminal acids with a different 236-amino acid-sequence.
dBold text indicates the genes that were mutated in WT to test for aggregation defects.
eHis-Asn-His (HNH).
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Defined medium designed for growth as aggregated or planktonic cells. To test
whether M. smegmatis is able to grow as planktonic cells at low C/N ratios, we designed
defined medium to supply the bacteria with either replete carbon and low nitrogen
(high C/N availability) or replete nitrogen and low carbon (low C/N availability). To grow
M. smegmatis with high C/N availability, we used glycerol as the main carbon source,
glutamate as the main nitrogen source, and no ammonium (117 mM carbon, 5.5 mM
nitrogen; C/N of the medium � 21.4). Glycerol is commonly supplied to mycobacteria
because it supports fast growth and, as a small (three-carbon) uncharged molecule, can
presumably passively diffuse across the mycolic acid barrier (45). Indeed, growth on
glycerol floods most central metabolite pools compared to growth on other carbon
sources in Mycobacterium tuberculosis (46). To generate low C/N availability, we used a

FIG 3 Carbon depletion leads to dispersal. (a) Aggregation curve of WT M. smegmatis in rich medium
with no glucose, 0.2% glucose, or 0.6% glucose. The top panel shows the aggregated fraction, and the
bottom panel shows the planktonic fraction. Data are representative of n � 3 trials. (b) Aggregates
harvested from 48-h-old rich medium cultures (Time 0) were resuspended in conditioned medium (filter
sterilized from 52-h-old rich medium cultures), PBS, or conditioned medium plus 0.6% glucose and grown
for 12 h. Each bar is an average from biological triplicates, and error bars represent standard deviations.
Asterisks represents P � 0.05 by the Student t test.
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charged three-carbon compound, pyruvate, as the main carbon source and added
20 mM NH4Cl in addition to glutamate as the nitrogen source (117 mM carbon, 25.5 mM
nitrogen; C/N of the medium � 4.58). In some bacteria, the relative availability of
carbon and nitrogen sources can be reflected in total C/N content of the cell (47, 48).

FIG 4 Low C/N availability favors growth as planktonic cells. (a) CFUs per milliliter for WT M. smegmatis
grown in rich medium (no glucose). Each data point is the average from biological triplicates, and error
bars represent standard deviations. Roman numerals denote three phases of growth as described in the
text. (b) Aggregation curve of WT M. smegmatis in rich medium (no glucose). At indicated time points,
three additional cultures were harvested for NH4 IC measurements. Each NH4 data point is an average
from biological triplicates, and error bars represent standard deviations. Aggregation curve data are
representative of n � 5 trials. (c) Aggregation curve of WT M. smegmatis in rich medium (no glucose) with
no NH4Cl, 25 mM NH4Cl, or 75 mM NH4Cl. The top panel shows the aggregated fraction, and the bottom
panel shows the planktonic fraction. Data are representative of n � 3 trials.
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Therefore, to assess whether our medium was effectively providing high or low C/N
availability, we directly measured the ratio of cellular carbon to cellular nitrogen (by
mass) of M. smegmatis grown in either pyruvate or glycerol medium when the total
OD600 was between 0.5 and 0.7. As predicted, M. smegmatis grown on glycerol had a
C/N ratio of 6.95 (standard deviation [SD], 0.85) and on pyruvate plus NH4Cl had a C/N
ratio of 5.02 (SD, 0.31; P � 0.005). Consistent with our hypothesis, M. smegmatis grew
mostly as aggregates on glycerol and grew mostly as planktonic cells on pyruvate
(Fig. 5a and b).

The C/N ratio in natural environments such as soil affects bacterial diversity and
growth and is often tuned in order to favor desired bacterial metabolisms in industrial
settings (49, 50). It is therefore notable that even when grown in pyruvate defined
medium with no ammonium (117 mM carbon, 5.5 mM nitrogen; C/N of the medium �

FIG 5 Defined medium designed to favor growth as aggregates or planktonic cells. (a) Aggregation
curve of WT M. smegmatis in glycerol defined medium. Culture image was taken after 27 h of growth.
Data are representative of n � 4 trials. (b) Aggregation curve of WT M. smegmatis in pyruvate defined
medium. Culture image was taken after 34 h of growth. Data are representative of n � 4 trials. (c) WT M.
smegmatis was grown in pyruvate plus NH4Cl defined medium for 34 h (Time 0). Glycerol was then added
to 25 mM, and cultures were incubated for 6 more hours before harvesting. Bars represent biological
triplicates, and error bars represent standard deviations. Asterisks represent P � 0.05 by the Student t
test.
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21.4, equal to glycerol defined medium), M. smegmatis had a relatively low cellular C/N
ratio of 5.23 (SD, 0.38; P � 0.01 compared to glycerol-grown cells) and grew as mostly
planktonic cells (Fig. S6). These results reinforce that the form of available nutrients, and
not just total carbon and nitrogen in an environment, can impact a cell’s C/N status and
dependent phenotypes.

Last, we leveraged our pyruvate defined medium to test whether planktonic cells
can transition to aggregates. Planktonic M. smegmatis was grown for 36 h in pyruvate
plus NH4Cl defined medium before addition of 0 or 25 mM glycerol. By 6 h after glycerol
addition, the majority of the planktonic population had aggregated (Fig. 5c), further
demonstrating that the aggregation state is dynamic and dependent on the ratio of
available C to N.

Liquid aggregation state correlates with colony biofilm morphology. Liquid
aggregation is indicative of cell-cell adhesion, a necessary step in the development of
a mature mycobacterial biofilm (18). We therefore hypothesized that liquid aggregation
dynamics would correlate with biofilm formation. Using the colony morphology model
of biofilm development, we observed that WT M. smegmatis on rich medium agar
plates wrinkled and then smoothed out over time (Fig. S7). When grown on glycerol
defined medium agar plates, M. smegmatis formed wrinkled colonies that did not
smooth out in the same time frame, paralleling our liquid aggregation assays and
demonstrating that the aggregation state of NTM in liquid medium can predict
biofilm-forming capacity (Fig. S7).

C/N-dependent aggregation regulation is common among NTM. To determine
whether C/N regulation of aggregation is conserved among clinically relevant NTM, we
grew type strains of M. abscessus and Mycobacterium fortuitum along with four M.
abscessus subsp. abscessus clinical isolates from CF patients in rich medium and tracked
aggregation kinetics and aggregate morphology. As expected, microscopic inspection
of our strains demonstrated that our two rough M. abscessus isolates formed distinct
cords in rich medium while the other strains formed more generic aggregates (Fig. S8)
(22, 39). Both type strains and one smooth-colony clinical isolate accumulated plank-
tonic cells at later culture time points, with glucose addition increasing total aggrega-
tion and ammonium addition favoring growth as planktonic cells (Fig. 6 and Fig. S9).
Neither rough-colony M. abscessus isolate accumulated planktonic cells, even after
addition of ammonium. In contrast, the smooth-colony isolate that did not disperse in
rich medium grew solely as planktonic cells when provided with supplemental ammo-
nium. Altogether, our results indicate that C/N balance is a common regulator of NTM
aggregation, with corded rough-colony clinical isolates being a possible exception.

DISCUSSION

The role of biofilm formation in rendering bacteria recalcitrant to antibiotics and
immune killing provides motivation to develop novel antibiofilm strategies. However,
because bacteria have evolved to occupy and form biofilms in diverse ecological
niches, the regulatory pathways and physical components that govern biofilm forma-
tion differ significantly between species. As such, a species-specific, in-depth under-
standing of how cells sense and respond to their environment by aggregating under
certain conditions, and growing as planktonic cells under others, is essential in order to
control bacterial biofilm formation for any specific pathogen. In this work, we have
found a role for C/N balance in dictating the transition between planktonic and
aggregated states in NTM.

Understanding the environmental niches in which NTM have evolved can lend
context to our finding that C/N balance controls aggregation state. NTM are nonmotile
saprophytes that are common residents of soil and waterways (27, 35, 51). In soil,
carbon is most often the limiting nutrient for bacterial growth (52, 53). At a low C/N
ratio, our data suggest that NTM could exist at least partly as planktonic cells. As water
flow is a major factor in determining movement of bacteria through soil (54, 55), NTM
in this state might be susceptible to water-mediated transport to another region of the
rhizosphere (potentially containing more carbon). Larger bacterial cell sizes correlate
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with decreased movement through soil (56). Therefore, if NTM were growing as
aggregates under carbon-rich conditions, we would expect them to be less likely to be
washed away into potentially more carbon-depleted regions. While speculative, this
natural ecological context motivates us to consider how mycobacteria might sense the
C/N balance in their environment and control their aggregation state accordingly.

It is well appreciated that carbon and nitrogen availability dictate the metabolic and
growth capacity of a cell (57, 58), and bacteria are able to coordinate carbon and
nitrogen metabolism through a variety of means (59). The cellular C/N ratio provides a
rough estimate of the cell’s C/N status, but it is not a parameter that a cell can directly
sense. How then do mycobacteria translate C/N availability to aggregation? Our data
show that no one carbon source is necessary to drive aggregation. Interestingly, by
responding to flux through a metabolic pathway, a cell can integrate the signal from
multiple inputs without needing to measure each one specifically (60). It thus seems

FIG 6 C/N regulation of aggregation/dispersal is common among NTM. Aggregation curves in rich medium with or without 0.2% glucose (left column) or rich
medium with or without 75 mM NH4Cl (right column) were recorded for indicated strains. Ten time points were selected from each curve to span the entire
time course. The OD600 value of the planktonic fraction was multiplied by �1, and then the OD600 values of the two fractions were added together. The darkest
blue color corresponds to sums of 2.5 or greater, and the darkest yellow color corresponds to sums of �2.5 or less. Times are rounded up to the nearest hour.
Data are representative of at least n � 2 trials. The M. smegmatis heat maps represent aggregation curves shown in Fig. 3a and Fig. 4c. The aggregation curves
from which the other heat maps were derived are included in Fig. S9.
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possible that mycobacteria sense and respond to flux-dependent metabolites—mole-
cules whose intracellular pools correlate with flux through specific metabolic pathways,
such as fructose-1,6-bisphosphate (FBP), the levels of which correlate with glycolytic
flux (60, 61), or 2-oxoglutarate (2OG), the levels of which correlate to flux through the
tricarboxylic acid (TCA) cycle (60, 62). Alternatively, or in addition, two-component
systems might mediate the translation between metabolite availability and aggrega-
tion. Uncovering the pathways through which NTM achieve aggregation control is a
priority for future work.

Regardless of the signal transduction mechanism, a surface adhesin must mediate
the aggregation phenotype. Like many members of the Corynebacteriales order, my-
cobacteria produce a mycomembrane: a cell wall composed of peptidoglycan, arabi-
nogalactan covalently linked to an inner leaflet of long-chain mycolic acids, and an
outer layer of extractable lipids, lipoglycans, and proteins (63, 64). As such, the
mycobacterial cell wall is unusually lipid rich (65, 66). A lipid-rich cell wall fits the
longstanding observation that mycobacteria clump together into hydrophobic aggre-
gates; in his original description of M. tuberculosis in 1882, Robert Koch noted that the
bacteria “. . .ordinarily form small groups of cells which are pressed together and
arranged in bundles” (67). Clumping is now recognized as a ubiquitous feature of
mycobacteria, and as clumps are hydrophobic, detergents such as Tween 80 are
almost universally added to mycobacterial cultures to favor growth as dispersed
cells (22, 23, 68).

Inherent to the chemical intuition linking a lipid-rich cell wall and spontaneous
clumping is the assumption that mycobacteria display a constitutively hydrophobic cell
surface. Yet, several studies of the mycomembrane composition challenge this dogma.
Mycolic acid chain length affects aggregation (69), and M. smegmatis can regulate
mycolic acid chain length in response to environmental factors (70, 71). Additionally,
genes involved in the biosynthesis and glycosylation of GPLs in M. smegmatis, Myco-
bacterium avium, and M. abscessus affect aggregation and cell surface hydrophobicity
(37, 72–74). GPL production and glycosylation are also regulated by chemical signals
(73, 75). In addition to providing evidence that mycobacteria can dynamically regulate
cell envelope composition and surface hydrophobicity, these studies provide candidate
adhesins that could be effectors of C/N-driven aggregation regulation.

Finally, the fact that NTM regulate aggregation has potentially important biomedical
relevance. New treatments are needed to combat NTM infections, such as those caused
by M. abscessus, which is notoriously difficult to eradicate. It is noteworthy that the
corded, rough-colony isolates of M. abscessus subsp. abscessus do not disperse in rich
medium. Because rough M. abscessus isolates are typically the result of mutations that
reduce GPL production (36–38), we might hypothesize that C/N regulation is linked to
GPL production or modification, which directly impacts the aggregation state. It is
worth exploring whether nodes along such a pathway could be identified and ex-
ploited as new targets for biofilm control. The rising threat of NTM infections, partic-
ularly to susceptible communities such as CF patients, as well as the correlation
between increased aggregation and virulence, lends motivation to further probe the
mechanisms of aggregation and dispersal in these pathogens (22, 25, 34, 35).

MATERIALS AND METHODS
Strains, growth conditions, and cloning. Strains, plasmids, and primers used in this study are listed

in Table S1 in the supplemental material. The rich medium used in this study was TYEM (10 g tryptone,
5 g yeast extract/liter, plus 2 mM MgSO4). Where noted, filter-sterilized glucose or NH4Cl was added as
supplements to autoclaved TYEM. For routine culturing of mycobacteria, bacteria were grown in TYEM
for �50 to 70 h, at which time cultures were passed through 10-�m strainers (from pluriSelect; catalog
no. 43-50010-03) and planktonic cells were collected and processed. The exception was rough M.
abscessus isolates NTM0253b and NTM0711b, which were cultured in TYEM plus 0.05% Tween 80. Our
defined medium was modified M63—13.6 g KH2PO4 was dissolved in 500 ml Nanopure H2O and the pH
was adjusted to 7.0 via addition of KOH. This 2� stock was filter sterilized and diluted to 1� with
Nanopure H2O while adding filter-sterilized supplements: MgSO4 to 1 mM, FeSO4 to 10 �M, SL-10 trace
metal solution to 1�, proline to 0.5 mM, sodium glutamate to 5 mM, NH4Cl to 20 mM (when noted), and
either glycerol to 30 mM or sodium pyruvate to 30 mM. Mutants of M. smegmatis MC2155 were made via
recombineering as described previously with minor alterations (76). Briefly, M. smegmatis transformed
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with pJV53 was grown in TYEM plus 0.05% Tween 80 plus 25 �g/ml kanamycin until it reached an OD600

of 0.4 to 0.5. Acetamide was added to 0.2%, and cells were incubated for 3 h with shaking at 250 rpm at
37°C. Cells were then made electrocompetent by serial washes with chilled 10% glycerol (1/2, 1/10, 1/20,
and 1/100 original volume) with centrifugation at 4,000 � g for 10 min at 4°C between washes. One
hundred microliters of the cell mixture was then electroporated with 200 ng of linear DNA encoding a
gentamicin resistance cassette (PCR amplified from plasmid pMQ30) flanked by 400 to 500 bp of
sequence upstream and downstream of the target genes. Flanking regions were PCR amplified from WT
M. smegmatis colonies, and Gibson assembly was utilized to combine flanking regions with the genta-
micin resistance cassette. After mutagenesis, mutant strains were cured of pJV53 by passaging on TYEM
with no antibiotics 3 to 7 times until they were verified as kanamycin sensitive. The opp operon was
cloned from WT M. smegmatis into pMH94 using the XbaI site. pMH94 was integrated into M. smegmatis
via electroporation as described previously (41).

Light microscopy and SEM. For light microscopy shown in Fig. 1, samples were loaded onto Tekdon
poly-L-lysine-coated slides and phase-contrast images were acquired on a Zeiss AxioObserver.A1 using a
40� 1.3-numerical aperture (NA) oil immersion objective. Images in Fig. S8 in the supplemental material
were acquired with the T-PMT detector of a Zeiss LSM 800 confocal microscope and a 10� 0.45-NA
objective. For SEM, WT M. smegmatis was grown in rich medium for 24 h, at which point the culture was
passed through a 10-�m strainer and washed with PBS. Aggregates that collected on the strainer were
fixed in 4% paraformaldehyde (PFA) for 2 h at room temperature, washed twice with PBS, and fixed in
1% OsO4 for 1 h at room temperature. After two more rinses with PBS, aggregates were dehydrated in
an ethanol series, with 10-min incubations in 50%, 70%, 90%, 95%, and 100% ethanol, and a final
incubation in 100% ethanol for 1 h. Samples were then incubated in a 1:2 solution of hexamethyldisi-
lazane (HMDS)-ethanol for 20 min and a 2:1 solution of HMDS-ethanol for 20 min, followed by two
incubations in 100% HMDS for 20 min each. Samples were then loaded onto silicon wafers, air dried, and
attached to imaging stubs with conductive tape. Samples were sputter coated with 10 nm of palladium
and imaged on a Zeiss 1550VP field emission SEM using an SE2 detector.

Aggregation assays. Medium for aggregation assays was prepared in flasks and inoculated with the
indicated strain of bacteria to an OD600 of 0.01. After mixing, 5-ml aliquots were pipetted into brand-new
borosilicate disposable culture tubes. These culture replicates were incubated at 37°C while being shaken
at 250 rpm. At indicated time points, a single culture replicate was harvested by pouring the entire
culture through a 10-�m strainer. Culture that passed through the strainer was designated the plank-
tonic cell fraction, and the OD600 was immediately recorded. The original culture tube was washed with
5 ml of PBS, which was then poured over the aggregate fraction to remove residual planktonic cells.
Aggregates that remained on the strainer were resuspended in 4.5 ml PBS plus 6% Tween 20 and poured
back in the original culture tube. Five hundred microliters of Tween 20 was added for a final volume of
5 ml and a final Tween 20 concentration of 28.5%. Aggregate fractions were then water bath sonicated
until no visible clumps remained, and the OD600 of the aggregate fraction was recorded. For CFU counts,
a slightly modified protocol was employed for the aggregate fraction. Instead of PBS, aggregates were
resuspended in TYEM plus 0.05% Tween 80, to which 100 �l of autoclave-sterilized Tween 20 was added.
Aggregates were then water bath sonicated until no clumps were visible. Both planktonic and aggregate
fractions were then serially diluted in TYEM plus 0.05% Tween 80, and serial dilutions spanning 7 orders
of magnitude were plated on TYEM agar plates as 10-�l drips. Plates were incubated at 37°C for �2 days,
and colonies were counted at the appropriate dilution. Conditioned medium was prepared by centri-
fuging 52-h-old cultures and filtering the supernatant through an 0.2-�m filter. For conditioned medium
experiments, three 48-h-old cultures were pooled by passing them through a single 10-�m strainer.
Aggregates were washed with 5 ml of PBS and then resuspended in 15 ml of conditioned medium (or
PBS as indicated). Five-milliliter aliquots were partitioned into three culture tubes, and after 12 h of
shaking at 37°C, aggregates and planktonic cells were separated and quantified.

Evolution experiment/sequencing. WT M. smegmatis was inoculated into TYEM plus 0.2% glucose.
After 24 h, 1 ml of culture was centrifuged for 1 min at 2,000 � g. One hundred microliters of supernatant
was inoculated into a new TYEM plus 0.2% glucose culture. The process was repeated every 24 h. After
60 passages, planktonic cells were visibly accumulating at 24 h. This culture was plated on TYEM agar
plates, and a single colony was selected as the passage 60 isolate. Along with an isolate from passage
0 and passage 40, this strain was grown to mid-exponential phase, and DNA was extracted as described
previously (77). DNA was fragmented using the NEBNext dsDNA Fragmentase (New England Biolabs,
Ipswich, MA) according to the manufacturer’s instructions. Briefly, 1 �g of passage 0 and passage 40 DNA
and 725 ng of passage 60 DNA were treated with Fragmentase for 15 min in order to achieve an
acceptable size distribution, which was assessed using a high-sensitivity DNA chip on a Bioanalyzer
instrument (Agilent). Libraries for sequencing were prepared using the NEBNext DNA library prep kit
according to instructions, which included end repair of the fragments, deoxyribosyladenine (dA) tailing,
and ligation to adaptors. Each sample was PCR amplified with a universal primer and a unique bar-coded
primer, using 12 amplification cycles. Final libraries were verified using a Bioanalyzer high-sensitivity DNA
chip and quantified using the Qubit fluorimeter and double-stranded DNA (dsDNA) dye (Invitrogen).
Sequencing was performed by the Millard and Muriel Jacobs Genetics and Genomics Laboratory at the
California Institute of Technology using the Illumina HiSeq 2500 platform. Approximately 15 million
single reads of 50 bp each were collected for each sample. Base-calling and demultiplexing were performed
by the Illumina HiSeq Control Software (HCS; version 2.0). The resulting FASTQ files were concatenated into
one file per sample and filtered and trimmed by quality score per base using the Trimmomatic software
package with the following parameters: LEADING:27 TRAILING:27 SLIDINGWINDOW:4:20 MINLEN:35 (78).
Surviving reads were mapped to the Mycobacterium smegmatis strain MC2155 genome (gi|118467340
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|ref|NC_008596.1) using bwa (version 0.7.12) (79), and sorted and converted to binary format using
SAMtools (version) (80). Tools from the Genome Analysis Tool Kit (GATK; version 2.7-4-g6f46d11) (81)
were used to call single nucleotide polymorphism (SNPs) and small insertions and deletions relative to
the reference genome as follows. First, duplicate reads were identified and marked using the MarkDu-
plicates tool. Next, putative insertions and deletions were identified using the RealignerTargetCreator
tool, and reads surrounding them were realigned using the IndelRealigner tool. Finally, putative variants
relative to the reference genome were called using the UnifiedGenotyper tool. One hundred forty-four
variant regions were confidently identified in the passage 0 sample, 153 variant regions were identified
in the passage 40 sample, and 154 variant regions were identified in the passage 60 sample. Most of
these variations were common to all three samples and were not considered further. For mutations of
interest, the effects on protein coding sequence were predicted using the SnpEff tool (version SnpEff
4.3t) (82). Nontransposon ORFs mutated in the passage 40 and passage 60 isolates relative to the passage
0 isolate are listed in Table 1.

Ammonium measurements. At the time points indicated, 1 ml of culture was centrifuged at
16,000 � g at room temperature for 1 min to pellet cells. Supernatants were filter sterilized through a
0.2-�m syringe filter and diluted 1:40 in Nanopure H2O. Parallel ion chromatography (IC) systems
operated simultaneously (Dionex ICS 200; Environmental Analysis Center, Caltech) were used to measure
ammonium. A single autosampler (Dionex AS 40) loaded both systems’ sample loops serially. The 5-�l
sample loop on the anion IC system was loaded first, followed by a 5-�l sample loop on the cation IC
system. Both columns and both detectors were maintained at 30°C. Anionic components in the sample
were resolved using an AS-19 separator (2- by 250-mm) column protected by an AG-19 guard (2 by 50
mm). A hydroxide gradient was produced using a potassium hydroxide eluent generator cartridge and
pumped at 0.25 ml/min. The gradient began with a 10 mM hold for 10 min and increased linearly to
58 mM at 25 min, remaining at 58 mM until the end of data acquisition at 32 min. Seven minutes was
allowed between analyses to return the column to initial conditions. Anions were detected at neutral pH
using an AERS-500 2-mm suppressor (Thermo) operated in eluent recycle mode with an applied current
of 30 mA and conductivity detection cell maintained at 35°C. A carbonate removal device (CRD 200;
2 mm) was installed between the suppressor eluent out and the conductivity detector eluent in ports.
Ammonium, calcium, magnesium, potassium, and sodium were resolved using a CS-12A separator
column (2 by 250 mm) protected by a CG-12A guard column (2 by 50 mm). Isocratic methylsulfonate at
20 mM was produced using a methylsulfonic acid-based eluent-generated cartridge and pumped at
0.25 ml/min. Suppressed conductivity detection using a Dionex CERS-500 2-mm suppressor operated in
eluent recycle mode with an applied current of 15 mA. Ammonium standards ranging from 1 �M to
1 mM (1 �M, 10 �M, 50 �M, 100 �M, 500 �M, and 1 mM) were run along with samples. A standard curve
was generated by fitting a quadratic curve to standard measurements.

C/N measurements. For defined medium conditions, 16 5-ml cultures (either in pyruvate defined
medium with or without NH4Cl or glycerol defined medium) were grown to an OD600 between 0.5 and
0.7. The 16 cultures were divided into two sets of eight cultures. All eight cultures in a set were poured
into a single 50-ml conical tube. Samples were then centrifuged at 6,000 � g for 10 min at 4°C. Pellets
were then washed twice with 25 ml PBS, with centrifugation in between. After the second wash, each
pellet was resuspended in 1.2 ml PBS, which was divided among two 1.5-ml centrifuge tubes in 600-�l
aliquots (for a total of four samples/condition). After centrifugation at 16,000 � g for 1 min, supernatants
were pipetted off and pellets were flash frozen in liquid nitrogen and stored at �80°C. Frozen
samples were lyophilized, and �50 �g (for carbon measurement) and �700 �g (for nitrogen
measurement) of each sample were weighed into an organic elemental analysis (OEA) lab tin capsule
(pressed, ultraclean, C61480.096P). Carbon and nitrogen were measured separately due to differing
sensitivities of the instrument. Each sample was combusted in a Thermo Fisher EA IsoLink combus-
tion system by oxidation at 1,020°C over tungstic oxide, followed by reduction over elemental
copper packed in the same furnace. The generated CO2 and N2 carried by a continuous helium flow
(100 ml/min) were subsequently passed through a water trap and then a 5-Å molecular sieve gas
chromatograph (GC) at 50°C. The GC was used to separate N2 from CO2. Carbon and nitrogen were
then diluted with helium in a Conflo IV interface/open split prior to entering the Thermo Fisher Delta
V isotope ratio mass spectrometry (IRMS) system for analysis. Depending on the configurations of
the IRMS, either CO2 or N2 was measured for its total abundance. Integrated peak areas for both CO2

and N2 were calibrated by running urea standards, and empty tins were included as blanks. A
Student t test was used to generate P values comparing conditions.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01715-19.
FIG S1, TIF file, 2.8 MB.
FIG S2, TIF file, 2.8 MB.
FIG S3, TIF file, 0.4 MB.
FIG S4, TIF file, 0.9 MB.
FIG S5, TIF file, 1.2 MB.
FIG S6, TIF file, 0.7 MB.
FIG S7, TIF file, 2.6 MB.
FIG S8, TIF file, 2 MB.
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